de Rham Theorem May 10, 2016
|
|
- Αμάλθεια Φυλλίς Αγγελίδου
- 6 χρόνια πριν
- Προβολές:
Transcript
1 de Rham Theorem May 10, 2016
2 Stokes formula and the integration morphism: Let M = σ Σ σ be a smooth triangulated manifold. Fact: Stokes formula σ ω = σ dω holds, e.g. for simplices. It can be used to define linear map Int k. The map Int k 1 : Ω k (M) Σ k defines a homomorphism of complexes. Note: Stokes thm. implies commutativity of the diagram: d k 1... Ω k 1 (M) Ω k (M) Ω k+1 (M)... d k Int k 1 Φ k 1 Int k Φ k Int k+1 Φ k+1 k 1... Σ k 1 Σ k Σ k+1... k
3 Elementary Forms: If p 1, p 2,... p s are the vertices of complex K, the set {St(p k )} k, where St(p k ) := σ:σ p k σ, forms an open cover for M. The partition of unity theorem guarantees the existence of a C -partition of unity φ 1,..., φ s subordinate to {St(p k )} k. Below we denote the dual basis to simpleces by the same letters. Let σ = [p λ0... p λk ] be an oriented simplex. Corresponding to σ is the elementary differential form of order k Φ k (p λ0,..., p λk ) = k! k i=0 ( 1)i φ λi dφ λ0 dφ λi dφ λk.
4
5
6 1. Right inverse to integration via elementary forms Proof: induction on k. Below ω σ is the pairing by integration. k = 0 = Int 0 (Φ 0 (q i )) q j := (Φ 0 (q i ))(q j ) = Φ i (q j ) = δ ij. Inductive step k > 0 : if σ τ then τ M \ St(σ) (Lemma 1). Then Int k (φ k [σ]) τ = 0. Let σ =: α + [other (k-1)-faces of] σ. Then (α) = τ α τ. So, σ Φk (σ) = σ Φk (α) = σ dφk 1 (α) = σ Φk 1 (α) = α Φk 1 (α) = 1. (Using Stokes, Lemma 2, and the inductive hypothesis)
7 Two lemmas needed for Step 1. Remark: Supp Φ(σ) a V (σ) St(a) := St(σ). Lemma 1. τ σ; τ, σ Σ k = τ M \ St(σ). Proof. Let b V (τ) \ V (σ). Either (b, σ) Σ k+1 = supp Φ(σ) St(b) = or (b, σ) / Σ k+1. In the latter case, if β Σ k+1, b V (β) = σ / F(β) = St(b) σ =. In either case, σ Φ(τ) = τ Φ(σ) = 0, or, [σ] τ = [τ] σ = 0. Lemma 2. Φ k = d Φ k 1. Observe that φ i = 1, so dφi = 0. Also dφ k (q λ0... q λk ) = (k + 1)!dλ 0 dλ k.
8 Let σ = q λ0... q λk, then 1 (k+1)! Φk+1 [σ] = 1 (k+1)! [q r σ] Σ k+1 Φ k+1 [q r σ] = [q r σ] Σ k+1 [φ qr dφ λ0 dφ λk + k i=0 ( 1)i+1 φ λi dφ qr dφ λ0 dφ λi... dφ λk ] = [q r σ] Σ k+1 φ qr dφ λ0... dφ λk + [q r σ]/ Σ k+1,q r / V (σ) dφ q r k i=0 ( 1)i φ λi dφ λ0 dφ λi... dφ λk ] + k j=0 dφ λ j k i=0 ( 1)i φ λi dφ λ0 dφ λi dφ λk = dφ λ0... dφ λk = 1 (k+1)! dφk [σ].
9 de Rham Complex... ker Int k 1 (M) ker Int k (M) ker Int k+1 (M)... i i i d k 1 d k... Ω k 1 (M) Ω k (M) Ω k+1 (M)... Int k 1 Φ k 1 Int k Φ k Int k+1 Φ k+1 k 1 k... Σ k 1 Σ k Σ k+1... Let k th de Rham cohomology group H k (M) := ker d k /im d k 1. Let k th cohomology group of Σ H k (Σ) := ker k /im k 1. Note: Int k : Ω k (M) Σ k induces an isomorphism Int k : H k (M) H k (Σ) of differential complexes.
10 Acyclicity of the kernel of Int map. Basic fact: Poincare Lemma: If U is a contractible open set in R n and α a k-smooth closed form on U, then α is exact, i.e there exists a form β such that α = dβ. Observe that St(σ) is contractible so Poincare lemma applies. Next fact that we will need is the extension of forms theorem.
11 Extension of forms theorem. (a k ) Let U( σ)) be ngbhd of of σ, σ a s simplex, ω Ω k (U( σ)) closed, k 0, s 1. If σ ω = 0 and s = k + 1, then ω Ωk (U(σ)) cl.s.t. ω U( σ) = ω, perhaps by shrinking U( σ). (b k ) If s 1, k 1, σ an s simplex, ω Ω k (U(σ)) closed and α Ω k 1 (U( σ)), U( σ) U(σ), s.t. dα = ω U( σ). When s = k assume σ ω = σ α. Then exists α Ωk 1 (U(σ)) s.t. α U( σ) = α and d α = ω, maybe shrinking U(σ) U( σ).
12 Proof of acyclicity, by induction on s n. Consider an s-dim. subcomplex L s := i σs i and ω ker(int k ) a closed form. Outline: Construct inductively nbhds U(L s ) of L s and forms α s Ω k 1 (U(L s )) s.t. α s U(Ls) U(L s 1 ) = α s 1, dα s = ω U(Ls) and Int k 1 (α k 1 ) = 0. Then α n ker(int k 1 ) and dα n = ω, proving that ker(int ) is acyclic.
13 Proof of acyclicity, by induction. Basis step: Choose disjoint, contractible nbds U(σi 0 ). By Poincare Lemma exists α 0 Ω0 (U(σi 0)) with dα 0 = ω U(σi 0). Set α 0 := α 0 for k > 1 and α 0 := α 0 α 0 (σ0 i ) for k = 1 so Int 0(α 0 ) = 0 as required for s = 0. Inductive Step: Given α s 1, for each σ s i we now construct nbds U(σi s ) s.t. overlaps of each two are subsets of U(L s 1 ) and also forms
14 Proof of acyclicity, by induction. α s,i Ω k 1 (U(σi s)) that coincide with α s 1 on overlaps. Inductive assumption includes dα s 1 = ω U(Ls 1 ) and α s 1 ker(int k 1 (U(L s 1 ))) for s = k. Then (b k ) gives α s,i Ω k 1 (U(σi s)) s.t. d α s,i = ω U(σ s i ) and α s,i U( σ s i ) = α s 1. Glue α s,i into α s on U(L s ) := i U(σi s). We set α s := α s for s k 1 and α s := α s Φ k 1 (Int k 1 ( α s )) for s = k 1.
15 Proof of acyclicity, by induction (concluded). Note that Φ and Int are homomorphisms of complexes and the former is the right inverse of the latter by [1] imply dα k 1 = ω φ k (Int k (ω)) = ω on U(L s ) and also that Int k 1 (α k 1 ) = Int k 1 ( α k 1 ) Int k 1 ( α k 1 ) = 0 concluding the proof.
16 Euler characteristic χ(t (M)) does not depend on the triangulation T (M) of M Reason: Corollary to the Theorem implies ker(d k ) = im(d k 1 ) where d is the restriction of the exterior derivative in the kernel. which in turn implies ker( k ) im( k 1 ) = im(d k) im(d k 1 ). Note: #{σ T (M) : dimσ = k} = dim R Σ k = dim R Σ k. Theorem: Euler characteristic χ(m) := n k=1 ( 1)k ker(d dim k ) R im(d k 1 ) = χ(t (M)). Corollary: χ(t (M)) does not depend on triang. T (M) of M.
17 Proof of the corollary dim R Σ k = dim R (Im( k )) + dim R ker( k ) im( k 1 ) + dim RIm( k 1 ). Therefore χ(m) = n k=0 ( 1)k ker( k dim ) R ) = χ(t (M)). im( k 1
18 Extension of Forms Theorem Proof: by induction on k. Outline: Show (a 0 ) holds, then (a k 1 ) = (b k ), and finally, (b k ) = (a k ). (a 0 ) : Say ω Ω 0 (U( σ)) closed. Then ω is locally constant. If s > 1, then ω const in U( σ) so we can let let ω = ω in U(σ). If s = 1 then σ = p 0 p 1 as an 1 simplex; also it is given that σ ω = 0. But σ ω = ω(p 1) ω(p 0 ) = 0 so we can let ω = ω. (a k 1 ) = (b k ): Say ω, α are as in (b k ). Poincare lemma gives α Ω k 1 (U(σ)), dα = ω U(σ). Let α α =: β Ω k 1 (U( σ)).
19 Then β is closed in U( (σ)). If s = k then σ β = α σ α = σ ω σ dα = 0. Applying (a k 1 ) to β we get a closed form β Ω k 1 (U(σ)) such that β U( σ) = β. Then α := ( β + α ) Ω k 1 (U(σ)) is as required in (b k ). (b k ) = (a k ): Say σ = (p 0... p s ) and ω are as in (a k ), k > 0. Also, let σ := (p 1... p s ) P, where P is he union of proper faces of σ with p 0 as a vertex. Then ω is defined and closed in a ngbhd U(P); clearly U(P) St(p 0 ) and it is star-shaped.
20 Poincare lemma gives α Ω k 1 (U(P)) s.t. dα = ω U(P) ; this holds in particular in some nbhd U( σ ) U(P). For s = k + 1 define A := ( σ σ ) Σ k. Then A = σ, and hence σ ω σ α = σ ω + A dα = σ ω = 0. Applying now (b k) to simplex σ we get α Ω k 1 (U(σ )) such that α U( σ )) = α and d α = ω U(σ ). Shrink U(P) so that U(P) U(σ ) U( σ ), let U( σ) := U(P) U(σ ) and set α Ω k 1 (U( σ)) by α = α on U(P) and α = α on U(σ ). Extending α using partition
21 of unity to Ω k 1 (U(σ)) gives the closed form (required by (a k )) ω := d α since ω = d α σ = ω by construction of α and α.
Differential forms and the de Rham cohomology - Part I
Differential forms and the de Rham cohomology - Part I Paul Harrison University of Toronto October 30, 2009 I. Review Triangulation of Manifolds M = smooth, compact, oriented n-manifold. Can triangulate
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
Uniform Convergence of Fourier Series Michael Taylor
Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula
Every set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
ORDINAL ARITHMETIC JULIAN J. SCHLÖDER
ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that
Fractional Colorings and Zykov Products of graphs
Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
5. Choice under Uncertainty
5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Lecture 2. Soundness and completeness of propositional logic
Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Lecture 13 - Root Space Decomposition II
Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)
Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
Iterated trilinear fourier integrals with arbitrary symbols
Cornell University ICM 04, Satellite Conference in Harmonic Analysis, Chosun University, Gwangju, Korea August 6, 04 Motivation the Coifman-Meyer theorem with classical paraproduct(979) B(f, f )(x) :=
w o = R 1 p. (1) R = p =. = 1
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:
A Note on Intuitionistic Fuzzy. Equivalence Relation
International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com
Lecture 15 - Root System Axiomatics
Lecture 15 - Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
On a four-dimensional hyperbolic manifold with finite volume
BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
Tridiagonal matrices. Gérard MEURANT. October, 2008
Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,
Bounding Nonsplitting Enumeration Degrees
Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2-permitting for the enumeration degrees. Till now,
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Chapter 3: Ordinal Numbers
Chapter 3: Ordinal Numbers There are two kinds of number.. Ordinal numbers (0th), st, 2nd, 3rd, 4th, 5th,..., ω, ω +,... ω2, ω2+,... ω 2... answers to the question What position is... in a sequence? What
12. Radon-Nikodym Theorem
Tutorial 12: Radon-Nikodym Theorem 1 12. Radon-Nikodym Theorem In the following, (Ω, F) is an arbitrary measurable space. Definition 96 Let μ and ν be two (possibly complex) measures on (Ω, F). We say
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.
Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:
MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS
MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed
1. Introduction and Preliminaries.
Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat Filomat 22:1 (2008), 97 106 ON δ SETS IN γ SPACES V. Renuka Devi and D. Sivaraj Abstract We
The challenges of non-stable predicates
The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates
DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS
GANIT J. Bangladesh Math. oc. IN 606-694) 0) -7 DIRECT PRODUCT AND WREATH PRODUCT OF TRANFORMATION EMIGROUP ubrata Majumdar, * Kalyan Kumar Dey and Mohd. Altab Hossain Department of Mathematics University
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
( y) Partial Differential Equations
Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018
Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
Congruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality
The Probabilistic Method - Probabilistic Techniques Lecture 7: The Janson Inequality Sotiris Nikoletseas Associate Professor Computer Engineering and Informatics Department 2014-2015 Sotiris Nikoletseas,
Space-Time Symmetries
Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a
On the Galois Group of Linear Difference-Differential Equations
On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts
Problem Set 3: Solutions
CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.
Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +
Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008
Sequent Calculi for the Modal µ-calculus over S5 Luca Alberucci, University of Berne Logic Colloquium Berne, July 4th 2008 Introduction Koz: Axiomatisation for the modal µ-calculus over K Axioms: All classical
On density of old sets in Prikry type extensions.
On density of old sets in Prikry type extensions. Moti Gitik December 31, 2015 Abstract Every set of ordinals of cardinality κ in a Prikry extension with a measure over κ contains an old set of arbitrary
Commutators of cycles in permutation groups
Also available at http://amc-journal.eu ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.) ARS MATHEMATICA CONTEMPORANEA 10 (2016) 67 77 Commutators of cycles in permutation groups Aleš Vavpetič
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Lecture 21: Properties and robustness of LSE
Lecture 21: Properties and robustness of LSE BLUE: Robustness of LSE against normality We now study properties of l τ β and σ 2 under assumption A2, i.e., without the normality assumption on ε. From Theorem
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik
Affine Weyl Groups Gabriele Nebe Lehrstuhl D für Mathematik Summerschool GRK 1632, September 2015 Crystallographic root systems. Definition A crystallographic root system Φ is a finite set of non zero
6.3 Forecasting ARMA processes
122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear
SOLVING CUBICS AND QUARTICS BY RADICALS
SOLVING CUBICS AND QUARTICS BY RADICALS The purpose of this handout is to record the classical formulas expressing the roots of degree three and degree four polynomials in terms of radicals. We begin with
Some new generalized topologies via hereditary classes. Key Words:hereditary generalized topological space, A κ(h,µ)-sets, κµ -topology.
Bol. Soc. Paran. Mat. (3s.) v. 30 2 (2012): 71 77. c SPM ISSN-2175-1188 on line ISSN-00378712 in press SPM: www.spm.uem.br/bspm doi:10.5269/bspm.v30i2.13793 Some new generalized topologies via hereditary
New bounds for spherical two-distance sets and equiangular lines
New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
Homomorphism of Intuitionistic Fuzzy Groups
International Mathematical Forum, Vol. 6, 20, no. 64, 369-378 Homomorphism o Intuitionistic Fuzz Groups P. K. Sharma Department o Mathematics, D..V. College Jalandhar Cit, Punjab, India pksharma@davjalandhar.com
The semiclassical Garding inequality
The semiclassical Garding inequality We give a proof of the semiclassical Garding inequality (Theorem 4.1 using as the only black box the Calderon-Vaillancourt Theorem. 1 Anti-Wick quantization For (q,
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
Distances in Sierpiński Triangle Graphs
Distances in Sierpiński Triangle Graphs Sara Sabrina Zemljič joint work with Andreas M. Hinz June 18th 2015 Motivation Sierpiński triangle introduced by Wac law Sierpiński in 1915. S. S. Zemljič 1 Motivation
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
Concrete Mathematics Exercises from 30 September 2016
Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)
Chapter 2. Ordinals, well-founded relations.
Chapter 2. Ordinals, well-founded relations. 2.1. Well-founded Relations. We start with some definitions and rapidly reach the notion of a well-ordered set. Definition. For any X and any binary relation
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with
Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
Homomorphism in Intuitionistic Fuzzy Automata
International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic
Cardinals. Y = n Y n. Define h: X Y by f(x) if x X n X n+1 and n is even h(x) = g
Cardinals 1. Introduction to Cardinals We work in the base theory ZF. The definitions and many (but not all) of the basic theorems do not require AC; we will indicate explicitly when we are using choice.
Jordan Form of a Square Matrix
Jordan Form of a Square Matrix Josh Engwer Texas Tech University josh.engwer@ttu.edu June 3 KEY CONCEPTS & DEFINITIONS: R Set of all real numbers C Set of all complex numbers = {a + bi : a b R and i =
F A S C I C U L I M A T H E M A T I C I
F A S C I C U L I M A T H E M A T I C I Nr 46 2011 C. Carpintero, N. Rajesh and E. Rosas ON A CLASS OF (γ, γ )-PREOPEN SETS IN A TOPOLOGICAL SPACE Abstract. In this paper we have introduced the concept
UNIT - I LINEAR ALGEBRA. , such that αν V satisfying following condition
UNIT - I LINEAR ALGEBRA Definition Vector Space : A non-empty set V is said to be vector space over the field F. If V is an abelian group under addition and if for every α, β F, ν, ν 2 V, such that αν
Intuitionistic Fuzzy Ideals of Near Rings
International Mathematical Forum, Vol. 7, 202, no. 6, 769-776 Intuitionistic Fuzzy Ideals of Near Rings P. K. Sharma P.G. Department of Mathematics D.A.V. College Jalandhar city, Punjab, India pksharma@davjalandhar.com
Strain gauge and rosettes
Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified
ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω
0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +
Lecture 34 Bootstrap confidence intervals
Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α
Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
The Pohozaev identity for the fractional Laplacian
The Pohozaev identity for the fractional Laplacian Xavier Ros-Oton Departament Matemàtica Aplicada I, Universitat Politècnica de Catalunya (joint work with Joaquim Serra) Xavier Ros-Oton (UPC) The Pohozaev
Notes on the Open Economy
Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.
Abstract Storage Devices
Abstract Storage Devices Robert König Ueli Maurer Stefano Tessaro SOFSEM 2009 January 27, 2009 Outline 1. Motivation: Storage Devices 2. Abstract Storage Devices (ASD s) 3. Reducibility 4. Factoring ASD