Electronic Supplementary Information

Σχετικά έγγραφα
Structural Expression of Exo-Anomeric Effect

Supporting Information. DFT Study of Pd(0)-Promoted Intermolecular C H Amination with. O-Benzoyl Hydroxylamines. List of Contents

Electronic Supplementary Information

Photostimulated Reduction of Nitriles by SmI 2. Supporting information

Bifunctional Water Activation for Catalytic Hydration of Organonitriles

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Ethyl Nitroacetate in Aza-Henry Addition on Trifluoromethyl Aldimines: A Solvent-Free Procedure To Obtain Chiral Trifluoromethyl α,β-diamino Esters

Alkyl-functionalization of 3,5-bis(2-pyridyl)-1,2,4,6- thiatriazine

Supporting Information. A single probe to sense Al(III) colorimetrically and. Cd(II) by turn-on fluorescence in physiological

Mild Aliphatic and Benzylic hydrocarbon C H Bond Chlorination Using Trichloroisocyanuric Acid (TCCA)

Striking Difference between Succinimidomethyl and Phthalimidomethyl Radicals in Conjugate Addition to Alkylidenemalonate Initiated by Dimethylzinc

Supporting Information

Uncovering the impact of capsule shaped amine-type ligands on. Am(III)/Eu(III) separation

Reaction of Lithium Diethylamide with an Alkyl Bromide and Alkyl Benzenesulfonate: Origins of Alkylation, Elimination, and Sulfonation.

Electronic Supplementary Information (ESI) for

Diels-Alder reaction of acenes with singlet and triplet oxygen - theoretical study of two-state reactivity

Supporting Information for:

Supporting Information for

Nesting Complexation of C 60 with Large, Rigid D 2 Symmetrical Macrocycles

Supporting Information. Fluorinated Thiophene-Based Synthons: Polymerization of 1,4-Dialkoxybenzene

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

Rhodium-Catalyzed Direct Bis-cyanation of. Arylimidazo[1,2-α]pyridine via Double C-H Activation

Syntheses and Characterizations of Molecular Hexagons and Rhomboids and Subsequent Encapsulation of Keggin-Type Polyoxometalates by Molecular Hexagons

Supporting Information. Identification of Absolute Helical Structures of Aromatic Multi-layered Oligo(m-phenylurea)s in Solution.

A Selective, Sensitive, Colorimetric and Fluorescence Probe. for Relay Recognition of Fluoride and Cu (II) ions with

Asymmetric H/D exchange reaction of fluorinated aromatic ketones

Intermolecular Aminocarbonylation of Alkenes using Cycloadditions of Imino-Isocyanates. Supporting Information

Supporting Information

Figure S12. Kinetic plots for the C(2)-H/D exchange reaction of 2 CB[7] as a function

Accessory Publication

Supporting Information

Supporting Information File for. Design of van der Waals Two-Dimensional Heterostructures from

SUPPORTING INFORMATION

Synthesis and spectroscopic properties of chial binaphtyl-linked subphthalocyanines

Supporting Information

Electronic Supplementary Information for

Bis(perylene diimide) with DACH bridge as nonfullerene. electron acceptor for organic solar cells

Capture of Benzotriazole-Based Mannich Electrophiles by CH-Acidic Compounds

Supporting Information. Lithium Cadmate-Mediated Deprotonative Metalation of Anisole: Experimental and Computational Study

Supporting Information

SUPPORTING INFORMATION. Visible Light Excitation of a Molecular Motor with an Extended Aromatic Core

Supporting Information

Supporting Information

Supporting Information

Naphthotetrathiophene Based Helicene-like Molecules: Synthesis and Photophysical Properties

Electronic Supplementary Information (ESI)

Push-Pull Type Porphyrin Based Sensitizers: The Effect of Donor Structure on the Light- Harvesting Ability and Photovoltaic Performance

Title N-H versus C-H Activation of a Pyrrole Imine at {Cp*Ir}: A Computational and Experimental Study

DFT Kinetic Study of the Pyrolysis Mechanism of Toluene Used for Carbon Matrix

Electronic Supplementary Information

Amplification of a metallacyclic receptor out of a dynamic combinatorial library. - Supporting Information -

Disulfide-based metal free sulfanylation of ketones

Supplementary Figures

Experimental and Theoretical Evidence of the Au(I) Bi(III) Closed-Shell Interaction

Supporting Material. Hydrogen Oxidation and Production Using Nickel-Based Molecular Catalysts with Positioned Proton Relays

Synthesis, characterization and luminescence studies of

Supporting Information. Halogen Photoelimination from Monomeric Ni(III) Complexes Enabled by the Secondary Coordination Sphere

Zn 2 +, Studies on the Structures and Antihyperglycemic Effects of Zn 2 +, Cu 2 +, Ni 2 + 2Metformin Complexes. ZHU, Miao2Li LU, Li2Ping YANG, Pin Ξ

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008

Commiphoratones A and B, Two Sesquiterpene Dimers from Resina Commiphora

Enhancing σ/π-type Copper(I) thiophene Interactions by Metal Doping (Metal = Li, Na, K, Ca, Sc)

Regioselective and Stereospecific Cu-Catalyzed Deoxygenation of Epoxides to Alkenes

Chemical Communications. Electronic Supporting Information

Sculpting the β-peptide foldamer H12 helix via a designed side chain shape

Pt-Ag Clusters and their Neutral Mononuclear Pt(II) Starting Complexes: Structural and Luminescence Studies.

Electronic Supplementary Information (ESI)

Electronic Supplementary Information DFT Characterization on the Mechanism of Water Splitting Catalyzed by Single-Ru-substituted Polyoxometalates

A turn-off emission based chemosensor for HSO formation of a hydrogen-bonded complex

LP N to BD* C-C = BD C-C to BD* O-H = LP* C to LP* B =5.

Electronic Supplementary Information (ESI)

Butadiene as a Ligand in Open Sandwich Compounds

Supporting Information. Generation of Pyridyl Coordinated Organosilicon Cation Pool by Oxidative Si-Si Bond Dissociation

An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N

Supporting Information

Supplementary Information

Zebra reaction or the recipe for heterodimeric zinc complexes synthesis

Differentiation of Diastereoisomers of Protected 1,2-Diaminoalkylphosphonic Acids by EI Mass Spectrometry and Density Functional Theory

Nitric oxide (NO) reactivity studies on mononuclear Iron(II) complexes supported by a tetradentate Schiff base Ligand

10-π-electron arenes à la carte: Structure. Sr, Ba; n = 6-8) complexes

Electronic Supplementary Information

Supporting Information. A Combined Crossed Molecular Beams and ab Initio Investigation on the Formation of Vinylsulfidoboron (C 2 H

Supporting Information. Crown Ether Complexes of Actinyls: A Computational Assessment of

Supporting Information for: electron ligands: Complex formation, oxidation and

Electronic Supplementary Information (ESI)

The role of exchange in systematic DFT errors for some organic reactions: Electronic supplementary information

Gelsekoumidines A and B: Two Pairs of Atropisomeric Bisindole Alkaloids from the Roots of Gelsemium elegans

Electronic Supporting Information. Thermal conversion of a pyridine-bridged bisdithiazolyl radical to a zwitterionic bisdithiazolopyridone

stability and aromaticity in the benzonitrile H 2 O complex with Na+ or Cl

Supporting Information

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Supporting Information

Table of Contents 1 Supplementary Data MCD

Supporting Information

Quantum dot sensitized solar cells with efficiency over 12% based on tetraethyl orthosilicate additive in polysulfide electrolyte

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Engineering Tunable Single and Dual Optical. Emission from Ru(II)-Polypyridyl Complexes. Through Excited State Design

chain transfer polymerization (DET-

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

College of Life Science, Dalian Nationalities University, Dalian , PR China.

Transcript:

Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Information to the paper Theoretical Insights into the Separation of Am(III) over Eu(III) with PhenBHPPA by Han Wu, QunYan Wu, CongZhi Wang, JianHui Lan, ZhiRong Liu, ZhiFang Chai and WeiQun Shi Contents: Table S1 The average ρ and 2 ρ values of the MN L and MO L BCPs in the Eu and Am complexes with PhenBHPPA. Table S2 Contribution (%) of metal atom and the nitrogen (N L ) and oxygen atoms of ligand (O L ), and the oxygen atoms of nitrate anion (O N ) to the delocalized canonical MOs for complexes [EuL(NO 3 ) 2 ] + and [AmL(NO 3 ) 2 ] +. Table S3 Changes of Gibbs free energies (kcal/mol) for complexation reactions of Am 3+ and Eu 3+ complexes with PhenBHPPA ligand in the gas phase, aqueous, n octanol and cyclohexanone phases at the B3LYP/631G*/RECP Level of Theory. a Table S4 Differences in the Gibbs free energies ( G, kcal/mol) between the PhenBHPPA complexes with of Am 3+ and Eu 3+ in gas, aqueous, noctanol, and cyclohexanone phases at the B3LYP/631G*/RECP Level. Fig. S1 Changes of Gibbs free energy ( G, kcal/mol) for 25 complexing reactions from five different Eu(III) starting reactants to five different products in the gas phase. Complete Gaussian 09 reference (Reference 37)

Table S1 The average ρ and 2 ρ values of the MN L and MO L BCPs in the Eu and Am complexes with PhenBHPPA. Species [ML] 3+ [ML(NO 3 )] 2+ [ML(H 2 O) 3 ] 3+ [ML(NO 3 )(H 2 O) 2 ] 2+ [ML(NO 3 ) 2 ] + ML(NO 3 ) 3 ρ MNL 0.047/0.051 0.039/0.043 0.027/0.033 0.030/0.035 0.027/0.031 0.026/0.029 2 ρ MNL 0.158/0.167 0.134/0.143 0.090/0.097 0.101/0.116 0.084/0.098 0.089/0.098 ρ MOL 0.069/0.073 0.052/0.054 0.036/0.045 0.044/0.047 0.036/0.039 0.034/0.036 2 ρ MOL 0.299/0.315 0.223/0.229 0.142/0.179 0.185/0.196 0.151/0.155 0.137/0.142 a / represent the results of Eu and Am complexes, respectively. Table S2 Contribution (%) of metal atom and the nitrogen (N L ) and oxygen atoms of ligand (O L ), and the oxygen atoms of nitrate anion (O N ) to the delocalized canonical MOs for complexes [EuL(NO 3 ) 2 ] + and [AmL(NO 3 ) 2 ] +. 261 254 253 243 240 225 Eu 4f: 78.69 4f: 10.74 4f:31.55 4f:1.45 4f:1.01 5d:1.32 N L 2p:33.67 2p:15.35 2p:28.59 O (NO3 ) 2p:9.22 2p:21.27 2p:31.02 2p:26.73 2p:38.41 2p:11.74 O L 2p:1.05 2p:10.00 2p:9.22 Am 279 272 271 249 244 240 5f: 72.01 6d:1.45 5f: 15.93 6d:1.15 5f: 17.43 6d:1.06 5f:3.12 5f:6.71 6d:2.80 N L 2p:26.74 2p:37.52 2p:29.26 O (NO3 ) 2p:12.57 2p: 52.68 2p:40.57 2p: 15.63 2p:12.74 2p:3.94 O L 2p:1.10 2p:1.08

Table S3 Changes of Gibbs free energies (kcal/mol) for complexation reactions of Am 3+ and Eu 3+ complexes with PhenBHPPA ligand in the gas phase, aqueous, n octanol and cyclohexanone phases at the B3LYP/631G*/RECP Level of Theory. a Reactions G gas G aq G noct G cyc [M(NO 3 )(H 2 O) 6 ] 2+ + L [ML(NO 3 )] 2+ + 6H 2 O 66.39/71.48 13.32/18.52 4.20/8.40 11.58/16.04 [M(NO 3 )(H 2 O) 6 ] 2+ + L [ML(H 2 O) 3 ] 3+ + 3H 2 O + NO 3 133.55/128.07 4.43/2.44 26.82/20.05 14.33/7.31 [M(NO 3 )(H 2 O) 6 ] 2+ + L [ML(NO 3 )(H 2 O) 2 ] 2+ + 4H 2 O 74.79/79.32 14.21/19.89 3.91/8.07 12.4717.29 [M(NO 3 )(H 2 O) 6 ] 2+ + L + NO 3 [ML(NO3 ) 2 ] + + 6H 2 O 210.74/217.17 21.4728.33 18.39/24.09 23.68/29.83 [M(NO 3 )(H 2 O) 6 ] 2+ + 2NO 3 + L ML(NO3 ) 3 + 6H 2 O 277.62/286.85 17.25/27.13 14.12/14.42 18.80/21.48 [M(NO 3 ) 2 (H 2 O) 3 ] + + L [ML(NO 3 )] 2+ +NO 3 + 3H2 O 106.23/105.25 4.38/5. 21 4.73/4.92 2.65/2.72 [M(NO 3 ) 2 (H 2 O) 3 ] + + L [ML(H 2 O) 3 ] 3+ + 2NO 3 306.17/304.81 13.37/10.88 35.76/33.37 23.26/20.63 [M(NO 3 ) 2 (H 2 O) 3 ] + + L [ML(NO 3 )(H 2 O) 2 ] 2+ + H 2 O + NO 3 97.83/56.00 5.28/6.57 5.03/5.25 3.54/3.97 [M(NO 3 ) 2 (H 2 O) 3 ] + + L [ML(NO 3 ) 2 ] + + 3H 2 O 38.12/40.43 12.53/15.01 9.45/10.77 14.75/16.51 [M(NO 3 ) 2 (H 2 O) 3 ] + + NO 3 + L ML(NO3 ) 3 + 3H 2 O 105.00/110.11 8.31/13.81 5.19/1.11 9.86/8.17 M(NO 3 ) 3 (H 2 O) 4 + L [ML(NO 3 )] 2+ +2NO 3 + 4H2 O 234.86/225.18 7.25/0.73 16.37/17.60 8.99/9.96 M(NO 3 ) 3 (H 2 O) 4 + L [ML(H 2 O) 3 ] 3+ + H 2 O + 3NO 3 434.80/435.83 25.00/23.55 47.39/46.04 34. 90/33.31 M(NO 3 ) 3 (H 2 O) 4 + L [ML(NO 3 )(H 2 O) 2 ] 2+ + 2H 2 O + 2NO 3 226.46/228.44 6.35/6.11 16.66/17.92 8.09/8.71 M(NO 3 ) 3 (H 2 O) 4 + L [ML(NO 3 ) 2 ] + + NO 3 + 4H2 O 90.52/90.59 0.90/2.33 2.18/1.91 3.11/3.83 M(NO 3 ) 3 (H 2 O) 4 + L ML(NO 3 ) 3 + 4H 2 O 23.63/20.91 3.32/1.14 6.44/11.57 1.77/4.51 [M(NO 3 ) 2 (H 2 O) 4 ] + + L [ ML(NO 3 )] 2+ +NO 3 + 4H2 O 121.09/120.21 2.26/2.04 11.37/12.71 4.00 /4.53 [M(NO 3 ) 2 (H 2 O) 4 ] + + L [ ML(H2 O) 3 ] 3+ + 2NO 3 + H2 O 321.02/319.77 20.01/18.12 42.40/40.61 29.90/27.87 [M(NO 3 ) 2 (H 2 O) 4 ] + + L [ ML(NO 3 )(H 2 O) 2 ] 2+ + 2H 2 O + NO 3 112.68/112.37 1.36/0.68 11.67/12.49 3.10/3.28

[M(NO 3 ) 2 (H 2 O) 4 ] + + L [ ML(NO 3 ) 2 ] + + 4H 2 O 23.26/25.48 5.89/7.77 2.81/3.53 8.11/9.27 [M(NO 3 ) 2 (H 2 O) 4 ] + + NO 3 + L ML(NO3 ) 3 + 4H 2 O 90.15/95.16 1.67/6.57 1.45/6.14 3.22/0.92 M(NO 3 ) 3 (H 2 O) 3 + L [ML(NO 3 )] 2+ + 2NO 3 + 3H2 O 232.16/232.81 8.16/9.30 17.28/19.43 9.90/11.79 M(NO 3 ) 3 (H 2 O) 3 + L [ML(H 2 O) 3 ] 3+ + 3NO 3 432.10/432.37 25.91/25.38 48.30/17.33 35.81/35.14 M(NO 3 ) 3 (H 2 O) 3 + L [ML(NO 3 )(H 2 O) 2 ] 2+ + H 2 O + 2NO 3 223.76/224.98 7.26/7.94 17.57/19.75 9.00/10.54 M(NO 3 ) 3 (H 2 O) 3 + L [ML(NO 3 ) 2 ] + + NO 3 + 3H2 O 87.81/87.13 0.01/0.51 3.09/3.73 2.20/2.00 M(NO 3 ) 3 (H 2 O) 3 + L ML(NO 3 ) 3 + 3H 2 O 20.93/17.45 4.23/0.69 7.35/13.40 2.68/6.34 [M(H 2 O) 9 ] 3+ + NO 3 + L [ML(NO3 )] 2+ + 9H 2 O 314.36/308.93 32.05/28.86 22.94/18.73 30.31/26.37 [M(H 2 O) 9 ] 3+ + L [ML(H 2 O) 3 ] 3+ + 6H 2 O 114.42/109.37 14.30/12.78 8.09/9.71 4.41/3.03 [M(H 2 O) 9 ] 3+ + L + NO 3 [ML(NO3 )(H 2 O) 2 ] 2+ + 7H 2 O 322.76/316.76 32.95/30.22 22.64/18.41 31.21/27.62 [M(H 2 O) 9 ] 3+ + L + 2NO 3 [ML(NO3 ) 2 ] + + 9H 2 O 458.71/454.61 40.20/38.67 37.12/34.43 42.42/40.17 [M(H 2 O) 9 ] 3+ + L + 3NO 3 ML(NO3 ) 3 + 9H 2 O 525.59/524.29 35.98/37.47 32.86/24.76 61.72/31.82 a / denotes Gibbs free energies for Eu amd Am complexes. Table S4 Differences in the Gibbs free energies (kcal/mol) of formation and extraction of the PhenBHPPA complexes with of Am 3+ and Eu 3+ in gas, aqueous, n octanol, and cyclohexanone phases at the B3LYP/631G*/RECP Level. Reactions G gas G aq G noct G cyc [M(NO 3 ) 2 (H 2 O) 3 ] + + L [ML(NO 3 )] 2+ +NO 3 + 3H2 O 0.98 0.83 0.19 0.07 [M(NO 3 ) 2 (H 2 O) 3 ] + + L [ML(H 2 O) 3 ] 3+ + 2NO 3 [M(NO 3 ) 2 (H 2 O) 3 ] + + L [ML(NO 3 )(H 2 O) 2 ] 2+ + H 2 O + NO 3 1.36 2.49 2.39 2.39 4.183 1.29 0.22 0.43 [M(NO 3 ) 2 (H 2 O) 3 ] + + L [ML(NO 3 ) 2 ] + + 3H 2 O 2.31 2.48 1.32 1.76 [M(NO 3 ) 2 (H 2 O) 3 ] + + NO 3 + L ML(NO3 ) 3 + 3H 2 O 5.11 5.50 4.08 1.69 [M(NO 3 ) 2 (H 2 O) 4 ] + + L [ML(NO 3 )] 2+ +NO 3 + 4H2 O 0.88 0.22 1.34 0.53

[M(NO 3 ) 2 (H 2 O) 4 ] + + L [ML(H2 O) 3 ] 3+ + 2NO 3 + H2 O 1.25 1.89 1.79 2.03 [M(NO 3 ) 2 (H 2 O) 4 ] + + L [ML(NO 3 )(H 2 O) 2 ] 2+ + 2H 2 O + NO 3 0.31 0.68 0.82 0.18 [M(NO 3 ) 2 (H 2 O) 4 ] + + L [ML(NO 3 ) 2 ] + + 4H 2 O 2.22 1.88 0.72 1.16 [M(NO 3 ) 2 (H 2 O) 4 ] + + NO 3 + L ML(NO3 ) 3 + 4H 2 O 5.01 4.90 7.59 2.30 M(NO 3 ) 3 (H 2 O) 3 + L [ML(NO 3 )] 2+ + 2NO 3 + 3H2 O 0.65 1.14 2.15 1.89 M(NO 3 ) 3 (H 2 O) 3 + L [ML(H 2 O) 3 ] 3+ + 3NO 3 0.27 0.53 30.97 0.67 M(NO 3 ) 3 (H 2 O) 3 + L [ML(NO 3 )(H 2 O) 2 ] 2+ + H 2 O + 2NO 3 1.22 0.68 2.18 1.54 M(NO 3 ) 3 (H 2 O) 3 + L [ML(NO 3 ) 2 ] + + NO 3 + 3H 2 O 0.68 0.52 0.64 0.20 M(NO 3 ) 3 (H 2 O) 3 + L ML(NO 3 ) 3 + 3H 2 O 3.48 3.54 6.05 3.66 [M(H 2 O) 9 ] 3+ + NO 3 + L [ML(NO3 )] 2+ + 9H 2 O 5.43 3.19 4.21 3.94 [M(H 2 O) 9 ] 3+ + L [ML(H 2 O) 3 ] 3+ + 6H 2 O 5.05 1.52 1.62 1.38 [M(H 2 O) 9 ] 3+ + L + NO 3 [ML(NO3 )(H 2 O) 2 ] 2+ + 7H 2 O 6.00 2.73 4.23 3.59 [M(H 2 O) 9 ] 3+ + L + 2NO 3 [ML(NO3 ) 2 ] + + 9H 2 O 4.10 1.53 2.69 2.25 [M(H 2 O) 9 ] 3+ + L + 3NO 3 ML(NO3 ) 3 + 9H 2 O 1.30 1.49 8.10 29.9 Fig. S1 Changes of Gibbs free energy ( G, kcal/mol) for 25 complexing reactions from five different Eu(III) starting reactants to five different products in the gas phase.

Complete Gaussian 09 reference (Reference 37) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci,B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.;Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima,T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.;Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin,K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.;Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo,C; Jaramillo, J.; Gomperts, R. E.; Stratmann, O.; Yazyev, A. J.; Austin,R.; Cammi, C.; Pomelli, J. W.; Ochterski, R.; Martin, R. L.; Morokuma,K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.;Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.;Cioslowski, J.; Fox, D. J. Gaussian 09, revision A.02; Gaussian, Inc.:Wallingford, CT, 2009.