LHC Physics in a Data-Driven Era Universität Heidelberg Obergurgl, April 2016
Data-driven particle physics What is the our Lagrangian? post-discovery work we need to do start with renormalizable Standard Model Higgs quantum numbers? [all other particles known?] new physics effects? [Higgs sector] dark matter candidate? measurements in terms of Lagrangian
Data-driven particle physics What is the our Lagrangian? post-discovery work we need to do start with renormalizable Standard Model Higgs quantum numbers? [all other particles known?] new physics effects? [Higgs sector] dark matter candidate? measurements in terms of Lagrangian Ways to communicate results effective theory [lots of discussion on side] model-independent description of limits simplified models [Felix and Michael s talks] UV-agnostic classification of topologies full models link to fundamental concepts in UV
Data-driven particle physics What is the our Lagrangian? post-discovery work we need to do start with renormalizable Standard Model Higgs quantum numbers? [all other particles known?] new physics effects? [Higgs sector] dark matter candidate? measurements in terms of Lagrangian What does this tell us? effective theory is no fun theory [all theory talks] non-minimal Higgs sector? [Martin s talk] strongly interacting Higgs models? [Francesco s and Kiel s talks] TeV-scale new physics? [Mauricio s and Sezen s talks] link to dark matter? [Wednesday talks] hierarchy problem? [Brian s talk] gauge coupling unification [Sebastian s talk] vacuum stability? Higgs inflation?... where are the new ideas in particle theory?
The finger to particle theory taste not true taste wide X γγ impossible spin-0 actual model X aa 4γ NMSSM narrow m γγ spin-1 2 effective couplings vector quarks Furry not true spin-2 taste not true My take on all those papers [Veronica s talk] open questions due to limited significance general problem: signal rate large largely EFT exercise dimension-5 operators XG µν G µν and XA µν A µν avoid di-jet constraints gauge invariant XB µν B µν and XW µν W µν avoid VV constraints no clear link to other data great to play with, but only for fun, please
Higgs effective theory Navigate wide landscape of limits OR quantifying boredom set of Higgs-gauge operators [Hagiwara etal, Grzadkowski etal] O GG = Φ ΦG a µν Gaµν O WW = Φ Ŵ µν Ŵ µν Φ O BB = O BW = Φ ˆBµν Ŵ µν Φ O W = (D µφ) Ŵ µν (D νφ) O B = O Φ,1 = (D µφ) Φ Φ ( D µ Φ ) O Φ,2 = 1 ( ) ( ) 2 µ Φ Φ µ Φ Φ O Φ,3 = 1 3 ( Φ Φ) 3 O Φ,4 = (D µφ) ( D µ Φ ) ( ) Φ Φ
Higgs effective theory Navigate wide landscape of limits OR quantifying boredom set of Higgs-gauge operators [Hagiwara etal, Grzadkowski etal] O GG = Φ ΦG a µν Gaµν O WW = Φ Ŵ µν Ŵ µν Φ O BB = O BW = Φ ˆBµν Ŵ µν Φ O W = (D µφ) Ŵ µν (D νφ) O B = O Φ,1 = (D µφ) Φ Φ ( D µ Φ ) O Φ,2 = 1 ( ) ( ) 2 µ Φ Φ µ Φ Φ O Φ,3 = 1 3 ( Φ Φ) 3 O Φ,4 = (D µφ) ( D µ Φ ) ( ) Φ Φ relevant part after equation of motion, etc L HVV = αsv 8π f g Λ 2 O GG + f BB plus Yukawa structure f τ,b,t Λ O 2 BB + f WW Λ 2 O WW + f B Λ 2 O B + f W Λ 2 O W + f Φ,2 Λ 2 O Φ,2
Higgs effective theory Navigate wide landscape of limits OR quantifying boredom set of Higgs-gauge operators [Hagiwara etal, Grzadkowski etal] O GG = Φ ΦG a µν Gaµν O WW = Φ Ŵ µν Ŵ µν Φ O BB = O BW = Φ ˆBµν Ŵ µν Φ O W = (D µφ) Ŵ µν (D νφ) O B = O Φ,1 = (D µφ) Φ Φ ( D µ Φ ) O Φ,2 = 1 ( ) ( ) 2 µ Φ Φ µ Φ Φ O Φ,3 = 1 3 ( Φ Φ) 3 O Φ,4 = (D µφ) ( D µ Φ ) ( ) Φ Φ relevant part after equation of motion, etc L HVV = αsv 8π f g Λ 2 O GG + f BB plus Yukawa structure f τ,b,t Higgs couplings to SM particles Λ O 2 BB + f WW Λ 2 L HVV = g g HG a µν Gaµν + g γ HA µνa µν O WW + f B Λ 2 O B + f W Λ 2 O W + f Φ,2 Λ 2 O Φ,2 + g (1) Z Z µνz µ ν H + g (2) HZ Z µνz µν + g (3) HZ Z µz µ ( ) + g (1) W + W µν W µ ν H + h.c. + g (2) W HW + µν W µν + g (3) W HW + µ W µ +
Higgs effective theory Navigate wide landscape of limits OR quantifying boredom set of Higgs-gauge operators [Hagiwara etal, Grzadkowski etal] O GG = Φ ΦG a µν Gaµν O WW = Φ Ŵ µν Ŵ µν Φ O BB = O BW = Φ ˆBµν Ŵ µν Φ O W = (D µφ) Ŵ µν (D νφ) O B = O Φ,1 = (D µφ) Φ Φ ( D µ Φ ) O Φ,2 = 1 ( ) ( ) 2 µ Φ Φ µ Φ Φ O Φ,3 = 1 3 ( Φ Φ) 3 O Φ,4 = (D µφ) ( D µ Φ ) ( ) Φ Φ SFitter legacy [Butter, Corbett, Eboli, Goncalves, Gonzalez-Fraile, Gonzalez-Garcia, TP, Rauch] ew-renormalizable hypothesis kinematics: p T,V, Φ jj f B /Λ 2 40 [TeV -2 ] 20 0-20 -40-60 -80-20 -10 0 10 20 30 f W /Λ 2 [TeV -2 ]
Higgs effective theory Navigate wide landscape of limits OR quantifying boredom set of Higgs-gauge operators [Hagiwara etal, Grzadkowski etal] O GG = Φ ΦG a µν Gaµν O WW = Φ Ŵ µν Ŵ µν Φ O BB = O BW = Φ ˆBµν Ŵ µν Φ O W = (D µφ) Ŵ µν (D νφ) O B = O Φ,1 = (D µφ) Φ Φ ( D µ Φ ) O Φ,2 = 1 ( ) ( ) 2 µ Φ Φ µ Φ Φ O Φ,3 = 1 3 ( Φ Φ) 3 O Φ,4 = (D µφ) ( D µ Φ ) ( ) Φ Φ SFitter legacy [Butter, Corbett, Eboli, Goncalves, Gonzalez-Fraile, Gonzalez-Garcia, TP, Rauch] ew-renormalizable hypothesis kinematics: p T,V, Φ jj f B /Λ 2 40 [TeV -2 ] 20 0-20 -40-60 -80-20 -10 0 10 20 30 f W /Λ 2 [TeV -2 ]
Higgs effective theory Navigate wide landscape of limits OR quantifying boredom set of Higgs-gauge operators [Hagiwara etal, Grzadkowski etal] O GG = Φ ΦG a µν Gaµν O WW = Φ Ŵ µν Ŵ µν Φ O BB = O BW = Φ ˆBµν Ŵ µν Φ O W = (D µφ) Ŵ µν (D νφ) O B = O Φ,1 = (D µφ) Φ Φ ( D µ Φ ) O Φ,2 = 1 ( ) ( ) 2 µ Φ Φ µ Φ Φ O Φ,3 = 1 3 ( Φ Φ) 3 O Φ,4 = (D µφ) ( D µ Φ ) ( ) Φ Φ SFitter legacy [Butter, Corbett, Eboli, Goncalves, Gonzalez-Fraile, Gonzalez-Garcia, TP, Rauch] f B /Λ 2 40 [TeV -2 ] 20 ew-renormalizable hypothesis kinematics: p T,V, Φ jj dominant overflow bins 0-20 -40-60 -80-20 -10 0 10 20 30 f W /Λ 2 [TeV -2 ]
Higgs effective theory Navigate wide landscape of limits OR quantifying boredom set of Higgs-gauge operators [Hagiwara etal, Grzadkowski etal] O GG = Φ ΦG a µν Gaµν O WW = Φ Ŵ µν Ŵ µν Φ O BB = O BW = Φ ˆBµν Ŵ µν Φ O W = (D µφ) Ŵ µν (D νφ) O B = O Φ,1 = (D µφ) Φ Φ ( D µ Φ ) O Φ,2 = 1 ( ) ( ) 2 µ Φ Φ µ Φ Φ O Φ,3 = 1 3 ( Φ Φ) 3 O Φ,4 = (D µφ) ( D µ Φ ) ( ) Φ Φ SFitter legacy [Butter, Corbett, Eboli, Goncalves, Gonzalez-Fraile, Gonzalez-Garcia, TP, Rauch] ew-renormalizable hypothesis kinematics: p T,V, Φ jj dominant overflow bins solved by di-bosons ] -2 [TeV 2 f B Λ 20 0 20 40 60 20 15 10 5 0 5 10 15 20 f W -2 [TeV ] 2 Λ
Higgs effective theory Navigate wide landscape of limits OR quantifying boredom set of Higgs-gauge operators [Hagiwara etal, Grzadkowski etal] O GG = Φ ΦG a µν Gaµν O WW = Φ Ŵ µν Ŵ µν Φ O BB = O BW = Φ ˆBµν Ŵ µν Φ O W = (D µφ) Ŵ µν (D νφ) O B = O Φ,1 = (D µφ) Φ Φ ( D µ Φ ) O Φ,2 = 1 ( ) ( ) 2 µ Φ Φ µ Φ Φ O Φ,3 = 1 3 ( Φ Φ) 3 O Φ,4 = (D µφ) ( D µ Φ ) ( ) Φ Φ SFitter legacy [Butter, Corbett, Eboli, Goncalves, Gonzalez-Fraile, Gonzalez-Garcia, TP, Rauch] ew-renormalizable hypothesis kinematics: p T,V, Φ jj dominant overflow bins solved by di-bosons (1) D6 fit works (2) D6 is not EFT (3) D6 needs Higgs+TGV f/λ 2 [TeV -2 ] 20-10 -20-30 -40 (4) D6 reach 500 GeV -50 10 0 LHC-Higgs, 95% CL LHC-Higgs + LHC-TGV + LEP-TGV, 95% CL Λ/ f [TeV] 0.25 0.3 0.5 0.5 0.3 0.25 0.2 0.15 f/λ 2 [TeV -2 ] 15 10 5 0-5 -10-15 -20 Λ/ f [TeV] 0.3 0.5 0.5 0.3 0.25 O GG O WW O BB O W O B O φ2 O WWW O t O b O τ
] Outlook Higgs effective theory Navigate wide landscape of limits OR quantifying boredom set of Higgs-gauge operators [Hagiwara etal, Grzadkowski etal] O GG = Φ ΦG a µν Gaµν O WW = Φ Ŵ µν Ŵ µν Φ O BB = O BW = Φ ˆBµν Ŵ µν Φ O W = (D µφ) Ŵ µν (D νφ) O B = O Φ,1 = (D µφ) Φ Φ ( D µ Φ ) O Φ,2 = 1 ( ) ( ) 2 µ Φ Φ µ Φ Φ O Φ,3 = 1 3 ( Φ Φ) 3 O Φ,4 = (D µφ) ( D µ Φ ) ( ) Φ Φ Triple gauge couplings [Butter, Eboli, Gonzalez-Fraile, Gonzalez-Garcia, TP] triple gauge vertices g 1, κ, λ vs operators testable in WW, WZ production [Christian s talk] semileptonic analyses missing for 8 TeV Run I LHC beating LEP -2 [TeV 2 f B Λ 80 60 40 20 0 20 40 60 80 CMS ATLAS 7 WZ 7 semi 8 WW 8 WZ 30 20 10 combined 0 10 20 30 f W 2 Λ [TeV -2 ]
] Outlook Higgs effective theory Navigate wide landscape of limits OR quantifying boredom set of Higgs-gauge operators [Hagiwara etal, Grzadkowski etal] O GG = Φ ΦG a µν Gaµν O WW = Φ Ŵ µν Ŵ µν Φ O BB = O BW = Φ ˆBµν Ŵ µν Φ O W = (D µφ) Ŵ µν (D νφ) O B = O Φ,1 = (D µφ) Φ Φ ( D µ Φ ) O Φ,2 = 1 ( ) ( ) 2 µ Φ Φ µ Φ Φ O Φ,3 = 1 3 ( Φ Φ) 3 O Φ,4 = (D µφ) ( D µ Φ ) ( ) Φ Φ Triple gauge couplings [Butter, Eboli, Gonzalez-Fraile, Gonzalez-Garcia, TP] triple gauge vertices g 1, κ, λ vs operators testable in WW, WZ production [Christian s talk] semileptonic analyses missing for 8 TeV Run I LHC beating LEP -2 [TeV 2 f B Λ 40 20 0 20 40 LHC LHC+LEP 60 LEP 80 10 5 0 5 10 15 20 25 30 35 f W 2 Λ [TeV -2 ]
Top effective theory Same for tops OR more boredom [TopFitter: Buckley, Englert, Ferrando, Miller, Moore, Russell, White] single, pair-wise, and associated top production [plus decays] including anomalous A FB from Tevatron 4-quark, Yang-Mills, electroweak operators O qq = qγ µq tγ µ t profile likelihoods and individual limits D6 reach 500 GeV [C = 1] O G = f ABC G Aν µ GBλ ν GCµ λ O φg = Φ ΦG a µν Gaµν CG C 33 ug individual marginalized C 1 u C 2 u C 1 d C 2 d C 33 uw Ct C 3 φq C 33 ub Cφu C 1 φq -1-0.5 0 0.5 1 Ci = Civ 2 /Λ 2
Top effective theory Same for tops OR more boredom [TopFitter: Buckley, Englert, Ferrando, Miller, Moore, Russell, White] single, pair-wise, and associated top production [plus decays] including anomalous A FB from Tevatron 4-quark, Yang-Mills, electroweak operators O qq = qγ µq tγ µ t profile likelihoods and individual limits D6 reach 500 GeV [C = 1] O G = f ABC G Aν µ GBλ ν GCµ λ O φg = Φ ΦG a µν Gaµν CG C 33 ug individual marginalized For theorists: in terms of models axigluon: M A > 1.4 TeV [t t resonance] SM-like W : M W > 1.2 TeV [t-channel,...] models less sensitive to correlations C 1 u C 2 u C 1 d C 2 d C 33 uw Ct C 3 φq C 33 ub Cφu C 1 φq -1-0.5 0 0.5 1 Ci = Civ 2 /Λ 2
Dark matter effective theory Combining direct, indirect, (collider) results Fermi: dwarf galaxies assume scalar dark matter assume single scale m χ m med mediating operators LabelCoefficient Operator σ SI σannv Real scalar R1 λ 1 1/(2M 2 ) mq χ 2 qq s-wave R2 λ 2 1/(2M 2 ) imq χ 2 qγ 5 q s-wave R3 λ 3 αs /(4M 2 )χ 2 Gµν G µν s-wave R4 λ 4 αs /(4M 2 )iχ 2 Gµν G µν s-wave Complex scalar C1 λ 1 1/(M 2 ) mq χ χ qq s-wave C2 λ 2 1/(M 2 ) imq χ χ qγ 5 q s-wave C3 λ 3 1/(M 2 ) χ µχ qγ µ q p-wave C4 λ 4 1/(M 2 ) χ µχ qγ µ γ 5 q p-wave C5 λ 5 αs /(8M 2 )χ χgµν G µν s-wave C6 λ 6 αs /(8M 2 )iχ χgµν G µν s-wave [Liem, Bertone, Calore, Ruiz de Austri, Tait, Trotta, Weniger]
Dark matter effective theory Combining direct, indirect, (collider) results Fermi: dwarf galaxies assume scalar dark matter assume single scale m χ m med mediating operators LabelCoefficient Operator σ SI σannv Real scalar R1 λ 1 1/(2M 2 ) mq χ 2 qq s-wave R2 λ 2 1/(2M 2 ) imq χ 2 qγ 5 q s-wave R3 λ 3 αs /(4M 2 )χ 2 Gµν G µν s-wave R4 λ 4 αs /(4M 2 )iχ 2 Gµν G µν s-wave Complex scalar C1 λ 1 1/(M 2 ) mq χ χ qq s-wave C2 λ 2 1/(M 2 ) imq χ χ qγ 5 q s-wave C3 λ 3 1/(M 2 ) χ µχ qγ µ q p-wave C4 λ 4 1/(M 2 ) χ µχ qγ µ γ 5 q p-wave C5 λ 5 αs /(8M 2 )χ χgµν G µν s-wave C6 λ 6 αs /(8M 2 )iχ χgµν G µν s-wave flat prior on log λ i [prior 1/λ i ] Dirichlet prior around log λ i [Liem, Bertone, Calore, Ruiz de Austri, Tait, Trotta, Weniger]
Dark matter effective theory Combining direct, indirect, (collider) results Fermi: dwarf galaxies assume scalar dark matter assume single scale m χ m med mediating operators LabelCoefficient Operator σ SI σannv Real scalar R1 λ 1 1/(2M 2 ) mq χ 2 qq s-wave R2 λ 2 1/(2M 2 ) imq χ 2 qγ 5 q s-wave R3 λ 3 αs /(4M 2 )χ 2 Gµν G µν s-wave R4 λ 4 αs /(4M 2 )iχ 2 Gµν G µν s-wave Complex scalar C1 λ 1 1/(M 2 ) mq χ χ qq s-wave C2 λ 2 1/(M 2 ) imq χ χ qγ 5 q s-wave C3 λ 3 1/(M 2 ) χ µχ qγ µ q p-wave C4 λ 4 1/(M 2 ) χ µχ qγ µ γ 5 q p-wave C5 λ 5 αs /(8M 2 )χ χgµν G µν s-wave C6 λ 6 αs /(8M 2 )iχ χgµν G µν s-wave flat prior on log λ i [prior 1/λ i ] Dirichlet prior around log λ i new physics from Fermi GCE [Krämer etal] with data, the method hardly matters... [Liem, Bertone, Calore, Ruiz de Austri, Tait, Trotta, Weniger]
Beyond effective theories Higgs/top effective theory at LHC [Biekötter, Brehmer, Freitas, TP, Lopez-Val] breakdown if observables disagree with full model [given measurement errors] large individual D8-operators not good test most critical vector gauge extensions no problem [E < M/g linked to convergence] σ [fb/bin] 2 10 10 u d u d h (T5) 1 σ EFT - σ full σ full 1 10 1 0 1 EFT error SM full (no ξ) EFT full 200 400 600 800 1000 p [GeV] T,j1
Beyond effective theories Higgs/top effective theory at LHC [Biekötter, Brehmer, Freitas, TP, Lopez-Val] breakdown if observables disagree with full model [given measurement errors] large individual D8-operators not good test most critical vector gauge extensions serious problem [E < M linked to pole] D6 in terms of g 2 /Λ 2 dying by poles σ [fb/bin] 3 10 2 10 p p V h (T4) full 10 1 full (no ξ) EFT SM σ EFT - σ full σ full 1 0 1 EFT error 500 1000 [GeV] m Vh
Beyond effective theories Higgs/top effective theory at LHC [Biekötter, Brehmer, Freitas, TP, Lopez-Val] breakdown if observables disagree with full model [given measurement errors] large individual D8-operators not good test most critical vector gauge extensions D6 in terms of g 2 /Λ 2 dying by poles DM effective theory at LHC: kinematics [Heisig, Krämer, Pellen, Wiebusch] extending DM effective theory to LHC [range of energy scales] Majorana dark matter in EFT vector mediator in simplified model [Felix talk] CMS mono-jet, gχgq =0.2, mχ =15GeV L g χ χγ µ γ 5 χv µ + g q qγ µ γ 5 qv µ comparison EFT vs simplified model in detail D6 desciption kind of okay?? [Manfred s talk] σ [pb] 10 4 100 1 0.01 Γ V =0.01M V Γ V =0.5M V EFT EFT, Q-cut σlimit 10 4 σtheo 10 6 50 100 500 1000 5000 MV [GeV]
Beyond the LHC Higgs factory [250 GeV, 10 ab 1 or 500 GeV, 500 fb 1, Jennie s talk] theoretically and experimentally clean Higgs couplings at per-cent level energy vs luminosity vs cost optimization, systematics/theory wall? politics-limited multi-tev e + e collider/clic [5 TeV, 2 ab 1 ] charged particle searches to 2.5 TeV perfect WIMP machine? momentum-limited [25 pages physics case in CDR???] 100 TeV hadron collider [20 ab 1 ] 4 tan β=10 precision Higgs physics: y t and λ HHH massless W, Z physics WIMP dark matter with m χ 2 TeV stops to 10 TeV, Z to 30 TeV scalar flavon to few TeV tests of baryogenesis funding-limited [BSM writeup with 150 pages] M2@TeVD M1@TeVD 3 2 1 40 3 2 1-4 -3-2 -1 0 1 2 3 4 m@tevd 2σ Exclusions Direct Direct+Indirect Indirect Tracks Compr.+Direct Compr.