LHC Physics in a Data-Driven Era

Σχετικά έγγραφα
4.- Littlest Higgs Model with T-parity. 5.- hhh at one loop in LHM with T-parity

Hadronic Tau Decays at BaBar

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä ³ Éμ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê ƒμ Ê É Ò Ê É É Ê, Ê, μ Ö

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

DARK MATTER. Seen making gravitational interactions: rotational curves, CMB, gravitational lensing. BBN, bullet. Multimedia: Images

Probing Anomalous Top-Gluon Couplings at Colliders

Η ανακάλυψη του Μποζονίου Higgs στο CERN

Space-Time Symmetries

Three coupled amplitudes for the πη, K K and πη channels without data

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Dark Matter and Neutrino Masses from a Scale-Invariant Multi-Higgs Portal

UV fixed-point structure of the 3d Thirring model

LIGHT UNFLAVORED MESONS (S = C = B = 0)

The Standard Model. Antonio Pich. IFIC, CSIC Univ. Valencia

Other Test Constructions: Likelihood Ratio & Bayes Tests

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Inverse trigonometric functions & General Solution of Trigonometric Equations

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Monolithic Crystal Filters (M.C.F.)

Higher Derivative Gravity Theories

Non-Gaussianity from Lifshitz Scalar

Aluminum Electrolytic Capacitors (Large Can Type)

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Dark matter from Dark Energy-Baryonic Matter Couplings

Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων

Solar Neutrinos: Fluxes

Aluminum Electrolytic Capacitors

The Simply Typed Lambda Calculus

Effective weak Lagrangians in the Standard Model and B decays

Finite difference method for 2-D heat equation

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

A manifestly scale-invariant regularization and quantum effective operators

Example Sheet 3 Solutions

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

Supplementary Appendix

The challenges of non-stable predicates

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Hartree-Fock Theory. Solving electronic structure problem on computers

Models for Probabilistic Programs with an Adversary

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches

Σύντομο Βιογραφικό Σημείωμα

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Μηχανική Μάθηση Hypothesis Testing

Matrices and Determinants

Fractional Colorings and Zykov Products of graphs

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä616 Š ˆŒ CMS LHC

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Rethinking Connes' approach to the standard model of particle physics via non-commutative geometry.

Math 6 SL Probability Distributions Practice Test Mark Scheme

Homework 3 Solutions

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Statistical Inference I Locally most powerful tests

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

2 Composition. Invertible Mappings

Particle Physics: Introduction to the Standard Model

LAD Estimation for Time Series Models With Finite and Infinite Variance

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

ST5224: Advanced Statistical Theory II

Notes on the Open Economy

Managing Economic Fluctuations. Managing Macroeconomic Fluctuations 1

Test Data Management in Practice

Higher spin gauge theories and their CFT duals

Surface Mount Multilayer Chip Capacitors for Commodity Solutions

Παρατηρήθηκε το Σωματίδιο Higgs!

Derivation of Optical-Bloch Equations

Approximation of distance between locations on earth given by latitude and longitude

Symmetric Stress-Energy Tensor

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

Queensland University of Technology Transport Data Analysis and Modeling Methodologies

Large β 0 corrections to the energy levels and wave function at N 3 LO

Code Breaker. TEACHER s NOTES

Problem Set 3: Solutions

6. MAXIMUM LIKELIHOOD ESTIMATION

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Ó³ Ÿ , º 6(148).. 865Ä873. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê É É, μ Ö

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

IMES DISCUSSION PAPER SERIES

Elements of Information Theory

TMA4115 Matematikk 3

Section 8.3 Trigonometric Equations

Abstract Storage Devices

Terabyte Technology Ltd

Συστήματα Διαχείρισης Βάσεων Δεδομένων

A Hierarchy of Theta Bodies for Polynomial Systems

Graded Refractive-Index

Κατανοώντας και στηρίζοντας τα παιδιά που πενθούν στο σχολικό πλαίσιο

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä ƒê ± Ö, Œ.. μ² μ μ²μ,.. Ò±μ. ³ ± Ê É É, ³, μ Ö

Second Order Partial Differential Equations

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

The Pohozaev identity for the fractional Laplacian

Αναζητώντας παράξενα σωµατίδια στο ALICE

Ψηφιακή ανάπτυξη. Course Unit #1 : Κατανοώντας τις βασικές σύγχρονες ψηφιακές αρχές Thematic Unit #1 : Τεχνολογίες Web και CMS

Variational Wavefunction for the Helium Atom

Δθαξκνζκέλα καζεκαηηθά δίθηπα: ε πεξίπησζε ηνπ ζπζηεκηθνύ θηλδύλνπ ζε κηθξνεπίπεδν.

Bayesian modeling of inseparable space-time variation in disease risk

Transcript:

LHC Physics in a Data-Driven Era Universität Heidelberg Obergurgl, April 2016

Data-driven particle physics What is the our Lagrangian? post-discovery work we need to do start with renormalizable Standard Model Higgs quantum numbers? [all other particles known?] new physics effects? [Higgs sector] dark matter candidate? measurements in terms of Lagrangian

Data-driven particle physics What is the our Lagrangian? post-discovery work we need to do start with renormalizable Standard Model Higgs quantum numbers? [all other particles known?] new physics effects? [Higgs sector] dark matter candidate? measurements in terms of Lagrangian Ways to communicate results effective theory [lots of discussion on side] model-independent description of limits simplified models [Felix and Michael s talks] UV-agnostic classification of topologies full models link to fundamental concepts in UV

Data-driven particle physics What is the our Lagrangian? post-discovery work we need to do start with renormalizable Standard Model Higgs quantum numbers? [all other particles known?] new physics effects? [Higgs sector] dark matter candidate? measurements in terms of Lagrangian What does this tell us? effective theory is no fun theory [all theory talks] non-minimal Higgs sector? [Martin s talk] strongly interacting Higgs models? [Francesco s and Kiel s talks] TeV-scale new physics? [Mauricio s and Sezen s talks] link to dark matter? [Wednesday talks] hierarchy problem? [Brian s talk] gauge coupling unification [Sebastian s talk] vacuum stability? Higgs inflation?... where are the new ideas in particle theory?

The finger to particle theory taste not true taste wide X γγ impossible spin-0 actual model X aa 4γ NMSSM narrow m γγ spin-1 2 effective couplings vector quarks Furry not true spin-2 taste not true My take on all those papers [Veronica s talk] open questions due to limited significance general problem: signal rate large largely EFT exercise dimension-5 operators XG µν G µν and XA µν A µν avoid di-jet constraints gauge invariant XB µν B µν and XW µν W µν avoid VV constraints no clear link to other data great to play with, but only for fun, please

Higgs effective theory Navigate wide landscape of limits OR quantifying boredom set of Higgs-gauge operators [Hagiwara etal, Grzadkowski etal] O GG = Φ ΦG a µν Gaµν O WW = Φ Ŵ µν Ŵ µν Φ O BB = O BW = Φ ˆBµν Ŵ µν Φ O W = (D µφ) Ŵ µν (D νφ) O B = O Φ,1 = (D µφ) Φ Φ ( D µ Φ ) O Φ,2 = 1 ( ) ( ) 2 µ Φ Φ µ Φ Φ O Φ,3 = 1 3 ( Φ Φ) 3 O Φ,4 = (D µφ) ( D µ Φ ) ( ) Φ Φ

Higgs effective theory Navigate wide landscape of limits OR quantifying boredom set of Higgs-gauge operators [Hagiwara etal, Grzadkowski etal] O GG = Φ ΦG a µν Gaµν O WW = Φ Ŵ µν Ŵ µν Φ O BB = O BW = Φ ˆBµν Ŵ µν Φ O W = (D µφ) Ŵ µν (D νφ) O B = O Φ,1 = (D µφ) Φ Φ ( D µ Φ ) O Φ,2 = 1 ( ) ( ) 2 µ Φ Φ µ Φ Φ O Φ,3 = 1 3 ( Φ Φ) 3 O Φ,4 = (D µφ) ( D µ Φ ) ( ) Φ Φ relevant part after equation of motion, etc L HVV = αsv 8π f g Λ 2 O GG + f BB plus Yukawa structure f τ,b,t Λ O 2 BB + f WW Λ 2 O WW + f B Λ 2 O B + f W Λ 2 O W + f Φ,2 Λ 2 O Φ,2

Higgs effective theory Navigate wide landscape of limits OR quantifying boredom set of Higgs-gauge operators [Hagiwara etal, Grzadkowski etal] O GG = Φ ΦG a µν Gaµν O WW = Φ Ŵ µν Ŵ µν Φ O BB = O BW = Φ ˆBµν Ŵ µν Φ O W = (D µφ) Ŵ µν (D νφ) O B = O Φ,1 = (D µφ) Φ Φ ( D µ Φ ) O Φ,2 = 1 ( ) ( ) 2 µ Φ Φ µ Φ Φ O Φ,3 = 1 3 ( Φ Φ) 3 O Φ,4 = (D µφ) ( D µ Φ ) ( ) Φ Φ relevant part after equation of motion, etc L HVV = αsv 8π f g Λ 2 O GG + f BB plus Yukawa structure f τ,b,t Higgs couplings to SM particles Λ O 2 BB + f WW Λ 2 L HVV = g g HG a µν Gaµν + g γ HA µνa µν O WW + f B Λ 2 O B + f W Λ 2 O W + f Φ,2 Λ 2 O Φ,2 + g (1) Z Z µνz µ ν H + g (2) HZ Z µνz µν + g (3) HZ Z µz µ ( ) + g (1) W + W µν W µ ν H + h.c. + g (2) W HW + µν W µν + g (3) W HW + µ W µ +

Higgs effective theory Navigate wide landscape of limits OR quantifying boredom set of Higgs-gauge operators [Hagiwara etal, Grzadkowski etal] O GG = Φ ΦG a µν Gaµν O WW = Φ Ŵ µν Ŵ µν Φ O BB = O BW = Φ ˆBµν Ŵ µν Φ O W = (D µφ) Ŵ µν (D νφ) O B = O Φ,1 = (D µφ) Φ Φ ( D µ Φ ) O Φ,2 = 1 ( ) ( ) 2 µ Φ Φ µ Φ Φ O Φ,3 = 1 3 ( Φ Φ) 3 O Φ,4 = (D µφ) ( D µ Φ ) ( ) Φ Φ SFitter legacy [Butter, Corbett, Eboli, Goncalves, Gonzalez-Fraile, Gonzalez-Garcia, TP, Rauch] ew-renormalizable hypothesis kinematics: p T,V, Φ jj f B /Λ 2 40 [TeV -2 ] 20 0-20 -40-60 -80-20 -10 0 10 20 30 f W /Λ 2 [TeV -2 ]

Higgs effective theory Navigate wide landscape of limits OR quantifying boredom set of Higgs-gauge operators [Hagiwara etal, Grzadkowski etal] O GG = Φ ΦG a µν Gaµν O WW = Φ Ŵ µν Ŵ µν Φ O BB = O BW = Φ ˆBµν Ŵ µν Φ O W = (D µφ) Ŵ µν (D νφ) O B = O Φ,1 = (D µφ) Φ Φ ( D µ Φ ) O Φ,2 = 1 ( ) ( ) 2 µ Φ Φ µ Φ Φ O Φ,3 = 1 3 ( Φ Φ) 3 O Φ,4 = (D µφ) ( D µ Φ ) ( ) Φ Φ SFitter legacy [Butter, Corbett, Eboli, Goncalves, Gonzalez-Fraile, Gonzalez-Garcia, TP, Rauch] ew-renormalizable hypothesis kinematics: p T,V, Φ jj f B /Λ 2 40 [TeV -2 ] 20 0-20 -40-60 -80-20 -10 0 10 20 30 f W /Λ 2 [TeV -2 ]

Higgs effective theory Navigate wide landscape of limits OR quantifying boredom set of Higgs-gauge operators [Hagiwara etal, Grzadkowski etal] O GG = Φ ΦG a µν Gaµν O WW = Φ Ŵ µν Ŵ µν Φ O BB = O BW = Φ ˆBµν Ŵ µν Φ O W = (D µφ) Ŵ µν (D νφ) O B = O Φ,1 = (D µφ) Φ Φ ( D µ Φ ) O Φ,2 = 1 ( ) ( ) 2 µ Φ Φ µ Φ Φ O Φ,3 = 1 3 ( Φ Φ) 3 O Φ,4 = (D µφ) ( D µ Φ ) ( ) Φ Φ SFitter legacy [Butter, Corbett, Eboli, Goncalves, Gonzalez-Fraile, Gonzalez-Garcia, TP, Rauch] f B /Λ 2 40 [TeV -2 ] 20 ew-renormalizable hypothesis kinematics: p T,V, Φ jj dominant overflow bins 0-20 -40-60 -80-20 -10 0 10 20 30 f W /Λ 2 [TeV -2 ]

Higgs effective theory Navigate wide landscape of limits OR quantifying boredom set of Higgs-gauge operators [Hagiwara etal, Grzadkowski etal] O GG = Φ ΦG a µν Gaµν O WW = Φ Ŵ µν Ŵ µν Φ O BB = O BW = Φ ˆBµν Ŵ µν Φ O W = (D µφ) Ŵ µν (D νφ) O B = O Φ,1 = (D µφ) Φ Φ ( D µ Φ ) O Φ,2 = 1 ( ) ( ) 2 µ Φ Φ µ Φ Φ O Φ,3 = 1 3 ( Φ Φ) 3 O Φ,4 = (D µφ) ( D µ Φ ) ( ) Φ Φ SFitter legacy [Butter, Corbett, Eboli, Goncalves, Gonzalez-Fraile, Gonzalez-Garcia, TP, Rauch] ew-renormalizable hypothesis kinematics: p T,V, Φ jj dominant overflow bins solved by di-bosons ] -2 [TeV 2 f B Λ 20 0 20 40 60 20 15 10 5 0 5 10 15 20 f W -2 [TeV ] 2 Λ

Higgs effective theory Navigate wide landscape of limits OR quantifying boredom set of Higgs-gauge operators [Hagiwara etal, Grzadkowski etal] O GG = Φ ΦG a µν Gaµν O WW = Φ Ŵ µν Ŵ µν Φ O BB = O BW = Φ ˆBµν Ŵ µν Φ O W = (D µφ) Ŵ µν (D νφ) O B = O Φ,1 = (D µφ) Φ Φ ( D µ Φ ) O Φ,2 = 1 ( ) ( ) 2 µ Φ Φ µ Φ Φ O Φ,3 = 1 3 ( Φ Φ) 3 O Φ,4 = (D µφ) ( D µ Φ ) ( ) Φ Φ SFitter legacy [Butter, Corbett, Eboli, Goncalves, Gonzalez-Fraile, Gonzalez-Garcia, TP, Rauch] ew-renormalizable hypothesis kinematics: p T,V, Φ jj dominant overflow bins solved by di-bosons (1) D6 fit works (2) D6 is not EFT (3) D6 needs Higgs+TGV f/λ 2 [TeV -2 ] 20-10 -20-30 -40 (4) D6 reach 500 GeV -50 10 0 LHC-Higgs, 95% CL LHC-Higgs + LHC-TGV + LEP-TGV, 95% CL Λ/ f [TeV] 0.25 0.3 0.5 0.5 0.3 0.25 0.2 0.15 f/λ 2 [TeV -2 ] 15 10 5 0-5 -10-15 -20 Λ/ f [TeV] 0.3 0.5 0.5 0.3 0.25 O GG O WW O BB O W O B O φ2 O WWW O t O b O τ

] Outlook Higgs effective theory Navigate wide landscape of limits OR quantifying boredom set of Higgs-gauge operators [Hagiwara etal, Grzadkowski etal] O GG = Φ ΦG a µν Gaµν O WW = Φ Ŵ µν Ŵ µν Φ O BB = O BW = Φ ˆBµν Ŵ µν Φ O W = (D µφ) Ŵ µν (D νφ) O B = O Φ,1 = (D µφ) Φ Φ ( D µ Φ ) O Φ,2 = 1 ( ) ( ) 2 µ Φ Φ µ Φ Φ O Φ,3 = 1 3 ( Φ Φ) 3 O Φ,4 = (D µφ) ( D µ Φ ) ( ) Φ Φ Triple gauge couplings [Butter, Eboli, Gonzalez-Fraile, Gonzalez-Garcia, TP] triple gauge vertices g 1, κ, λ vs operators testable in WW, WZ production [Christian s talk] semileptonic analyses missing for 8 TeV Run I LHC beating LEP -2 [TeV 2 f B Λ 80 60 40 20 0 20 40 60 80 CMS ATLAS 7 WZ 7 semi 8 WW 8 WZ 30 20 10 combined 0 10 20 30 f W 2 Λ [TeV -2 ]

] Outlook Higgs effective theory Navigate wide landscape of limits OR quantifying boredom set of Higgs-gauge operators [Hagiwara etal, Grzadkowski etal] O GG = Φ ΦG a µν Gaµν O WW = Φ Ŵ µν Ŵ µν Φ O BB = O BW = Φ ˆBµν Ŵ µν Φ O W = (D µφ) Ŵ µν (D νφ) O B = O Φ,1 = (D µφ) Φ Φ ( D µ Φ ) O Φ,2 = 1 ( ) ( ) 2 µ Φ Φ µ Φ Φ O Φ,3 = 1 3 ( Φ Φ) 3 O Φ,4 = (D µφ) ( D µ Φ ) ( ) Φ Φ Triple gauge couplings [Butter, Eboli, Gonzalez-Fraile, Gonzalez-Garcia, TP] triple gauge vertices g 1, κ, λ vs operators testable in WW, WZ production [Christian s talk] semileptonic analyses missing for 8 TeV Run I LHC beating LEP -2 [TeV 2 f B Λ 40 20 0 20 40 LHC LHC+LEP 60 LEP 80 10 5 0 5 10 15 20 25 30 35 f W 2 Λ [TeV -2 ]

Top effective theory Same for tops OR more boredom [TopFitter: Buckley, Englert, Ferrando, Miller, Moore, Russell, White] single, pair-wise, and associated top production [plus decays] including anomalous A FB from Tevatron 4-quark, Yang-Mills, electroweak operators O qq = qγ µq tγ µ t profile likelihoods and individual limits D6 reach 500 GeV [C = 1] O G = f ABC G Aν µ GBλ ν GCµ λ O φg = Φ ΦG a µν Gaµν CG C 33 ug individual marginalized C 1 u C 2 u C 1 d C 2 d C 33 uw Ct C 3 φq C 33 ub Cφu C 1 φq -1-0.5 0 0.5 1 Ci = Civ 2 /Λ 2

Top effective theory Same for tops OR more boredom [TopFitter: Buckley, Englert, Ferrando, Miller, Moore, Russell, White] single, pair-wise, and associated top production [plus decays] including anomalous A FB from Tevatron 4-quark, Yang-Mills, electroweak operators O qq = qγ µq tγ µ t profile likelihoods and individual limits D6 reach 500 GeV [C = 1] O G = f ABC G Aν µ GBλ ν GCµ λ O φg = Φ ΦG a µν Gaµν CG C 33 ug individual marginalized For theorists: in terms of models axigluon: M A > 1.4 TeV [t t resonance] SM-like W : M W > 1.2 TeV [t-channel,...] models less sensitive to correlations C 1 u C 2 u C 1 d C 2 d C 33 uw Ct C 3 φq C 33 ub Cφu C 1 φq -1-0.5 0 0.5 1 Ci = Civ 2 /Λ 2

Dark matter effective theory Combining direct, indirect, (collider) results Fermi: dwarf galaxies assume scalar dark matter assume single scale m χ m med mediating operators LabelCoefficient Operator σ SI σannv Real scalar R1 λ 1 1/(2M 2 ) mq χ 2 qq s-wave R2 λ 2 1/(2M 2 ) imq χ 2 qγ 5 q s-wave R3 λ 3 αs /(4M 2 )χ 2 Gµν G µν s-wave R4 λ 4 αs /(4M 2 )iχ 2 Gµν G µν s-wave Complex scalar C1 λ 1 1/(M 2 ) mq χ χ qq s-wave C2 λ 2 1/(M 2 ) imq χ χ qγ 5 q s-wave C3 λ 3 1/(M 2 ) χ µχ qγ µ q p-wave C4 λ 4 1/(M 2 ) χ µχ qγ µ γ 5 q p-wave C5 λ 5 αs /(8M 2 )χ χgµν G µν s-wave C6 λ 6 αs /(8M 2 )iχ χgµν G µν s-wave [Liem, Bertone, Calore, Ruiz de Austri, Tait, Trotta, Weniger]

Dark matter effective theory Combining direct, indirect, (collider) results Fermi: dwarf galaxies assume scalar dark matter assume single scale m χ m med mediating operators LabelCoefficient Operator σ SI σannv Real scalar R1 λ 1 1/(2M 2 ) mq χ 2 qq s-wave R2 λ 2 1/(2M 2 ) imq χ 2 qγ 5 q s-wave R3 λ 3 αs /(4M 2 )χ 2 Gµν G µν s-wave R4 λ 4 αs /(4M 2 )iχ 2 Gµν G µν s-wave Complex scalar C1 λ 1 1/(M 2 ) mq χ χ qq s-wave C2 λ 2 1/(M 2 ) imq χ χ qγ 5 q s-wave C3 λ 3 1/(M 2 ) χ µχ qγ µ q p-wave C4 λ 4 1/(M 2 ) χ µχ qγ µ γ 5 q p-wave C5 λ 5 αs /(8M 2 )χ χgµν G µν s-wave C6 λ 6 αs /(8M 2 )iχ χgµν G µν s-wave flat prior on log λ i [prior 1/λ i ] Dirichlet prior around log λ i [Liem, Bertone, Calore, Ruiz de Austri, Tait, Trotta, Weniger]

Dark matter effective theory Combining direct, indirect, (collider) results Fermi: dwarf galaxies assume scalar dark matter assume single scale m χ m med mediating operators LabelCoefficient Operator σ SI σannv Real scalar R1 λ 1 1/(2M 2 ) mq χ 2 qq s-wave R2 λ 2 1/(2M 2 ) imq χ 2 qγ 5 q s-wave R3 λ 3 αs /(4M 2 )χ 2 Gµν G µν s-wave R4 λ 4 αs /(4M 2 )iχ 2 Gµν G µν s-wave Complex scalar C1 λ 1 1/(M 2 ) mq χ χ qq s-wave C2 λ 2 1/(M 2 ) imq χ χ qγ 5 q s-wave C3 λ 3 1/(M 2 ) χ µχ qγ µ q p-wave C4 λ 4 1/(M 2 ) χ µχ qγ µ γ 5 q p-wave C5 λ 5 αs /(8M 2 )χ χgµν G µν s-wave C6 λ 6 αs /(8M 2 )iχ χgµν G µν s-wave flat prior on log λ i [prior 1/λ i ] Dirichlet prior around log λ i new physics from Fermi GCE [Krämer etal] with data, the method hardly matters... [Liem, Bertone, Calore, Ruiz de Austri, Tait, Trotta, Weniger]

Beyond effective theories Higgs/top effective theory at LHC [Biekötter, Brehmer, Freitas, TP, Lopez-Val] breakdown if observables disagree with full model [given measurement errors] large individual D8-operators not good test most critical vector gauge extensions no problem [E < M/g linked to convergence] σ [fb/bin] 2 10 10 u d u d h (T5) 1 σ EFT - σ full σ full 1 10 1 0 1 EFT error SM full (no ξ) EFT full 200 400 600 800 1000 p [GeV] T,j1

Beyond effective theories Higgs/top effective theory at LHC [Biekötter, Brehmer, Freitas, TP, Lopez-Val] breakdown if observables disagree with full model [given measurement errors] large individual D8-operators not good test most critical vector gauge extensions serious problem [E < M linked to pole] D6 in terms of g 2 /Λ 2 dying by poles σ [fb/bin] 3 10 2 10 p p V h (T4) full 10 1 full (no ξ) EFT SM σ EFT - σ full σ full 1 0 1 EFT error 500 1000 [GeV] m Vh

Beyond effective theories Higgs/top effective theory at LHC [Biekötter, Brehmer, Freitas, TP, Lopez-Val] breakdown if observables disagree with full model [given measurement errors] large individual D8-operators not good test most critical vector gauge extensions D6 in terms of g 2 /Λ 2 dying by poles DM effective theory at LHC: kinematics [Heisig, Krämer, Pellen, Wiebusch] extending DM effective theory to LHC [range of energy scales] Majorana dark matter in EFT vector mediator in simplified model [Felix talk] CMS mono-jet, gχgq =0.2, mχ =15GeV L g χ χγ µ γ 5 χv µ + g q qγ µ γ 5 qv µ comparison EFT vs simplified model in detail D6 desciption kind of okay?? [Manfred s talk] σ [pb] 10 4 100 1 0.01 Γ V =0.01M V Γ V =0.5M V EFT EFT, Q-cut σlimit 10 4 σtheo 10 6 50 100 500 1000 5000 MV [GeV]

Beyond the LHC Higgs factory [250 GeV, 10 ab 1 or 500 GeV, 500 fb 1, Jennie s talk] theoretically and experimentally clean Higgs couplings at per-cent level energy vs luminosity vs cost optimization, systematics/theory wall? politics-limited multi-tev e + e collider/clic [5 TeV, 2 ab 1 ] charged particle searches to 2.5 TeV perfect WIMP machine? momentum-limited [25 pages physics case in CDR???] 100 TeV hadron collider [20 ab 1 ] 4 tan β=10 precision Higgs physics: y t and λ HHH massless W, Z physics WIMP dark matter with m χ 2 TeV stops to 10 TeV, Z to 30 TeV scalar flavon to few TeV tests of baryogenesis funding-limited [BSM writeup with 150 pages] M2@TeVD M1@TeVD 3 2 1 40 3 2 1-4 -3-2 -1 0 1 2 3 4 m@tevd 2σ Exclusions Direct Direct+Indirect Indirect Tracks Compr.+Direct Compr.