33 4 2011 12 Vol.33 No.4 JournalofEarthSciencesandEnvironment Dec.2011 1 2 3 1 (1., 610059; 2., 350003;3., 610031),,, ;, ; ; P ; ; ;, P, ; ; ; ; P313 A 1672-6561(2011)04-0421-07 ReviewonThermalConductivityCoeficientofRockandSoilMas XU Mo 1,WANG Di 2,JIANGLiang-wen 3,QIJi-hong 1 (1.State Key Laboratoryof Geohazard Preventionand GeoenvironmentProtection,Chengdu Universityof Technology, Chengdu610059,Sichuan,China;2.FuzhouInvestigationand Surveying Institute,Fuzhou350003,Fujian,China; 3.China Railway Eryuan Engineering Group Company Limited,Chengdu610031,Sichuan,China) Abstract:Thermalconductivitycoeficientofrockandsoilmassisimportantonthegeothermicfundamentalresearch andapplication.concept,controledfactors and measuring methods ofthermalconductivity coeficient were introduced.controledfactorsincludedstratumlithology,porosity,watercontent,temperatureandanisotropy. Thermalconductivity coeficientranked by descending order with stratum lithology was marine carbonate, continentalclasticrockandigneousrock,andthermalconductivitycoeficientofmetamorphicrockwasrelatedwith theparentrockandmetamorphosesdegree.thermalconductivitycoeficientincreasedwhenthesedimentationand depthincreased.watercontenthadsignificantinfluenceonthermalconductivitycoeficientofweakrock;thermal conductivitycoeficientincreasedwiththeincreaseofporosity;thestratum withbigporosityshouldbecheckedwith saturation.thermalconductivitycoeficientofdiferentlithologywascomplexwhenthetemperaturechanged,soit shouldbeconcludedaccordingtotheactualstratuminapplication.thermalconductivitycoeficientwasanisotropic becauseofthestructuralplane.measuring methodsofthermalconductivitycoeficientincludedfieldtest,indoor test,componenttypesdistinguishing,p-wavevelocityestimation,etc.thermalconductivitycoeficientwithfield testdatawasusualycalculatedbylinearandcolumnarsource models.indoortestincludedsteadyandunsteady measuringmethods,whichwereappliedinthematerialswithlow-middleandhighthermalconductivitycoeficient respectively.forcomponenttypesdistinguishingmethod,thermalconductivitycoeficientoftheparalelplatephase distributionmaterialwasanisotropic;thermalconductivitycoeficient was minimum whenthedirectionofheat exchangewasparaleltoparalelplateand maximum whenthedirection wasverticaltoparalelplate.forthe :2011-04-08 : (2008G027-A) : (1963-),,, E-mail:xm@cdut.edu.cn
422 33 geologicalunit whichcan notbedirectly measured,p-wavevelocityestimation wasusedtocalculatethermal conductivitycoeficient.inordertoobtainaccuratethermalconductivitycoeficient,optimalmeasuring method shouldbeselectedbasedonthecharacteristicsofsamplesandtheextentofthermalconductivitycoeficientofrock andsoilmass. Keywords:rockandsoilmass;thermalconductivitycoeficient;controledfactor;measuringmethod;heatsource model 0 3,, ;, 2.1, 98 ( [1-6] ) ( 1) [10-14] 1 [7], 1 Fig.1 AverageThermalConductivityCoeficientof [8], h, DiferentStrata A θ 1 θ 2 Δt, ΔQ (7.69W/(m K)) ΔQ -θ2 [15] =λaθ1 (1) Δt h :λ ( ),, 1 [9] 2 / [16] θ, 1 -θ 2 h, ΔQ ΔtA 4000m 100~2000 m [17-19], ( ) (
4, : 423 ), : ( 3.36~5.24 W/(m K)) + (7.69 W/(m K)), (4.66 W/(m K)) (2.81 W/(m K)) [21] [27],,,,,,, 2.2 0%~50% [28], [29] 4~10 [5] 2.4 [30] λ=λ0(1+bt) (2) [12-13,20-21], :b, ;λ 0 [10,22] [11] 0 ;T [21] ; [22],,,, ;,,Carlsaw : β [31] β 10-3 [32] 100 ~300 [10,24] 2.3,, [33] 100 λ=p1 +q1t 0 < T 100 (3) λ=p2 +q2t 100 < T 300 (4) :p1 q1 p2 q2 [4,24-25] 20, ( 30 ),
424 33 [34] [35-36] [37] 2.5, [18], A λ = λu -λ (λ u +λ )/2 (5) :A λ ;λ u λ 2 A λ Fig.2 SchemeofLinearHeatSourceModel andtemperatureindrilhole : ; [18] 3 3.1,,,, : [39], 3, Fig.3 SchemeofColumnarHeatSourceModel andtemperatureindrilhole :T(r,t) t r ;T g t ;Q ;λ s ( 2) ( 3) [38-39] ;γ 0.5772 (1) 1948 Ingersol R 0, [40-41],R 0 T f = T w + Q (7), 2πr b L R0 r( ) 2 - [ ] T(r,t)-T Q g= 4πλsL lnt+ Q 4α ln 4πλ s L γ (6) : [38] ;L ;α :T f ;T w ;r b ;R 0
4, : 425 (6) r r b, ( ) [ r ] 2 b T f = Q 4πλsL lnt + { Q 4α ln - 4πλsL γ + Q 2πr b L R0 +T (8) } g, (8) (8) m= Q 4πλ s L T f=mlnt+b (9) ( ) [ r ] 2 b (10) b= Q 4α ln - 4πλsL γ + Q 2πr b L ( 11) R0+Tg T f = T g + Q G(z,p) + R0 (14) L [ λ s 2πr b ] ( λ s ρsc s lnt R 0 S SSE,λ s [39] N S SSE = (T expi -T cali ) 2 (15) i=1 :T expi i ;T cali i T f=(t g,in+t g,out)/2 (12) :T g,in T g,out ; ;N m b, G ( )Q [39] t [39], T f lnt U [44], m, (10) λ s 6, Ansys,, [1,38,41] [45] (2),, Ingersol 3.2 [42], T r-t g = Q λ s L G (z,p) (13) :G(z,p) G, t 3.2.1 r, ;T r r ;z,z=at/r 2; 0 [46] p,p=r/r 0 ;r 0,, U, D e D e=n 1/2 [43] [18] D 0 D 0 U ;,n= 2; U,n=4 U, 3.2.2 [46], (13) :T r=t w,, (7), [26]
426 33 Carlsaw,,,, 5,, Fig.5 ParalelPlatePhaseDistributioninSeriesMode [47], 3.3, λ=λ 1-n s λ ns r w λ n(1-s r ) (18) a,, ;, 3.4 P [7], V p ( 3 ),V s ( ) λ [48] (1) ( 4), (CCSD),, P λ min [49] P, 1 = 1-n + nsr + n-nsr (16) λ min λ s λ w λ a, P 4 4 Fig.4 ParalelPlatePhaseDistributioninParalelMode (1) (2) ( 5),,,, λ max = (1-n)λ s+ns rλ w +n(1-s r )λ a (17) ; :λ s λ w λa ; ; n ;S r
4, : 427 ; [17] ; [18], (2) P,2004,20(1):109-118. [19] ; [20],,2002,37(2):196-206. ;, [21],,2002,33(2):151-159. [22] ;, P,2001,36(3):350-358. (3), [24] : [1],. [26],,,.,2008,28(8):1-4. [2],. [27]. [D].,2011,33(2): :,1992. 196-206. [28],. [3],.,2004,26(1):29-32. [4]. [29],.,2001,21(3):541-543.,1995,20(4):399-404. [5],,. [30]. [M]. :,1998.,2006(4):24-26. [6],. New York:OxfordUniversityPress,1959.,2003,16(3):7-11. [7].,,2009,31(2):213-217. 1999,8(4):13-15. [33]. [M]. : [8] FrieDE.ThermalConductionContributiontoHeatTransfer,2002. atcontactsthermalconductivity,1969(2):197-199. [34]. [9].,2009,25(7):13-18.,2000,20(6):42-47. [35],. [10].,2001(2):48-52.,2000,43(6):771-779. [36],. [11],.,2000,29(5):29-32.,2003,46(2):197-202. [12].,2001, 25(4):228-233. [13],,.,2010,10(2):26-30.,1995,38(4):469-476. [16].,2007,30(1):60-63..,2001,46(10):847-850.,,. 100~ 2000m :,. (CCSD),2005,21(2):439-450..,.,. [23],. -,2000,35(4):456-464.,.,2009,55(4):531-535. [25],,.,2002,24(6):770-773.,2005,27(2):182-187.,2010,35(4):645-656. [31] Carlsaw H S,JaegerJC.ConductionofHeatinSolids[M]. [32],. [37].,1995,10(1):104-113. [38]. [39]. [14],.,2007,28(12):1402-1406.,2005,48(5):1110-1116. [40] IngersolL R,PlassHJ.TheoryoftheGroundPipeHeat [15]. Sourceforthe HeatpumpASHVE Transactions,1948,,2009(4):144-148. 25(47):339-348. ( 433 )
4, : 8.0 433 [2],. [M]. 1979. :,2007. [14] UtsuT.AftershocksandEarthquakeStatistics:SomeParame- [3],. ters Which Characterize Afiershock Sequence and Their,2006,28(4):389-398. InterrelationJournaloftheFacultyofScience,Hokkaido [4]. 8, University:Series7,1969(2):129-195. 2008,31(4):308-316. [5],. 5.12,2009,28(2):1-6. [6],. 8.0,2003,18(1):74-78.,2009,29(1):26-32. [17]. b [7],. 8.0,1998,18(1):33-40.,2008,30(3):746-758. [8],,. 8.0,2009,31(1):1-29.,2009,29(1):15-25. [9]. 8.0 -,2010,32(2):205-210.,2009(4):1-11. [10].2008 8.0,2008,30(4):917-925.,2009,52(2):365-371. [11],,,. 8.0,2009,6(2):113-122.,2008,51(5):1043-1410. [12].,2011,33(3):311-316.,2008,27(3):13-18. [13],,. [M]. :, [15],,,. b,2009,30(2):15-21. [16],. [18],. [19],,,. [20],. 8.0 [21]. [22],. [23]. 8.0,2009,31(2): 201-206. ( 427 ) [41]. [46],,.,2009,25(8):60-64.,2005,5(6):35-38. [42] IngersolL R,ZobelOJ,IngersolA C.HeatConduction [47]. withengineering,geologicaland OtherApplications [M].,1998,22(3):39-40. New York:McGraw Hil,1954. [48],. [43],.,1999(1):11-13.,2007,35(3):63-67. [44],,,.U,2010,43(8):717-721.,2006,31(4):564-568. [45].,2009(9):11-12. [49],. P