17 5 2005 10 Chinese Bulletin of Life Sciences Vol. 17, No. 5 Oct., 2005 1004-0374(2005)05-0449-07 1 225009 2 225009 S511; S512; TS235.1; Q556.2 A Advances in studies on the relationship between starch structure and relevant enzymes in crop grains LI Chun-Yan 1,2, FENG Chao-Nian 1,2 *, ZHANG Rong 1,2, GUO Wen-Shan 1,2, ZHU Xin-Kai 1,2, PENG Yong-Xin 2 (1 Jiangsu Provincial Key Lab of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China; 2 Wheat Research Institute of Yangzhou University, Yangzhou 225009, China) Abstract: The recent advances in the studies on starch structure and molecular biology of enzymes related to starch biosynthesis were summarized in this paper. The relationship between starch structure and relevant enzymes in crop grains and the regulation mechanism of enzymes in starch structure were discussed. Key words: crop; starch structure; enzymes 70%~80% ( ) [1] [2] 1 [3] [4] 2005-05-24 2005-07-22 (30370829); (01039); (Y0006) (1977 ) (1957 ) * (1980 ) (1961 ) (1969 ) (1936 )
450 4 [5] [6] 3 [7] I II II I 9 II 9507 [8] 2 (amylose AM) (amylopectin AP) α-d- α-1,4 1000~6000 (degree of polymerization, DP) α-d- α-1,4 α-1,6 20~25DP ( 1) [10] Hizukuri [11] (cluster model) ( 2) (cluster) A B C A α-1,6 B A B C α-1,6 C 1 [9] A: 1.5µm ( ) ( ) B: ( ) ( ) 11 C: 7 α-1,4 α-1,6 (1) (2) D: ( ) 6nm 18 2 [10] c.l.: chain length( ); Ø: reducing terminal( ) C B B1 B2 B3 B4 1 4 A 0~13DP B1 14~25DP B2 26~50DP B3 51~75DP B4 76~110DP [11] [12~14] 75%~85% 15%~25% DP CL(chain length) 2.1 B A A B
451 A (α-1,6 ) ( ) [15] A B A B 2.6 A B 1.7 A B 1.5 A B 1.3~1.5 [16] A B A B1 70% ~80% B2 16%~19% B3 3%~4% 2%~6% [17] Hanashiro [18] α- A B C A ( X ) B A B1 90%~93% A (A+B1)/(B2+B3) 8.9~12.9 B 2.1~6.5 A B 1.5~2.0 C 2.2 Hizukuri [11] X A B C ( ) ( 19~28 DP) (DP19) (DP28) A 21~25DP ( ) B 29~31DP ( ) C 25~ 27DP Yuan [19] Wx aewx (DP> 30) W64A aewx A B 1.5 A B 0.9~1.1 A B Jane [20~21] 1 000DP X- 2.3 - DP [15] [22] (DP>37) 0.655(P<0.01) 0.788(P<0.01) 0.785(P<0.01) [20] Jane [23]
452 Villareal [24] A+B1 (DP16~18) B3 (DP150~200) DP IR36 B2(DP45~51) A+B1 B4(DP>200) Tester Morrison [25] 2.4 Okuno [16] B B A [26] (differential scanning calorimetry, DSC) X (TP) Jiang [27] 3, -1- (G-1- P) G-1-P ADP- (ADPGpyrophosphorylase, AGPP) (starch synthase, SS) (starch branching enzyme, SBE) (starch debranching enzyme, DBE) ( 3) [10,28~29] AGPP SS SBE DBE (isoforms), 1 1 [30] AGPase(cytosolic) + - S - - - AGPase(plastidial) + + S + + S GBSSI + - G + - G GBSSII - + G - + G SSI + + G/S + + G/S SSIIa + - G/S SSIIb - +? SSII + + G/S SSIII + + S + + S SSIV?????? SBEIb + + S + + S SBEIc + - G - - - SBEIIa + + G/S SBEIIb + - G/S SBEII + + G/S Isoamylase-type DBE + + S + + S Iso-2?????? Iso-3?????? Pullulanase-type DBE + + S + + S SP + + S + + S D-enzyme + + S + + S R1 Protein? + G/S + + G/S α-amylase + + S + + S β-amylase + + S + + S G: ; S: 3 [10] : : ADPG : : : : :
453 3.1 ADP- (AGPP) AGPP ATP G-1-P PPi ADPG PPi AGPP AGPP [9] ADPG α-1,4 Anderson [31] AGPP mrna 15 AGPP [31] 3.2 (SS) (isoform) ( ) (ground-bound starch synthase, GBSS) (soluble starch synthase, SSS) GBSS Wx 60kD Wx Nakamura [32] GBSS GBSS Wx Northern Wx 13~18 Wx RNA GBSS Wx GBSS 3 Wx Wx-A1 Wx-B1 Wx-D1 7AD 4AL 7DS Miura [33] Wx Wx Wx-B1 Wx [9] SS [34~35] SS SS SS SS SSI DP<10 [36] ; SS SS a SS b SSIII SS [37] Rahman [38] Northern 6~15 SS mrna 18 Northern ( 4, 5) SS GBSS Keeling [39] SS 20~25 4 SS mrna [38] 5 SS mrna [38] 3.3 (SBE) SBE α-1,6 [38,40] SBE [41] SBE
454 A B A( ) ( ) B( ) A B N- 3 GBSS A B A B [42~43] Burton [44] SBE SBE SBE SBE1 SBE2a SBE2b SBE1 SBE2a SBE2b SBE1 B SBE2a SBE2b A Guan [43] SBE SBE1 10 DP 3~5 DP SBE2a SBE2b 3~9 DP 6~7DP 3.4 (DBE) [27,45] (pullulanase); (isoamylase) α-1,6 α-1,6 Denyer [46] SBE DBE Nakamura [47] sul [25] GBSS SBE DBE 4 2% [1].., 1995, 16(4): 53~58 [2],.., 2000, 8(4): 307~314 [3],,,.., 1995, 21(5): 520~527 [4],,,.., 1999, 25(2): 269~271 [5],,,.., 2001, 24(3): 65~74 [6],,,.., 2001, 20(3): 178~184 [7],,,.., 2004, 30(9): 953~954 [8],,,.., 2004, 37(10): 1464~1467 [9].., 1999, 11 (suppl): 104~107 [10] Buléon A, Colonna P, Planchot V, et al. Starch granules: structure and biosynthesis. Int J Biol Macromol, 1998, 23: 85~112 [11] Hizukuri S. Polymodal distribution of the chain lengths of amylopectins, and its significance. Carbohydr Res, 1986, 147(2): 342~347 [12] Wang Y J. Chatacterization of starch structure of 17 maize endosperm mutant genotypes with Oh43 inbred line background. Cereal Chem, 1993, 70(2): 171~179 [13].., 1996, (1): 27~31 [14] Wang T L, Bogracheva T, Hedley C L. Starch: as simple as A, B, C? J Exp Bot, 1998, 49: 481~502 [15],,.., 2001, 17(2): 16~19
455 [16] Okuno K, Yano M, Asaoka M, et al. Effect of environmental temperature at the milking stage on amylose content and fine structure of amylopectin of waxy and nonwaxy endosperm starches of rice. Agri Biol Chem, 1985, 49: 373 [17]. ( )., 1998, (8):1~3 [18] Hanashiro I, Tagawa M, Shibahara S, et al. Examination of molar-based distribution of A,B and C chains of amylopectin by fluorescent labeling with 2-aminopyridine. Carbohydr Res, 2002, 337: 1211~1215 [19] Yuan R C, Thimpson D B, Boyer C D. Fine structure of amylopectin in relation to gelatinization and retrogradation behavior of maize starches from three wx-containing genotypes in two inbred lines. Cereal Chem, 1993, 70(1): 81~89 [20] Jane J L.., 2002, (1): 19~21 [21] Jane J L. Structure of amylopectin and its effect in starch properties[a]. The First national Conference on Starch Technology[C]. Thailand: Bankkok, 2001. 3~8 [22],,,.., 2003, 18(1): 28~30 [23] Jane J L, Chen J F. Effect of amylose molecular size and amylopectin branch chain length of paste properties of starch. Cereal Chem, 1992 69(1): 60~65 [24] Villareal C P, Hizukuri S, Juliano B O. Amylopectin staling of cooked milled rices and properties of amylopectin and amylose. Cereal Chem, 1997, 74(2): 163~167 [25] Tester R F, Morrison W R. Swelling and gelatinization of cereal starches I effects of amylopctin, amylose, and lipids. Cereal Chem, 1990, 67(6): 551~557 [26],,. DSC., 2003, 13 (5): 490~494 [27] Jiang H W, Dian W M, Wu P. Effect of high temperature on fine structure of amylopectin in rice endosperm by reducing the activity of the starch branching enzyme. Phytochemistry, 2003, 63: 53~59 [28] Myers A M, Morell M K, James M G, et al. Recent progress toward understanding biosynthesis of the amylopectin crystal. Plant Physiol, 2000, 122: 989~997 [29] Mu-Forster C, Huang R M, Powers J R, et al. Physical association of starch biosynthetic enzymes with starch granules of maize endosperm: granule-associated forms of starch synthase I and starch branching synthase II. Plant Physiol, 1996, 111: 821~829 [30] Tetlow I J, Morell M K, Emes M J. Recent developments in understanding the regulation of starch metabolism in higher plants. J Exp Bot, 2004, 55: 2131~2145 [31] Anderson J M, Hnilo J, Larson R, et al. The encoded primary sequence of rice seed ADP-glucose pyrophosphorylase. J Biol Chem, 1989, 264(21): 12238~12242 [32] Nakamura T, Vrinten P, Hayakawa K, et al. Characterization of a granule-bound starch synthase isoform found in the pericarp of wheat. Plant Physiol, 1998, 118: 451~459 [33] Miura H, Sugawara A. Dosage effects of the three Wx gene on amylose synthesis in wheat endosperm. Theor Appl Genet, 1996, 93(7): 1066~1070 [34] Li Z Y, Mouille G, Kosar-Hashemi B, et al. The structure and expression of the wheat starch synthase gene. Motifs in the expressed gene define the lineage of the starch synthase gene family. Plant Physiol, 2000, 123: 613~624 [35] Li Z Y, Chu X S,Mouille G, et al. The localization and expression of the class starch synthases of wheat. Plant Physiol, 1999, 120: 1147~1155 [36] Commuri P D, Keeling P L. Chain-length specificities of maize starch synthase I enzyme: studies of glucan affinity and catalytic properties. Plant J, 2001, 25(5): 475~486 [37] Edwards A, Fulton D C, Hylton C M, et al. A combined reduction in activity of starch synthases II and III of potato has novel effects on the starch of tubers. Plant J, 1999, 17(3): 251~261 [38] Rahman S, Regina A, Li Z Y, et al. Comparison of starchbranching enzyme gene reveals evolutionary relationships among isoforms. Characterization of a gene for starch-branching enzyme IIa from the wheat D genome donor Aegilops tauschii. Plant Physiol, 2001, 125: 1314~1324 [39] Keeling P L, Bacon P J, Holt D C. Elevated temperature reduces starch deposition in wheat endosperm by reducing the activity of soluble starch synthase. Planta, 1993, 191(3): 342~348 [40] Satoh H, Nishi A, Yamashita K, et al. Starch-branching enzyme -deficient mutation specifically affects the structure and properties of starch in rice endosperm. Pant Physiol, 2003, 133: 1111~1121 [41] Mu-Forster C, Huang R, Harriman R W. Physical association of starch biosynthetic enzymes with starch granules of maize endosperm, (granule-associated forms of starch synthase I and starch branching synthase II). Plant Physiol, 1996, 111(3): 821~829 [42] Takeda Y, Guan H P, Preiss J. Branching of amylose by the branching isoenzymes of maize endosperm. Carbohydr Res, 1993, 240: 253~263 [43] Guan H P, Preiss J. Differentiation of the properties of the branching isozymes from maize (Zea mays). Plant Physiol, 1993, 102: 1269~1273 [44] Burton R A, Bewlev J D, Smith A M, et al. Starch branching enzymes belonging to distinct enzyme families are differentially expressed during pea embryo development. Plant J, 1995, 7(1): 3~15 [45] Fujita N, kubo A, Perigio B. et al. Purification, characterization, and cdna structure of isoamylase from developing endosperm of rice. Planta, 1999, 208(2): 283~293 [46] Denyer K, Hylton C M, Jenner C F, et al. Identification of multiple isoforms of soluble and granule-bound starch synthase in developing wheat endosperm. Planta, 1995, 196(2): 256~265 [47] NakamuraY, Yuki K, Park S Y, et al. Carbohydrate metabolism in the developing endosperm of rice grains. Plant Cell Physiol, 1989, 30(6): 833~839