Prey-Taxis Holling-Tanner
|
|
- Τηθύς Ελευθερόπουλος
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Vol. 28 ( 2018 ) No. 1 J. of Math. (PRC) Prey-Taxis Holling-Tanner, (, ) : prey-taxis Holling-Tanner.,,.. : Holling-Tanner ; prey-taxis; ; MR(2010) : 35B32; 35B36 : O : A : (2018) prey-taxis Holling-Tanner u t = d 1 u + au u 2 uv m + u, v t = d 2 v χ (v u) + bv v2 ru, u ν = v ν = 0, u(x, 0) = u 0 (x), v(x, 0) = v 0 (x), x Ω, (x, t) Ω (0, ), (x, t) Ω (0, ), x Ω (0, ), (1.1) u, v, a, b, ru, u/(m + u) Holling II,. a, m, b, r. d 1, d 2, χ (v u) prey-taxis. Neumann, Ω. (1.1) ( (1.1) d 1 = d 2 = χ = 0) Holling- Tanner [1], Robert May Holling [2],,, [3 5]., [6, 7] Holling-Tanner ( (1.1) χ = 0),,.,,., [8, 9]. : : : ( ). : (1992 ),,,, :.
2 No. 1 : Prey-Taxis Holling-Tanner 141,. (1.1) prey-taxis χ (v u), χ > 0,,. χ < 0,,,, [10]. prey-taxis.,,,., (1.1), (u, v ). Crandall-Rabinowitz [11], χ, (1.1),. 2, (1.1) (u, v ),, u = 1 2 (a m br + 4am + (m + br a) 2 ), v = bru. f(u, v) = au u 2 uv v2, g(u, v) = bv m + u ru, f 1 = f u (u, v ) = a 2u mv (m + u ), 2 = f v (u, v ) = u m + u < 0, g 1 = g u (u, v ) = b 2 r > 0, g 2 = g v (u, v ) = b < 0., f 1 + g 2 < 0, f 1 g 2 g 1 > 0 (H0). (u, v ) (1.1). 0 = µ 0 < µ 1 µ 2 µ 3 Ω Neumann, µ i m i 1, φ ij, 1 j m i µ i, {φ ij i 0, 1 j m i } L 2 (Ω), X ij = {cφ ij : c R 2 }, X i = m i j=1 X ij X = + i=1 X i. (1.1) (u, v ). ( ) d 1 + f 1 L 0 =. (2.1) χv + g 1 d 2 + g 2 ( i 0, X i L 0, ) η L 0 X i η µ i d 1 + f 1. η 2 P µ i χv i (µ i, χ)η + Q i (µ i, χ) = 0, + g 1 µ i d 2 + g 2 P i (µ i, χ) = (d 1 + d 2 )µ i + f 1 + g 2, (2.2) Q i (µ i, χ) = d 1 d 2 µ 2 i (χv + d 2 f 1 + d 1 g 2 )µ i + f 1 g 2 g 1. (2.3)
3 142 Vol. 38, P i (µ i, χ) = P i (µ i, 0), Q i (µ i, χ) = Q i (µ i, 0) χv µ i. χ i = Q i(µ i, 0) v µ i = d 1d 2 µ 2 i (d 2 f 1 + d 1 g 2 )µ i + f 1 g 2 g 1 v µ i, i 1. (2.4) < 0 (H0),. 2.1 (i) P i (µ i, 0) < 0, Q i (µ i, 0) > 0 i 1. χ > 0, (1.1) (u, v ). (ii) i 0, P i (µ i, 0) < 0, i 1 Q i (µ i, 0) < 0. Λ 1 = {i i 1, Q i (µ i, 0) < 0}. χ > max χ i, (1.1) i Λ 1 (u, v ). (iii) P i (µ i, 0) < 0, Q i (µ i, 0) > 0 i 1. χ < max χ i, 1 i + (1.1) (u, v ). 2.1(i), (χ = 0) (χ > 0). 2.1(ii),,,.,,. 2.1(iii),,.,. 3 f 1 < 0, (2.2) (2.3) P i (µ i, 0) < 0, Q i (µ i, 0) > 0 i (i) (iii). f 1 < 0, χ < 0,,., Ω = (0, l), l > 0.. d 1 u + au u 2 uv m + u = 0, d 2 v χ (v u) + bv v2 ru = 0, x (0, l), x (0, l), u (x) = v (x) = 0, x = 0, l., µ i = (πi/l) 2, φ 0 (x) = 1/ l, φ i (x) = 2/l cos iπx/l, i 1. (3.1) Y = L 2 (0, l) L 2 (0, l) Hilbert, (U 1, U 2 ) Y = (u 1, u 2 ) L2 (0,l) + (v 1, v 2 ) L2 (0,l), X = {(u, v) : u, v L 2 (0, l), u = v = 0, x = 0, x = l}. F : R X Y, ( ) d 1 u + f(u, v) F (χ; u, v) =. d 2 v χ (v u) + g(u, v), Γ = {χ; (u, v )} R X.
4 No. 1 : Prey-Taxis Holling-Tanner 143, (χ; u, v ), F (χ; u, v) (u, v) F (u,v) (χ; u, v) (χ; u, v ). 2, (2.1) L 0 χ = χ i, L 0 (χ i ) = F (u,v) (χ i ; u, v ). (2.3) χ = χ i Q i (µ i, χ i ) = 0, F (u,v) (χ i ; u, v ). i 1, (χ i ; u, v ). 3.1 f 1 < 0. i, i j, χ i χ j, δ (3.1) (χ i ; u, v ) χ(s) = χ i + s 2 χ(s), u(s) = u + sφ i + s 2 ũ(s), v(s) = v + sb i φ i + s 2 ṽ(s), s ( δ, δ), (3.2) b i = d1µi f1 < 0, χ(s), ũ(s), ṽ(s) s, 0. l 0 (ũ(s) + b i ṽ(s))φ i dx = KerF (u,v) (χ i ; u, v ) = span {U 0 }, U 0 = (φ i, b i φ i ), b i = d 1µ i f 1 < 0. F (u,v) (χ i ; u, v ) F (u,v) (χ i; u, v ). KerF (u,v) (χ i; u, v ) = span {U 0 }, U 0 = (φ i, b i φ i ), b i = Frédholm, RangeF (u,v) (χ i ; u, v ) = [KerF (u,v) (χ i; u, v )]. codim RangeF (u,v) (χ i ; u, v ) = 1. l Fχ,(u,v) (χ i ; u, v )U 0, U0 = µ i v b i φ 2 i dx > 0, 0 d 2 µ i g 2 < 0. F χ,(u,v) (χ i ; u, v )U 0 / RangeF (u,v) (χ i ; u, v ). [11], (3.1) (χ i ; u, v ) (χ(s); u(s), v(s)), u(s) = u + sφ i + s 2 ũ(s), v(s) = v + sb i φ i + s 2 ṽ(s), χ(s) = χ i + sβ(s), s ( δ, δ), χ(s), ũ(s), ṽ(s) s, l 0 (ũ(s) + b i ṽ(s))φ i dx = 0. (3.2), β(0) = 0., f 11 = f uu (u, v ), f 12 = f uv (u, v ), g 11 = g uu (u, v ), g 12 = g uv (u, v ). (χ(s); u(s), v(s)) (3.1), s s = 0 2d 1 ũ(0) + 2f 1 ũ(0) + 2 ṽ(0) + f 11 φ 2 i + 2f 12 b i φ 2 i = 0, (3.3) (3.3) φ i L 2 -, Green s φ 2 i, φ i = 0, ũ(0), φ i = λ i ũ(0), φ i, ṽ(0), φ i = λ i ṽ(0), φ i, (3.4) ( λ i d 1 + f 1 ) ũ(0), φ i + ṽ(0), φ i = 0. (3.5)
5 144 Vol. 38, (χ(s); u(s), v(s)) (3.1), s s = 0 2d 2 ṽ(0) + 2χ (0)v µ i φ i 2χ i b i {(φ i) 2 µ i φ 2 i } 2χ i v ũ(0) + 2g 1 ũ(0) + 2g 2 ṽ(0) + g 11 φ 2 i + 2g 12 b i φ 2 i + g 22 b 2 i φ 2 i = 0. (3.6) (3.6) φ i L 2 -, (3.4), (φ i) 2, φ i = 0 χ (0)v λ i φ i, φ i + (g 2 d 2 µ i ) ṽ(0), φ i + (g 1 + χ i v µ i ) ũ(0), φ i = 0. (3.7) χ i (2.4), g 1 + χ i v µ i = (f1 d1µi)(g2 d2µi), (3.7) χ (0)v λ i φ i, φ i + g 2 d 2 µ i [(f 1 d 1 λ i ) ũ(0), φ i + ṽ(0), φ i ] = 0, (3.8) (3.5) (3.8), β(0) = χ (0) = 0.. 4, 3.1. χ(0), (3.2) (χ i ; u, v ) Γ. χ(0) > 0, ; χ(0) < 0,. χ(0) L 2 - (A, B, C, D) := ( ũ(0), φ 2 i, ũ(0), (φ i) 2, ṽ(0), φ 2 i, ṽ(0), (φ i) 2 ) (4.1). 4.1 (3.2) χ(s) χ(0) = 1 µ iv [( f11+f12 + g b 11 + g 12 b i + χ i µ i b i )A χ i b i B + ( f12 + g i b 12 + g 22 b i )C i +χ i D + 1 ( f111+3f112bi + g 4l b g 112 b i + 3g 122 b 2 i )], i (4.2) f 111 := f uuu (u, v ), f 112 := f uuv (u, v ), g 111 := g uuu (u, v ), g 112 := g uuv (u, v ), g 122 := g uvv (u, v ). (A, B, C, D),. 4.2 (A, B, C, D) 2f 1 4d 1 µ i 4d A 4d 1 µ 2 i 2f 1 4d 1 µ i 0 2 2g 1 + 4λ i χ i v 4χ i v 2g 2 4d 2 µ i 4d 2 B C 4λ 2 i χ i v 2g 1 + 4λ i χ i v 4d 2 µ 2 i 2g 2 4d 2 µ i D 3 (f 2l f 12 b i ) (πi)2 (f 2l = f 12 b i ) 3(χ l iµ i b i + 1g g 12 b i + 1g 2 22b 2 i ) + (πi)2 χ l 3 i b i. (4.3) (πi)2 (χ l 3 i µ i b i + 1g g 12 b i + 1g 2 22b 2 i ) + 3(πi)4 χ l 5 i b i
6 No. 1 : Prey-Taxis Holling-Tanner 145 (3.3) (3.6) φ 2 i (φ i) 2 L 2 -, φ 2 i, φ 2 i = 3 2l, φ2 i, (φ i) 2 = (πi)2 2l, 3 (φ i) 2, (φ i) 2 = 3(πi)4, 2l 5 (4.3) (χ(s); u(s), v(s)) (3.1), s s = 0 6d 1 ũ (0) + 6f 1 ũ (0) + 6 ṽ (0) + 6(f 11 + f 12 b i )ũ(0)φ i + 6f 12 ṽ(0)φ i +(f f 112 b i )φ 3 i = 0, (4.4) 6d 2 ṽ (0) 6 χ(0)v φ i 6χ i {ṽ(0)φ i + b i φ i ũ(0) + v ũ (0)} + 6g 1 ũ (0) + 6g 2 ṽ (0) +6(g 11 + g 12 b i )ũ(0)φ i + 6(g 12 + g 22 b i )ṽ(0)φ i + (g g 112 b i + 3g 122 b 2 i )φ 3 i = 0. (4.5) (4.4), (4.5) φ i L 2 -, 6(f 1 d 1 λ i ) ũ (0), φ i + 6 ṽ (0), φ i + 6(f 11 + f 12 b i ) ũ(0), φ 2 i +6f 12 ṽ(0), φ 2 i + (f f 112 b i ) φ 3 i, φ i = 0, (4.6) 6d 2 µ i ṽ (0), φ i + 6 χ(0)v µ i φ i, φ i + 6χ i { ṽ(0), (φ i) 2 b i ũ(0), (φ i) 2 µ i φ 2 i +v µ i ũ (0), φ i } + 6g 1 ũ (0), φ i + 6g 2 ṽ (0), φ i + 6(g 11 + g 12 b i ) ũ(0), φ 2 i +6(g 12 + g 22 b i ) ṽ(0), φ 2 i + (g g 112 b i + 3g 122 b 2 i ) φ 3 i, φ i = 0. (4.7) φ i, φ i = 1, (4.6) (4.7) ũ (0), φ i ṽ (0), φ i, (4.7) (4.6) (4.2) [1] Sáez E, González-Olivares E. Dynamies of a predator-prey model [J]. SIAM J. Appl. Math., 1999, 59(3): [2] Holling C S. The functional response of invertebrate predators to prey density [J]. Mem. Ent. Soc. Can., 1965, 45(4): [3] Braza P A. The bifurcation structure of the Holling-Tanner model for predator-prey interations using two-timings [J]. SIAM J. Appl. Math., 2003, 63(2): [4] Collings J B. Bifurcation and stability analysis of a tempreture-dependent of predator-prey interation model incorporating a prey-refuge [J]. Bull. Math. Biol., 1995, 57(3): [5] May R M. Limit cycles in predator-prey communities [J]. Sci., 1972, 77(2) [6] Peng Rui, Wang Mingxin. Positive steady-states of the Holling-Tanner prey-predator model with diffusion [J]. Proc. Roy. Soc. Edinburgh. Sect A., 2005, 135(4): [7] Peng Rui, Wang Mingxin. Global stability of the equilibrium of a diffusive Holling-Tanner preypredator model [J]. Appl. Math. Lett., 2007, 20(3): [8]. [J]., 2012, 32(6): [9] Chen Xueyong, Zhang Jincai. The behavior of the solutions to a multi-group chemotaxis model with reproduction term [J]. J. Math., 2011, 31(5):
7 146 Vol. 38 [10] Wang Xiaoli, Wang Wendi, Zhang Guohong. Global bifurcation of solutions for a predator-prey model with prey-taxis [J]. Math. Meth. Appl. Sci., 2015, 38(2): [11] Crandall M G, Rabinowitz P H. Bifurcation from simple eigenvalues [J]. J. Funct. Anal., 1971, 8(4): BIFURCATION STRUCTURES FOR A HOLLING-TANNER PREDATOR-PREY MODEL WITH PREY-TAXIS ZHANG Xiao-jie, ZHANG Li-na (College of Mathematics and Statistics, Northwest Normal University, Lanzhou ,China) Abstract: In this paper, we study pattern formations in a Holling-Tanner predator-prey model with prey-taxis. By using the linear analysis method and the classical bifurcation theory, it is proved that the branches of nonconstant solutions can bifurcate from the positive equilibrium only when the retreating behavior of predators occurs. Furthermore, the directions of the branches near the bifurcation points are obtained. Keywords: Holling-Tanner predator-prey model; prey-taxis; bifurcation; non-constant positive steady-states 2010 MR Subject Classification: 35B32; 35B36
J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n
Vol. 35 ( 215 ) No. 5 J. of Math. (PRC) a, b, a ( a. ; b., 4515) :., [3]. : ; ; MR(21) : 35Q4 : O175. : A : 255-7797(215)5-15-7 1 [1] : [ ( ) ] ε 2 n n t + div 6 n (nt ) + n V =, (1.1) n div(n T ) = n
Διαβάστε περισσότεραJ. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5
Vol. 37 ( 2017 ) No. 5 J. of Math. (PRC) 1,2, 1, 1 (1., 225002) (2., 225009) :. I +AT +, T + = T + (I +AT + ) 1, T +. Banach Hilbert Moore-Penrose.. : ; ; Moore-Penrose ; ; MR(2010) : 47L05; 46A32 : O177.2
Διαβάστε περισσότεραVol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).
Vol. 37 ( 2017 ) No. 3 J. of Math. (PRC) R N - R N - 1, 2 (1., 100029) (2., 430072) : R N., R N, R N -. : ; ; R N ; MR(2010) : 58K40 : O192 : A : 0255-7797(2017)03-0467-07 1. [6], Mather f : (R n, 0) R
Διαβάστε περισσότεραCongruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
Διαβάστε περισσότεραHigh order interpolation function for surface contact problem
3 016 5 Journal of East China Normal University Natural Science No 3 May 016 : 1000-564101603-0009-1 1 1 1 00444; E- 00030 : Lagrange Lobatto Matlab : ; Lagrange; : O41 : A DOI: 103969/jissn1000-56410160300
Διαβάστε περισσότεραApr Vol.26 No.2. Pure and Applied Mathematics O157.5 A (2010) (d(u)d(v)) α, 1, (1969-),,.
2010 4 26 2 Pure and Applied Matheatics Apr. 2010 Vol.26 No.2 Randić 1, 2 (1., 352100; 2., 361005) G Randić 0 R α (G) = v V (G) d(v)α, d(v) G v,α. R α,, R α. ; Randić ; O157.5 A 1008-5513(2010)02-0339-06
Διαβάστε περισσότεραACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (
35 Þ 6 Ð Å Vol. 35 No. 6 2012 11 ACTA MATHEMATICAE APPLICATAE SINICA Nov., 2012 È ÄÎ Ç ÓÑ ( µ 266590) (E-mail: jgzhu980@yahoo.com.cn) Ð ( Æ (Í ), µ 266555) (E-mail: bbhao981@yahoo.com.cn) Þ» ½ α- Ð Æ Ä
Διαβάστε περισσότερα: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM
2008 6 Chinese Journal of Applied Probability and Statistics Vol.24 No.3 Jun. 2008 Monte Carlo EM 1,2 ( 1,, 200241; 2,, 310018) EM, E,,. Monte Carlo EM, EM E Monte Carlo,. EM, Monte Carlo EM,,,,. Newton-Raphson.
Διαβάστε περισσότεραJ. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8]
Vol 36 ( 216 ) No 3 J of Mah (PR) 1, 2, 3 (1, 4335) (2, 4365) (3, 431) :,,,, : ; ; ; MR(21) : 35A1; 35A2 : O17529 : A : 255-7797(216)3-591-7 1 d d [x() g(, x )] = f(, x ),, (11) x = ϕ(), [ r, ], (12) x(
Διαβάστε περισσότεραu = g(u) in R N, u > 0 in R N, u H 1 (R N ).. (1), u 2 dx G(u) dx : H 1 (R N ) R
2017 : msjmeeting-2017sep-05i002 ( ) 1.. u = g(u) in R N, u > 0 in R N, u H 1 (R N ). (1), N 2, g C 1 g(0) = 0. g(s) = s + s p. (1), [8, 9, 17],., [15] g. (1), E(u) := 1 u 2 dx G(u) dx : H 1 (R N ) R 2
Διαβάστε περισσότεραES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems
ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific
Διαβάστε περισσότεραCHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Διαβάστε περισσότεραVol. 38 No Journal of Jiangxi Normal University Natural Science Nov. 2014
38 6 Vol 38 No 6 204 Journal o Jiangxi Normal UniversityNatural Science Nov 204 000-586220406-055-06 2 * 330022 Nevanlinna 2 2 2 O 74 52 0 B j z 0j = 0 φz 0 0 λ - φ= C j z 0j = 0 ab 0 arg a arg b a = cb0
Διαβάστε περισσότεραSingle-value extension property for anti-diagonal operator matrices and their square
1 215 1 Journal of East China Normal University Natural Science No. 1 Jan. 215 : 1-56412151-95-8,, 71119 :, Hilbert. : ; ; : O177.2 : A DOI: 1.3969/j.issn.1-5641.215.1.11 Single-value extension property
Διαβάστε περισσότεραThe Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points
Applied Mathematical Sciences, Vol. 3, 009, no., 6-66 The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points A. Neamaty and E. A. Sazgar Department of Mathematics,
Διαβάστε περισσότεραStudy on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention
33 2 2011 4 Vol. 33 No. 2 Apr. 2011 1002-8412 2011 02-0096-08 1 1 1 2 3 1. 361005 3. 361004 361005 2. 30 TU746. 3 A Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention
Διαβάστε περισσότεραHomomorphism in Intuitionistic Fuzzy Automata
International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic
Διαβάστε περισσότεραExample Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Διαβάστε περισσότεραΔΗΜΟΣΙΕΥΣΕΙΣ σε περιοδικά με κριτές
ΔΗΜΟΣΙΕΥΣΕΙΣ σε περιοδικά με κριτές 1. Patsis, P. A. & Zachilas, L.: 1990, Complex Instability Of Simple Periodic-Orbits In A Realistic 2-Component Galactic Potential, Astron. & Astroph., 227, 37 (ISI,
Διαβάστε περισσότεραPartial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
Διαβάστε περισσότεραStudy on Re-adhesion control by monitoring excessive angular momentum in electric railway traction
() () Study on e-adhesion control by monitoring excessive angular momentum in electric railway traction Takafumi Hara, Student Member, Takafumi Koseki, Member, Yutaka Tsukinokizawa, Non-member Abstract
Διαβάστε περισσότεραTridiagonal matrices. Gérard MEURANT. October, 2008
Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,
Διαβάστε περισσότεραSecond Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
Διαβάστε περισσότεραGlobal nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl
Around Vortices: from Cont. to Quantum Mech. Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl Maicon José Benvenutti (UNICAMP)
Διαβάστε περισσότεραApproximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Διαβάστε περισσότεραA General Note on δ-quasi Monotone and Increasing Sequence
International Mathematical Forum, 4, 2009, no. 3, 143-149 A General Note on δ-quasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in
Διαβάστε περισσότεραLocal Approximation with Kernels
Local Approximation with Kernels Thomas Hangelbroek University of Hawaii at Manoa 5th International Conference Approximation Theory, 26 work supported by: NSF DMS-43726 A cubic spline example Consider
Διαβάστε περισσότεραVol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) XJ130246).
Vol. 34 ( 2014 ) No. 4 J. of Math. (PRC) (, 710123) :. -,,, [8].,,. : ; - ; ; MR(2010) : 91A30; 91B30 : O225 : A : 0255-7797(2014)04-0779-08 1,. [1],. [2],.,,,. [3],.,,,.,,,,.., [4].,.. [5] -,. [6] Markov.
Διαβάστε περισσότεραLUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing
2003 61 3, 435 439 ACTA CHIMICA SINICA Vol 61, 2003 No 3, 435 439 2 ΞΞ ( 400715), 2, 2, 2, 3/ 2 2,, 2,, Ne w Methods for the Determination of the Inclusion Constant between Procaine Hydrochloride and 2Cyclodextrin
Διαβάστε περισσότεραSpherical Coordinates
Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical
Διαβάστε περισσότεραSolutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz
Solutions to the Schrodinger equation atomic orbitals Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz ybridization Valence Bond Approach to bonding sp 3 (Ψ 2 s + Ψ 2 px + Ψ 2 py + Ψ 2 pz) sp 2 (Ψ 2 s + Ψ 2 px + Ψ 2 py)
Διαβάστε περισσότεραDiffusive induced global dynamics and bifurcation in a predator-prey system
Li Advances in Difference Equations 017 017:33 DOI 10.1186/s1366-017-1318-8 R E S E A R C H Open Access Diffusive induced global dynamics and bifurcation in a predator-prey system Nadia N Li * * Correspondence:
Διαβάστε περισσότεραJ. of Math. (PRC) Shannon-McMillan, , McMillan [2] Breiman [3] , Algoet Cover [10] AEP. P (X n m = x n m) = p m,n (x n m) > 0, x i X, 0 m i n. (1.
Vol. 35 ( 205 ) No. 4 J. of Math. (PRC), (, 243002) : a.s. Marov Borel-Catelli. : Marov ; Borel-Catelli ; ; ; MR(200) : 60F5 : O2.4; O236 : A : 0255-7797(205)04-0969-08 Shao-McMilla,. Shao 948 [],, McMilla
Διαβάστε περισσότεραHomework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Διαβάστε περισσότεραReminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
Διαβάστε περισσότερα172,,,,. P,. Box (1980)P, Guttman (1967)Rubin (1984)P, Meng (1994), Gelman(1996)De la HorraRodriguez-Bernal (2003). BayarriBerger (2000)P P.. : Casell
20104 Chinese Journal of Applied Probability and Statistics Vol.26 No.2 Apr. 2010 P (,, 200083) P P. Wang (2006)P, P, P,. : P,,,. : O212.1, O212.8. 1., (). : X 1, X 2,, X n N(θ, σ 2 ), σ 2. H 0 : θ = θ
Διαβάστε περισσότεραVol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb
Ξ 31 Vol 31,No 1 2 0 0 1 2 JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb 2 0 0 1 :025322778 (2001) 0120016205 (, 230026) : Q ( m 1, m 2,, m n ) k = m 1 + m 2 + + m n - n : Q ( m 1, m 2,, m
Διαβάστε περισσότεραSupporting Information
Supporting Information rigin of the Regio- and Stereoselectivity of Allylic Substitution of rganocopper Reagents Naohiko Yoshikai, Song-Lin Zhang, and Eiichi Nakamura* Department of Chemistry, The University
Διαβάστε περισσότεραOn a four-dimensional hyperbolic manifold with finite volume
BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In
Διαβάστε περισσότεραOn Inclusion Relation of Absolute Summability
It. J. Cotemp. Math. Scieces, Vol. 5, 2010, o. 53, 2641-2646 O Iclusio Relatio of Absolute Summability Aradhaa Dutt Jauhari A/66 Suresh Sharma Nagar Bareilly UP) Idia-243006 aditya jauhari@rediffmail.com
Διαβάστε περισσότερα90 [, ] p Panel nested error structure) : Lagrange-multiple LM) Honda [3] LM ; King Wu, Baltagi, Chang Li [4] Moulton Randolph ANOVA) F p Panel,, p Z
00 Chinese Journal of Applied Probability and Statistics Vol6 No Feb 00 Panel, 3,, 0034;,, 38000) 3,, 000) p Panel,, p Panel : Panel,, p,, : O,,, nuisance parameter), Tsui Weerahandi [] Weerahandi [] p
Διαβάστε περισσότεραMotion analysis and simulation of a stratospheric airship
32 11 Vol 32 11 2011 11 Journal of Harbin Engineering University Nov 2011 doi 10 3969 /j issn 1006-7043 2011 11 019 410073 3 2 V274 A 1006-7043 2011 11-1501-08 Motion analysis and simulation of a stratospheric
Διαβάστε περισσότερα1 1 1 2 1 2 2 1 43 123 5 122 3 1 312 1 1 122 1 1 1 1 6 1 7 1 6 1 7 1 3 4 2 312 43 4 3 3 1 1 4 1 1 52 122 54 124 8 1 3 1 1 1 1 1 152 1 1 1 1 1 1 152 1 5 1 152 152 1 1 3 9 1 159 9 13 4 5 1 122 1 4 122 5
Διαβάστε περισσότεραStatistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Διαβάστε περισσότεραAppendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee
Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset
Διαβάστε περισσότεραDOI /J. 1SSN
4 3 2 Vol 43 No 2 2 1 4 4 Journal of Shanghai Normal UniversityNatural Sciences Apr 2 1 4 DOI1 3969 /J 1SSN 1-5137 214 2 2 1 2 2 1 22342 2234 O 175 2 A 1-51372142-117-1 2 7 8 1 2 3 Black-Scholes-Merton
Διαβάστε περισσότεραSection 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Διαβάστε περισσότερα(, ) (SEM) [4] ,,,, , Legendre. [6] Gauss-Lobatto-Legendre (GLL) Legendre. Dubiner ,,,, (TSEM) Vol. 34 No. 4 Dec. 2017
34 4 17 1 JOURNAL OF SHANGHAI POLYTECHNIC UNIVERSITY Vol. 34 No. 4 Dec. 17 : 11-4543(174-83-8 DOI: 1.1957/j.cnki.jsspu.17.4.6 (, 19 :,,,,,, : ; ; ; ; ; : O 41.8 : A, [1],,,,, Jung [] Legendre, [3] Chebyshev
Διαβάστε περισσότεραAdachi-Tamura [4] [5] Gérard- Laba Adachi [1] 1
207 : msjmeeting-207sep-07i00 ( ) Abstract 989 Korotyaev Schrödinger Gérard Laba Multiparticle quantum scattering in constant magnetic fields - propagator ( ). ( ) 20 Sigal-Soffer [22] 987 Gérard- Laba
Διαβάστε περισσότερα1 String with massive end-points
1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε
Διαβάστε περισσότεραJournal of East China Normal University (Natural Science) DGH. Stability of peakons for the DGH equation. CHEN Hui-ping
5 2010 9 ) Journal of East China Normal University Natural Science) No. 5 Sep. 2010 : 1000-56412010)05-0067-06 DGH, 226007) :,. DGH H 1.,,. : ; DGH ; : O29 : A Stability of peakons for the DGH equation
Διαβάστε περισσότεραVol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ).
Vol. 4 ( 214 ) No. 4 J. of Math. (PRC) 1,2, 1 (1., 472) (2., 714) :.,.,,,..,. : ; ; ; MR(21) : 9B2 : : A : 255-7797(214)4-759-7 1,,,,, [1 ].,, [4 6],, Frank-Wolfe, Frank-Wolfe [7],.,,.,,,., UE,, UE. O-D,,,,,
Διαβάστε περισσότεραManaging Economic Fluctuations. Managing Macroeconomic Fluctuations 1
Managing Economic Fluctuations -Keynesian macro: - -term nominal interest rates. - - P. - - P. Managing Macroeconomic Fluctuations 1 Review: New Keynesian Model -run macroeconomics: - π = γ (Y Y P ) +
Διαβάστε περισσότεραA Determination Method of Diffusion-Parameter Values in the Ion-Exchange Optical Waveguides in Soda-Lime glass Made by Diluted AgNO 3 with NaNO 3
大阪電気通信大学研究論集 ( 自然科学編 ) 第 51 号 A Determination Method of Diffusion-Parameter Values in the Ion-Exchange Optical Waveguides in Soda-Lime glass Made by Diluted AgNO 3 with NaNO 3 Takuya IWATA and Kiyoshi
Διαβάστε περισσότεραST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Διαβάστε περισσότεραΑπόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
Διαβάστε περισσότεραCorrection of chromatic aberration for human eyes with diffractive-refractive hybrid elements
5 5 2012 10 Chinese Optics Vol. 5 No. 5 Oct. 2012 1674-2915 2012 05-0525-06 - * 100190-14 - - 14. 51 μm 81. 4 μm - 1. 64 μm / O436. 1 TH703 A doi 10. 3788 /CO. 20120505. 0525 Correction of chromatic aberration
Διαβάστε περισσότερα1. 3. ([12], Matsumura[13], Kikuchi[10] ) [12], [13], [10] ( [12], [13], [10]
3. 3 2 2) [2] ) ) Newton[4] Colton-Kress[2] ) ) OK) [5] [] ) [2] Matsumura[3] Kikuchi[] ) [2] [3] [] 2 ) 3 2 P P )+ P + ) V + + P H + ) [2] [3] [] P V P ) ) V H ) P V ) ) ) 2 C) 25473) 2 3 Dermenian-Guillot[3]
Διαβάστε περισσότεραSolar Neutrinos: Fluxes
Solar Neutrinos: Fluxes pp chain Sun shines by : 4 p 4 He + e + + ν e + γ Solar Standard Model Fluxes CNO cycle e + N 13 =0.707MeV He 4 C 1 C 13 p p p p N 15 N 14 He 4 O 15 O 16 e + =0.997MeV O17
Διαβάστε περισσότεραBundle Adjustment for 3-D Reconstruction: Implementation and Evaluation
3 2 3 2 3 undle Adjustment or 3-D Reconstruction: Implementation and Evaluation Yuuki Iwamoto, Yasuyuki Sugaya 2 and Kenichi Kanatani We describe in detail the algorithm o bundle adjustment or 3-D reconstruction
Διαβάστε περισσότεραSCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018
Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals
Διαβάστε περισσότεραQuick algorithm f or computing core attribute
24 5 Vol. 24 No. 5 Cont rol an d Decision 2009 5 May 2009 : 100120920 (2009) 0520738205 1a, 2, 1b (1. a., b., 239012 ; 2., 230039) :,,.,.,. : ; ; ; : TP181 : A Quick algorithm f or computing core attribute
Διαβάστε περισσότεραSecond Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
Διαβάστε περισσότερα5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,
4 Chnese Journal of Appled Probablty and Statstcs Vol.6 No. Apr. Haar,, 6,, 34 E-,,, 34 Haar.., D-, A- Q-,. :, Haar,. : O.6..,..,.. Herzberg & Traves 994, Oyet & Wens, Oyet Tan & Herzberg 6, 7. Haar Haar.,
Διαβάστε περισσότεραA summation formula ramified with hypergeometric function and involving recurrence relation
South Asian Journal of Mathematics 017, Vol. 7 ( 1): 1 4 www.sajm-online.com ISSN 51-151 RESEARCH ARTICLE A summation formula ramified with hypergeometric function and involving recurrence relation Salahuddin
Διαβάστε περισσότεραThe challenges of non-stable predicates
The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates
Διαβάστε περισσότεραEstimation of stability region for a class of switched linear systems with multiple equilibrium points
29 4 2012 4 1000 8152(2012)04 0409 06 Control Theory & Applications Vol 29 No 4 Apr 2012 12 1 (1 250061; 2 250353) ; ; ; TP273 A Estimation of stability region for a class of switched linear systems with
Διαβάστε περισσότεραPhys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Διαβάστε περισσότεραStudy of In-vehicle Sound Field Creation by Simultaneous Equation Method
Study of In-vehicle Sound Field Creation by Simultaneous Equation Method Kensaku FUJII Isao WAKABAYASI Tadashi UJINO Shigeki KATO Abstract FUJITSU TEN Limited has developed "TOYOTA remium Sound System"
Διαβάστε περισσότεραHomomorphism of Intuitionistic Fuzzy Groups
International Mathematical Forum, Vol. 6, 20, no. 64, 369-378 Homomorphism o Intuitionistic Fuzz Groups P. K. Sharma Department o Mathematics, D..V. College Jalandhar Cit, Punjab, India pksharma@davjalandhar.com
Διαβάστε περισσότεραA Laplace Type Problem for Lattice with Cell Composed by Four Isoscele Triangles and the Test Body Rectangle
Applied Mathematical Sciences Vol. 11 2017 no. 8 361-374 HIKARI Ltd www.m-hikari.com https://doi.org/.12988/ams.2017.7113 A Laplace Type Problem for Lattice with Cell Composed by Four Isoscele Triangles
Διαβάστε περισσότεραOrdinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
Διαβάστε περισσότεραResurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo
Bull. Earthq. Res. Inst. Univ. Tokyo Vol. 2.,**3 pp.,,3,.* * +, -. +, -. Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo Kunihiko Shimazaki *, Tsuyoshi Haraguchi, Takeo Ishibe +, -.
Διαβάστε περισσότερα: Ω F F 0 t T P F 0 t T F 0 P Q. Merton 1974 XT T X T XT. T t. V t t X d T = XT [V t/t ]. τ 0 < τ < X d T = XT I {V τ T } δt XT I {V τ<t } I A
2012 4 Chinese Journal of Applied Probability and Statistics Vol.28 No.2 Apr. 2012 730000. :. : O211.9. 1..... Johnson Stulz [3] 1987. Merton 1974 Johnson Stulz 1987. Hull White 1995 Klein 1996 2008 Klein
Διαβάστε περισσότεραVol. 40 No Journal of Jiangxi Normal University Natural Science Jul p q -φ. p q
40 4 Vol 40 No 4 206 7 Journal of Jiangxi Normal UniversityNatural Science Jul 206 000-586220604-033-07 p q -φ 2 * 330022 Nevanlinna p q-φ 2 p q-φ p q-φ O 74 52 A DOI0 6357 /j cnki issn000-5862 206 04
Διαβάστε περισσότεραStudy of urban housing development projects: The general planning of Alexandria City
Paper published at Alexandria Engineering Journal, vol, No, July, Study of urban housing development projects: The general planning of Alexandria City Hisham El Shimy Architecture Department, Faculty of
Διαβάστε περισσότεραSOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
Διαβάστε περισσότεραCommutative Monoids in Intuitionistic Fuzzy Sets
Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,
Διαβάστε περισσότεραFENXI HUAXUE Chinese Journal of Analytical Chemistry. Savitzky-Golay. n = SG SG. Savitzky-Golay mmol /L 5700.
38 2010 3 FENXI HUAXUE Chinese Journal of Analytical Chemistry 3 342 ~ 346 DOI 10. 3724 /SP. J. 1096. 2010. 00342 Savitzky-Golay 1 * 1 2 1 3 1 1 510632 2 510632 3 200444 PLS Savitzky-Golay SG 10000 ~ 5300
Διαβάστε περισσότεραΤΟ ΜΟΝΤΕΛΟ Οι Υποθέσεις Η Απλή Περίπτωση για λi = μi 25 = Η Γενική Περίπτωση για λi μi..35
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΑΝΑΛΥΣΗ ΤΩΝ ΣΥΣΧΕΤΙΣΕΩΝ ΧΡΕΟΚΟΠΙΑΣ ΚΑΙ ΤΩΝ
Διαβάστε περισσότεραDETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.
DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM by Zoran VARGA, Ms.C.E. Euro-Apex B.V. 1990-2012 All Rights Reserved. The 2 DOF System Symbols m 1 =3m [kg] m 2 =8m m=10 [kg] l=2 [m] E=210000
Διαβάστε περισσότεραDifferential equations
Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential
Διαβάστε περισσότεραSchedulability Analysis Algorithm for Timing Constraint Workflow Models
CIMS Vol.8No.72002pp.527-532 ( 100084) Petri Petri F270.7 A Schedulability Analysis Algorithm for Timing Constraint Workflow Models Li Huifang and Fan Yushun (Department of Automation, Tsinghua University,
Διαβάστε περισσότερα(1) A lecturer at the University College of Applied Sciences in Gaza. Gaza, Palestine, P.O. Box (1514).
1439 2017, 3,29, 1658 7677: 1439 2017,323 299, 3,29, 1 1438 09 06 ; 1438 02 23 : 33,,,,,,,,,,, : The attitudes of lecturers at the University College of Applied Sciences in Gaza (BA - Diploma) towards
Διαβάστε περισσότεραIPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He
CS Activity 1,a) 2 2 3 CS Computer Science Activity Activity Actvity Activity Dining Eight-Headed Dragon CS Unplugged Activity for Learning Scheduling Methods Hisao Fukuoka 1,a) Toru Watanabe 2 Makoto
Διαβάστε περισσότεραOther Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Διαβάστε περισσότεραConjoint. The Problems of Price Attribute by Conjoint Analysis. Akihiko SHIMAZAKI * Nobuyuki OTAKE
Conjoint Conjoint The Problems of Price Attribute by Conjoint Analysis Akihiko SHIMAZAKI * Nobuyuki OTAKE +, Conjoint - Conjoint. / 0 PSM Price Sensitivity Measurement Conjoint 1 2 + Conjoint Luce and
Διαβάστε περισσότεραSupporting Information
Supporting Information Aluminum Complexes of N 2 O 2 3 Formazanate Ligands Supported by Phosphine Oxide Donors Ryan R. Maar, Amir Rabiee Kenaree, Ruizhong Zhang, Yichen Tao, Benjamin D. Katzman, Viktor
Διαβάστε περισσότεραEE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Διαβάστε περισσότεραProblem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.
Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +
Διαβάστε περισσότερα2 ~ 8 Hz Hz. Blondet 1 Trombetti 2-4 Symans 5. = - M p. M p. s 2 x p. s 2 x t x t. + C p. sx p. + K p. x p. C p. s 2. x tp x t.
36 2010 8 8 Vol 36 No 8 JOURNAL OF BEIJING UNIVERSITY OF TECHNOLOGY Aug 2010 Ⅰ 100124 TB 534 + 2TP 273 A 0254-0037201008 - 1091-08 20 Hz 2 ~ 8 Hz 1988 Blondet 1 Trombetti 2-4 Symans 5 2 2 1 1 1b 6 M p
Διαβάστε περισσότεραRisk! " #$%&'() *!'+,'''## -. / # $
Risk! " #$%&'(!'+,'''## -. / 0! " # $ +/ #%&''&(+(( &'',$ #-&''&$ #(./0&'',$( ( (! #( &''/$ #$ 3 #4&'',$ #- &'',$ #5&''6(&''&7&'',$ / ( /8 9 :&' " 4; < # $ 3 " ( #$ = = #$ #$ ( 3 - > # $ 3 = = " 3 3, 6?3
Διαβάστε περισσότερα1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]
212 2 ( 4 252 ) No.2 in 212 (Total No.252 Vol.4) doi 1.3969/j.issn.1673-7237.212.2.16 STANDARD & TESTING 1 2 2 (1. 2184 2. 2184) CensusX12 ARMA ARMA TU111.19 A 1673-7237(212)2-55-5 Time Series Analysis
Διαβάστε περισσότεραElectronic Supplementary Information DFT Characterization on the Mechanism of Water Splitting Catalyzed by Single-Ru-substituted Polyoxometalates
Electronic Supplementary Information DFT Characterization on the Mechanism of Water Splitting Catalyzed by Single-Ru-substituted Polyoxometalates Zhong-Ling Lang, Guo-Chun Yang, Na-Na Ma, Shi-Zheng Wen,
Διαβάστε περισσότεραX g 1990 g PSRB
e-mail: shibata@provence.c.u-tokyo.ac.jp 2005 1. 40 % 1 4 1) 1 PSRB1913 16 30 2) 3) X g 1990 g 4) g g 2 g 2. 1990 2000 3) 10 1 Page 1 5) % 1 g g 3. 1 3 1 6) 3 S S S n m (1/a, b k /a) a b k 1 1 3 S n m,
Διαβάστε περισσότερα= f(0) + f dt. = f. O 2 (x, u) x=(x 1,x 2,,x n ) T, f(x) =(f 1 (x), f 2 (x),, f n (x)) T. f x = A = f
2 n dx (x)+g(x)u () x n u (x), g(x) x n () +2 -a -b -b -a 3 () x,u dx x () dx () + x x + g()u + O 2 (x, u) x x x + g()u + O 2 (x, u) (2) x O 2 (x, u) x u 2 x(x,x 2,,x n ) T, (x) ( (x), 2 (x),, n (x)) T
Διαβάστε περισσότεραNumerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
Διαβάστε περισσότεραNew Adaptive Projection Technique for Krylov Subspace Method
1 2 New Adaptive Projection Technique for Krylov Subspace Method Akinori Kumagai 1 and Takashi Nodera 2 Generally projection technique in the numerical operation is one of the preconditioning commonly
Διαβάστε περισσότεραStatistical analysis of extreme events in a nonstationary context via a Bayesian framework. Case study with peak-over-threshold data
Statistical analysis of extreme events in a nonstationary context via a Bayesian framework. Case study with peak-over-threshold data B. Renard, M. Lang, P. Bois To cite this version: B. Renard, M. Lang,
Διαβάστε περισσότεραStrain gauge and rosettes
Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified
Διαβάστε περισσότερα