Paul Bloom*, Phil Clark, Wolfgang Gradl and Alan Robertson. pclark. *Swarthmore College University of Edinburgh I V

Σχετικά έγγραφα
Hadronic Tau Decays at BaBar

EPS On Behalf of Belle Collaboration. Takayoshi Ohshima Nagoya University, Japan

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

LIGHT UNFLAVORED MESONS (S = C = B = 0)

Baryon Studies. Dongliang Zhang (University of Michigan) Hadron2015, Jefferson Lab September 13-18, on behalf of ATLAS Collaboration

Light Hadrons and New Enhancements in J/ψ Decays at BESII

Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων

Study of CP Violation at BABAR

Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

the total number of electrons passing through the lamp.

Polarizations of B V V in QCD factorization

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Section 8.3 Trigonometric Equations

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Statistical Inference I Locally most powerful tests

Three coupled amplitudes for the πη, K K and πη channels without data

Precise measurement of hadronic tau-decays

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

measured by ALICE in pp, p-pb and Pb-Pb collisions at the LHC

Chapter 1 Introduction to Observational Studies Part 2 Cross-Sectional Selection Bias Adjustment

Numerical Analysis FMN011

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Supplementary Appendix

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Other Test Constructions: Likelihood Ratio & Bayes Tests

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Strain gauge and rosettes

Derivation of Optical-Bloch Equations

Outline Analog Communications. Lecture 05 Angle Modulation. Instantaneous Frequency and Frequency Deviation. Angle Modulation. Pierluigi SALVO ROSSI

Srednicki Chapter 55

Block Ciphers Modes. Ramki Thurimella

[1] P Q. Fig. 3.1

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

EE512: Error Control Coding

Areas and Lengths in Polar Coordinates

Tridiagonal matrices. Gérard MEURANT. October, 2008

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Matrices and Determinants

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Queensland University of Technology Transport Data Analysis and Modeling Methodologies

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

ST5224: Advanced Statistical Theory II

Partial Trace and Partial Transpose

Approximation of distance between locations on earth given by latitude and longitude

Second Order RLC Filters

Areas and Lengths in Polar Coordinates

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible.

Biostatistics for Health Sciences Review Sheet

ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Elements of Information Theory

ΑΝΙΧΝΕΥΣΗ ΓΕΓΟΝΟΤΩΝ ΒΗΜΑΤΙΣΜΟΥ ΜΕ ΧΡΗΣΗ ΕΠΙΤΑΧΥΝΣΙΟΜΕΤΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

Math 6 SL Probability Distributions Practice Test Mark Scheme

Durbin-Levinson recursive method

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Lecture 34 Bootstrap confidence intervals

Fractional Colorings and Zykov Products of graphs

Nuclear Physics 5. Name: Date: 8 (1)

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä664

PHOS π 0 analysis, for production, R AA, and Flow analysis, LHC11h

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Graded Refractive-Index

e + e - physics in the tau charm energy region Part I Frederick A. Harris University of Hawaii Jan. 5, 2005

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Solar Neutrinos: Fluxes

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Forced Pendulum Numerical approach

CE 530 Molecular Simulation

Lifting Entry (continued)

Th, Ra, Rn, Po, Pb, Bi, & Tl K x-rays. Rn Kα1. Rn Kα2. 93( 227 Th)/Rn Kβ3. Ra Kα2. Po Kα2 /Bi K α1 79( 227 Th)/Po Kα1. Ra Kα1 /Bi K β1.

Section 9.2 Polar Equations and Graphs

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ. του Γεράσιμου Τουλιάτου ΑΜ: 697

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data

EE 570: Location and Navigation

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

The Simply Typed Lambda Calculus

CRASH COURSE IN PRECALCULUS

Section 7.6 Double and Half Angle Formulas

Lecture 21: Scattering and FGR

derivation of the Laplacian from rectangular to spherical coordinates

Solutions to Exercise Sheet 5

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Homework 3 Solutions

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

HERA. Halle NORD (H1) Hall NORTH (H1) Hall nord (H1) Halle OST (HERMES) Hall EAST (HERMES) Hall est (HERMES)

1 String with massive end-points

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:

Transcript:

Rare B decays B η K & B η ρ Paul Bloom*, Phil Clark, Wolfgang Gradl and Alan Robertson http://www.ph.ed.ac.uk/ pclark *Swarthmore College University of Edinburgh E U N I V E R S I T Y T H O H F E D I N B U R G University of Edinburgh 13th April 6 p. 1/6

Overview Contents of talk Introduction to charmless two body decays Theoretical predictions and previous results Status of BaBar and PEPII Analysis details (selection, fit, backgrounds) Results and systematics Conclusion Chosen to focus on one particular analysis The search for four modes (charged and neutral) B η K and B η ρ Territory of rare B decays being explored rapidly... Philip J. Clark, University of Edinburgh p. /6

CLEO Belle K + π ωρ + CDF PDG New Avg. ηπ + π π + π π + K + π K + K K + K (13) π + Charmless B Branching Fractions K + ρ K K π+ + ρ K + ρ K(13) + π K π K + K S K S ρ + π K + π ηk ρ π ± K π + K + K K ηk + ρ + ρ ρ + ρ ηk + π K + π π K π + π a 1 π + η K HFAG JULY 1th... K K K + K π π ρ π φφk + ηk + η π + π + π K + ρ K f (98) ηπ + K + π + π (NR) K ρ π + π K S K S K S ωk + ωk ωπ + K + π K(13) π ηρ + φk φk + K + f (98) Branching Ratio x 6 K + π + π ρ π + φk + φk... η K + Philip J. Clark, University of Edinburgh p. 3/6

Quasi Two Body Decays J P C classification of light meson decays PP B ηk, ππ, η π... VV B ρρ, φk, φω... PV B η K, η ρ, πφ,... SP B a π, f π... B η K and B η ρ are PV decays Philip J. Clark, University of Edinburgh p. /6

SU() multiplets Meson pseudoscalar and vector 16-plets based on central su(3) nonets (excluding η c and J/ψ) shown also are the baryon -plets (su(3) octet and decuplet based) Philip J. Clark, University of Edinburgh p. /6

The η & η quark content SU(3) nonet consists of singlet and octet states (3 3 = 8 1) η 1 = 1 3 (uū + d d + s s) η 8 = 1 6 (uū + d d s s) Physical η and η states are octet-singlet mixed states: η η = η 1 sin θ η 8 cos θ = η 1 cos θ + η 8 sin θ Assuming a mixing angle θ = (vector mesons θ = 3 ) η = 1 3 (uū + d d s s) η = 1 6 (uū + d d + s s) Philip J. Clark, University of Edinburgh p. 6/6

Theoretical Approaches (1) Diagrammatic methods Methodology Isospin & SU(3) Advantages very intuitive powerful relations Disadvantages SU(3) breaking a priori information non exact results (a) T p (b) C v (c) P v (d) P p Philip J. Clark, University of Edinburgh p. 7/6

Theoretical Approaches () Effective Hamiltonian Methodology QCD operator product expansion Wilson coeffs operators Advantages Better handling of QCD corrections Disadvantages Huge uncertainties in operator matrix elements One approach is QCD factorisation Other approaches: Soft Collinear Effective Theory & perturbative QCD factorization Philip J. Clark, University of Edinburgh p. 8/6

B η K diagrams One loop b s penguins expected to dominate CKM and colour suppressed internal trees B b u,d W + g s s η s K +,K u,d B b u,d W + g s K +,K u,d ū, d u,d η CKM suppressed external tree for B + η K + B η K diagrams identical to η K Variety of possible singlet and rescattering diagrams b W + B d g b B W + u,d g ū u s d η K η s K +,K u,d b W + B + u W + ū u s u η K + K + b B + ū η u u u s Philip J. Clark, University of Edinburgh p. 9/6

η η puzzle The decays η K and B ηk are large B(B η K ) = 63. ± 3.3 B(B + η K + ) = 69. ±.7 B(B ηk ) = 18.7 ± 1.7 B(B + ηk + ) =.3 +3..9 but why are B ηk and η K small? B(B ηk ) < 1.9 B(B + ηk + ) =. ±.3 B(B η K ) < 7.6 B(B + η K + ) < 1 Various theory explanations sum rule put forward by Lipkin η charm content HFAG July Philip J. Clark, University of Edinburgh p. /6

B(B (η, η ) (K ( ), π, ρ) CLEO Belle PDG New Avg. HFAG April 6 ηπ ηπ + ηk ηk + ηρ ηρ + ηk ηk + η π η π + η ρ η ρ + η K η K + η K η K +... Branching Ratio x 6 Philip J. Clark, University of Edinburgh p. 11/6

B η ρ diagrams CKM and colour suppressed internal trees b B W + ū u η d ρ +,ρ b B W + ū u d ρ η One loop b d penguins u,d u,d d d CKM suppressed external tree for η ρ + η ρ expected to be small b B u,d W + g d d η d ρ +,ρ u,d b B u,d W + g d ρ +,ρ u,d ū, d u,d η Internal trees cancel η 1 6 (uū + d d + s s) ρ 1 (uū d d) b B W + u,d g η d g ρ +,ρ u,d W + u d ρ + b B + ū η u u Philip J. Clark, University of Edinburgh p. 1/6

Motivation Decay mode Theoretical predictions Experimental status SU(3) flavor QCD fact. HFAG(7/) BaBar Belle B η K 3. +1..3 3.9 +9..7 < 7.6 < 7.6 < B + η K +.8 +1..3.1 +.31.9 < 1 < 1 < 9 B η ρ.7 +...1 +.1.6 <.3 <.3 < 1 B + η ρ +.9 +.7.7 6.3 +. 3.3 < < Use increased dataset (run1-) to tighten upper limits Try to constrain theory predictions Might get lucky (c.f. run1- yields) S(η K ) =.1σ S(η K + ) = 1.9σ S(η ρ + ) =.6σ Magnitude of η K suppression vs. η K enhancement Philip J. Clark, University of Edinburgh p. 13/6

PEPII at SLAC Asymmetric collisions: 9.1 GeV e / 3.1 GeV e + Construction started in 199 completed in 1999 e + e Υ (S) B B Design luminosity in Philip J. Clark, University of Edinburgh p. 1/6

Integrated luminosity //6 :19 //6 : -1 Luminosity per Day [pb ] 7 6 BaBar Run 1- Delivered Luminosity Recorded Luminosity ] -1 Integrated Luminosity [fb 3 3 BaBar Run 1- PEP II Delivered Luminosity: 3.71/fb BaBar Recorded Luminosity: 39./fb Off Peak Luminosity: 8.3/fb Delivered Luminosity Recorded Luminosity Off Peak 3 1 1 3 6 1 3 6 Long downtime (electrical accident) Luminosity problems so far in 6 Philip J. Clark, University of Edinburgh p. 1/6

Luminosity trends Peak luminosity (cm - s -1 ) 3 33 3 31 Increase of Peak Luminosity KEKB PEP-II 6 Year Peak luminosity (cm - s -1 ) 3 33 3 31 3 9 Peak Luminosity trends in last 3 years ISR SPEAR PEP PETRA TRISTAN DORIS Excellent performance of the B factories Design luminosity KEKB 1 3 cm s 1 PEPII 3 33 cm s 1 Instantaneous luminosity frontier SppS LEP1 CESR KEKB PEP II TEVATRON LEP HERA 197 197 198 198 199 199 Year Philip J. Clark, University of Edinburgh p. 16/6

The BaBar detector Philip J. Clark, University of Edinburgh p. 17/6

Datasets The data sample for this analysis is fb 1 at Υ (S) corresponding to (31.8 ±.6) million BB pairs. Monte Carlo samples typically 1k events per mode For B background studies we use 67 million generic BB events. Previous analysis data sample was 8 fb 1 Published: Phys. Rev. D7, 36 () Contains good description of analysis techniques Philip J. Clark, University of Edinburgh p. 18/6

BaBar kinematics Energy substituted mass: m ES = (s/ + p p B ) /E p B Energy difference: E = E B s/ GTL = Good Tracks Loose doesn t include short tracks GTVL = Good Tracks Very Loose includes short tracks Events / (. GeV ) Events / (.81 GeV ) 6 3 3 1 χ f C µ C µ T σ C σ T / ndf = 8.99 =.93 ±.6 =.796 ±.1 GeV =.799 ±.9 GeV =.83 ±. GeV =.91 ±.6 GeV...6.6.7.7.8.8.9 m ES (GeV) χ f C µ C µ T σ C σ T / ndf =.766 =.737 ±.61 = -.19 ±. GeV = -.78 ±.17 GeV =.13 ±.1 GeV =.976 ±. GeV -. -.1 -.1 -...1 E (GeV) Philip J. Clark, University of Edinburgh p. 19/6

Helicity of the vector meson (ρ or K ) B P V B spin decaying to spin + spin 1 final state Vector meson can only take on one spin polarisation Define helicity cos θ H (cosine of angle between daughter π and negative B direction in vector meson frame) signal has cos θ shape Events / (.87 ) 18 16 1 1 χ / ndf = 1.177 p 1 = -.8 ± 6. p p 3 p = 11 ± 696 = -9. ± 3 = -7. ± 6 8 6 -.8 -.6 -. -....6.8 1 cos θ hel K* Philip J. Clark, University of Edinburgh p. /6

Some analysis Improvements 3 1 Truth Matched GTVL GTL Events / (. GeV ) 1 1 8 6 f core =.6±.18 µ core =-.9±.6 µ tail =-.388±.3 σ core =.779±.76 σ tail =.119±.6 χ /n=.638-1 -.. 1 + Helicity of ρ -. -.1 -.1 -. -..1.1. m / (GeV) #de 9 8 7 6 3 Self cross-feed GTVL GTL -1 -.. 1 + Helicity of ρ Events / (. GeV ) 1 1 8 6 f core =.6±.13 core =-.991±.7 µ tail =-.36±.3 core =.8±. σ =.93±.6 tail χ /n=.771 -. -.1 -.1 -. -..1.1. m / (GeV) GTL GTVL for ρ and K meson daughter pions Mass constrain η and η for B candidates (..) < m ES <.9 #de Philip J. Clark, University of Edinburgh p. 1/6

Skim selection Inclusive skim (for case η ηππ) 1.9 GeV/c < p < 3.1 GeV/c Exclusive skim (for case η ργ) Necessary due to larger backgrounds Look for 16 B η X decays 1.9 GeV/c < p < 3.1 GeV/c m B >.1 GeV/c E <.3 GeV E γ >. GeV Final state Signal efficiency (%) q q efficiency (%) η K 3.8 η ρ /ρ + 8/36 <. Philip J. Clark, University of Edinburgh p. /6

Event selection ten decay modes η ηππk K + π, η ργk K + π η ηππk + K + π, η ργk + K + π η ηππk + K π +, η ργk + K + π η ηππρ, η ργρ η ηππρ +, η ργρ + K S candidate lifetime τ/σ t > 3 Particle identification e/p/k veto for pions tight ID for kaons Criterion Requirement η γγ 9 < m(γγ) < 6 η ηππ 9 < m(ηππ) < η ργ 9 < m(ργ) < KKπ 7 < m(kπ) < 3 ρ + 7 < m(ππ) < 7 ρ < m(ππ) < 6 π 1 < m(γγ) < 1 K S 86 < m(ππ) < γ (from η) E γ < γ (from π ) E γ < 3 γ (from η ) E γ < N trks max[3, N trks in decay mode + 1] Fisher, F < F < m ES. m ES <.9 GeV/c Philip J. Clark, University of Edinburgh p. 3/6

qq background rejection (1) Rare charmless decays small signal / large background two body kinematics help remove background Dominant remaining background is qq continuum Reject jet-like topologies Define thrust axis and cut on angle cos θ T <.9 η ηππ modes cos θ T <.7 η ργ modes Philip J. Clark, University of Edinburgh p. /6

qq background rejection () Many other event shape variables, all highly correlated Distinguish signal from qq with Fisher (F) discriminant cos θ B, θ B angle between p B and beam axis cos θ C, θ C angle between candidate thrust axis and beam Legendre Polynomials P and P, angular distribution of rest of event momentum flow wrt. B thrust axis Linear weights are applied to each variable to maximise S to B separation. Philip J. Clark, University of Edinburgh p. /6

BB backgrounds Mainly backgrounds picking up extra particle (eg. B η K) E and helicity cuts help. < E <.1 (. < E <.1 modes with π ) cos θ H >.9 removes slow π + combs For π modes we remove slow π + or slow π combs.8 < cos θ H <.9 η ηππ modes.7 < cos θ H <.9 η ργ modes Identify remaining BB using generic MC then dedicated signal MC (added a 1 ρ/k ) η ηππmodes have less BB background than η ργ (have not unblinded η ργρ) Signal mode (B η K ) Mode # MC ɛ Est. B Q B i Norm. # # in PDF Bkg. channel (%) ( 6 ) BB B kg. Bkg. file B + η η γγ ππk + 16.6 69.17 1.8 68 B η 3π K K + π 1.7 19.11.7 B η η γγ ππk S 1.3 63.6.8 16 B a 1 K (L, f L =.7) 39.3 1.67.7 38 B ω K K + π (L, f L = 1) 7.11.9.6 31 B + a + 1 (ρ+ π )K (L, f L =.7) 331..33. 1 Philip J. Clark, University of Edinburgh p. 6/6

Some modes have large BB backgrounds η ργmodes have -3 BB bkgs All modes: 3 bkgs Dropped η ργρ + and η ργρ Statistical power small Systematics huge Philip J. Clark, University of Edinburgh p. 7/6

Maximum likelihood fit details P L = e ( nj ) N! N i=1 L i, where L i = m j=1 n j P j (x i ) Fit components, n j, for signal, qq and BB For η ρ we include an extra component η f Variable (x i ) Signal (P) Continuum (P) BB background (P) E G + G P 1 G + P 1 m ES G + G ARGUS ARGUS + G + G F BG + G BG + G BG + G m η G + G P 1 + (G + G) sig P 1 + (G + G) sig m K BW P + (BW ) sig P + (BW ) sig m ρ BW P + (BW ) sig P + (BW ) sig cos θ H P P EXP + P Philip J. Clark, University of Edinburgh p. 8/6

core pdfs η ηππ K sig qq BB E Events / (. GeV ) χ / ndf = 13.77 9 Cf=.737 ±.61 8 µ C= -.19 ±. GeV 7 µ T= -.78 ±.17 GeV 6 σ C=.13 ±.1 GeV σ T=.976 ±. GeV 3 -. -.1.1 E (GeV) Events / (. GeV ) 3 χ/ ndf =.631 p 1= -1. ±. p = -.9 ±. 1 -. -.1.1 E (GeV) Events / (. GeV ) 1 1 8 6 χ/ ndf =.663 fracdech =.81 ±.7 µ= -.8 ±.18 GeV σ=. ±. GeV p 1=. ±.96 p = 16. ±9.3 -. -.1.1 E (GeV) m ES Events / (. GeV ) 6 3 σ T=.91 ±.6 GeV σ C=.83 ±. GeV µ T=.799 ±.9 GeV µ C=.796 ±.1 GeV Cf=.93 ±.6 χ / ndf = 8.99..6.7.8 (GeV).9 m ES Events / (. GeV ) 16 χ / ndf = 1.183 1 ξ= -9. ±. 1 8 6..6.7.8 (GeV) m ES Events / (. GeV ) 8 6 χ / ndf =.761 ξ= -6. ±17 argus f =.8 ±.61 Cf=.3 ±.1 µ C=.836 ±.73 GeV µ T=.7737 ±.9 GeV σ C=.163 ±.3 GeV σ T=.38 ±.11 GeV..6.7.8 (GeV).9 m ES F Events / (.6 ) χ / ndf = 1. 3 1 A =.1 ±. µ= -.8 ±.37 σ=.6 ±.31 µ= -.39 ±.16 σ= 1.98 ±.1 FS= f.9868 ±. Events / (.6 ) 3 χ / ndf =.69 A C=.7 ±.3 1 µ C=.37 ±.11 σ C=.7 ±. µ T=.6 ±.19 σ T= 1.7 ±.3 FBG f =.98 ±.1 Events / (.6 ) 1 χ/ ndf =.68 A C=.13 ±. µ C= -.3363 ±.17 σ C=. ±.1 f =.98 ±. µ T= -.37 ±.6 σ T= 1.9 ±.8-1 - - fisher -1 - - fisher -1 - - fisher cos θ H Events / (.13 ) χ / ndf = 1.18 p 1= -.8 ± 6. 3 p = 11 ±696 p 3= -9. ± 3 p = -7. ± 6 -.. 1 cos θ hel K* Events / (.13 ) 3 χ/ ndf = 1.7 3 1 p 1= -.76 ±.9 p =. ±.8 p 3= -.9 ±.1 p =.6 ±. -.. 1 cos θ hel K* Events / (.13 ) / ndf =.33 χ frachkstarch =.671 ±. 8 6 c = -. p 1= 3.17 ±.7 p = 6.1 ±1.9 ±.3 -.. 1 cos θ hel K* m K Events / (. ) 1 8 6 χ/ ndf = 13.83 µ=.89 ±.3 σ=. ±..8.9 1 m K* Events / (. ) 7 χ / ndf =.881 6 3 K*= f. ±.8 p 1=. ±.38 p = -.63 ±.6.8.9 1 m K* Events / (. ) 3 χ / ndf =.93 1 K*= f.31 ±.7 p 1=.63 ±.66 p = -. ±..8.9 1 m K* m η Events / (.3 ) / ndf = 9.793 7 χ Cf=.876 ±. 6 3 µ C=.9771 ±.9 µ T=.988 ±.9 σ C=.368 ±.9 σ T=.176 ±.31.9.9.96.98 m 1 η Events / (.3 ) 18 16 1 1 8f 6 χ/ ndf =.666 E =.17 ±.1 p 1=.76 ±.31 p =.13 ±.3.9.9.96.98 m 1 η Events / (.3 ) χ / ndf = 1.77 ηf=.1 ±.1 8 6 p 1=.399 ±.6 p =.179 ±.6.9.9.96.98 m 1 η Philip J. Clark, University of Edinburgh p. 9/6

1 C T C C core pdfs η ργ K sig qq BB E Events / (. GeV ) 8 6 / ndf = 6.33 -. -.1.1 E (GeV) χ f C µ C µ T σ C σ T =.796 ± = -.976 ± =. ± =.168 ± =.96 ±.7.1 GeV.9 GeV.1 GeV. GeV Events / (. GeV ) 1 1 / ndf = 1.3 = -1.1 ±.11 = 1. ± 1.1 8 6 -. -.1.1 E (GeV) χ p p Events / (. GeV ) 3 χ / ndf = 1.8 fracdech =.168 ±.8 µ = -.867 ±.9 GeV σ =. ±.1 GeV p 1 = -1.9 ±.7 p =. ± 7. -. -.1.1 E (GeV) m ES Events / (. GeV ) 6 3 σ T σ C µ T µ C f C χ =.96 ± =.688 ± =.7 ± =.796 ± =.9163 ± / ndf = 9.61.33 GeV. GeV.7 GeV.1 GeV.3..6.7.8 (GeV).9 m ES Events / (. GeV ) 7 6 7 χ / ndf =.99 3 = -.33 ±..6.7.8 (GeV).9 ξ m ES. Events / (. GeV ) χ / ndf = 3.688 ξ = -8. ±. f argus =.639 ±.19 3 f =.8 ±.69 C µ C =.831 ±.37 GeV 3 µ T =.768 ±. GeV σ =.3 ±. GeV σ T =.6 ±.3 GeV 1..6.7.8 (GeV).9 m ES F Events / (.6 ) χ / ndf =.6 3 A = -. ± µ = -.673 ± σ =.8 ± µ = -1.3 ± σ =.88 ± f FS.11.3.6.66.63 =.998 ±.1 Events / (.6 ) 3 χ A µ C σ C µ / ndf =.6 = -.33 ±.1 = -.86 ±.3 =.7 ±.38 =.77 ±.83 σ = 1.86 ±. T f FBG =.9 ±. Events / (.6 ) 3 χ A µ C σ C f µ T σ T / ndf =.88 = -.3 ±. = -.171 ±.7 =.9 ±.7 =.996 ±.3 = -1. ±.6 =.38 ±.3 1 1 1-1 - - fisher -1 - - fisher -1 - - fisher cos θ H Events / (.13 ) 3 3 1 χ p 1 p p 3 p / ndf =.81 = 11. ± = 66 ± = -1. ± = -16.8 ± 6. 99 1 -.. cos θ 1 hel K* Events / (.13 ) 18 16 1 1 8 6 χ / ndf = 1.973 p 1 = -.88 ±. p =.1 ±.1 p 3 = -.631 ±.76 p =.77 ±.1 -.. cos θ 1 hel K* Events / (.13 ) 1 8 6 χ / ndf = 1.9 frachkstarch =. ± c = -6.91 ± p 1 p.3 -.. cos θ 1 hel K* 1. = -.1 ± = 3.1 ±..33 m K Events / (. ) 8 6 / ndf = 1.71.8.9 1 m K* χ µ =.89 ± σ =.89 ±..8 Events / (. ) 3 1 / ndf = 3.8.8.9 1 m K* χ f K* p 1 p =.31 ± =.6 ± =.8 ±.13.17. Events / (. ) 18 16 1 1 8 6 / ndf =. χ =.76 ±.3.8.9 1 m K* f K* p 1 p =.3 ± = -.8 ±.7.1 m η Events / (.3 ) 1 / ndf =.9.9.9.96.98 m 1 η χ f C µ C µ T σ C σ T =.6 ±.1 =.971 ± =.93 ± =.73 ± =.83 ±.88.36.11.61 Events / (.3 ) 6 3 χ f E p 1 p / ndf = 1.37 =.3 ±.1 =.1 ±.1 = -.61 ±..9.9.96.98 m 1 η Events / (.3 ) 18 16 1 1 8 6 χ / ndf = 1.377 f η =.8 ±.1 p 1 =. ±.7 p = -.89 ±..9.9.96.98 m 1 η Philip J. Clark, University of Edinburgh p. 3/6

Toy Monte Carlo Studies Determine ML fit yield bias Signal and BB events embedded from SP/6 MC Continuum qq events generated from PDFs Mode N total N sig N BB N sig N BB σ(n sig ) σ(n BB ) bias (in) (in) (fit) (fit) (fit) (fit) [evts] η ηππk 837 1 6. ±.3.9 ±.9 7.. +1. ±.3 η ργ K 379 9 3. ±.6. ±. 1. 1.7 +9. ±.6 η ηππk + K π + 11.8 16 11.6 ±. 16. ±. 3.8.7 +.8 ±. η ργk + K π + 996 1 31 1.9 ±. 8. ±.8 9.7 7. +.9 ±. η ηππk + K + π 3. 6. ±. 7 ±.8.9 17. +1. ±. η ργk + K + π 1996. 337 3. ±.6 388.3 ± 3. 11.7 66..3 ±.6 η ηππρ + 1787 38 66 1. ±.7 7.8 ±.7 1.7 6 +13. ±.7 η ηππρ 1339 3. 89 1.3 ±.7 9 ± 11. 1.8 +.8 ±.7 Philip J. Clark, University of Edinburgh p. 31/6

Neutral Modes B η K /ρ ML fit quantity η ηππk η ργk η ηππρ /η ηππf η ργρ /η ργf Events to fit 837 379 1339 38 signal yield.6 +7.7 6.7 3.1 +1. 1.7 1.9 +.6 8. /.6+6.. blind Fit BB yield.8 +.3.3 396 +11 11 89 + 3 blind ML-fit bias (events) +1.7 +9. +11./-3.8 blind MC ɛ (%).1 17..1/6.8 18./7.8 Tracking corr. (%) 97. 98. 97. 98. Neutral corr. (%) 97.3. 97.3. Corr. ɛ (%) 19. 16.9.8/. 17.8/7.6 Q Bi (%) 11.6 19.7 17./17. 9./66.7 Corr. ɛ Q B i (%). 3.3./..3/.1 Stat. sign. (σ).1../. blind B( 6 ).1 +1. 1.3 3.3 +1.9 1.6. +1..9 /.1+.6. blind UL B ( 6 ) 6.3 3.7/. blind Combined results B( 6 ) 3.8 +1.1 +. 1... +1. +1.6.9.6 /.1+.6 +.9.. Signif...3/. UL B( 6 ) 3.7/. Philip J. Clark, University of Edinburgh p. 3/6

Charged Modes B + η K /ρ ML fit quantity η ηππk + K π + η ργk + K π + η ηππk + K + π η ργk + K + π η ηππρ + η ργρ + Events to fit 11 996 3 67 1787 9 Signal yield 11. +.7. 1.8 +11. 9.7. +. 3.6 3.1 +1.1 9.6 1.1 +17. 16. blind BB yield 16. +11.1 9. 8 +7 71 6 + 1 337 +7 7 6 ± 6 blind ML-fit bias (events) +.8 +.9 +1..3 +13. blind MC ɛ (%) 19. 16. 11.6 8. 1.7 9.1 Tracking corr. (%) 97.9 98. 97.9 98. 97.9 98. K S corr. (%) 98. 98.1 Neutrals corr. (%) 97.3. 9.3 97. 9.7 97. Corr. ɛ (%) 18. 1.8.7 8. 13.6 8.61 Q Bi (%). 6.8.8 9.8 17. 9. Corr. ɛ Q B i (%).7 1.1.6.8.. Stat. sign. (σ) 3.3 1.3 1...6 blind B( 6 ) 6. +3..7.7 +. 3.9.9 +3.7.6.9 +6.7. 6.8 +3..9 blind UL B ( 6 ) 11.6 11.8 9.. 1. blind B( 6 ).9 +1.9 +.8 1.7.7 6.8 +3. +3.9.9 1.3 Signif. w syst. (σ) 3.6.3 UL B( 6 ) 7.9 1 Philip J. Clark, University of Edinburgh p. 33/6

E mes F cos θh mk mη splots η ηππ K sig qq BB 1 1 8 6 - -. -.1.1 E (GeV) 3 -. -.1.1 E (GeV) Events / (. GeV ) Events / (. GeV ) Events / (. GeV ) 1 - - -. -.1.1 E (GeV) 18 16 1 1 6 8 - -..6.7.8.9 (GeV) m ES 3 3 1..6.7.8.9 (GeV) m ES Events / (. GeV ) Events / (. GeV ) Events / (. GeV ) 18 16 1 1 8 6..6.7.8.9 (GeV) m ES 1 1 6 - - - fisher - - fisher Events / (.6 ) Events / (.6 ) Events / (.6 ) - - - fisher 8 6 - -.. 1 cos θ hel K* -.. 1 cos θ hel K* Events / (.13 ) Events / (.13 ) Events / (.13 ) 3 3 - -.. 1 cos θ hel K* 1.8.9 1 m K* 8.8.9 1 m K* Events / (. ) Events / (. ) Events / (. ) 6 - - - 3 1.8.9 1 m K* 8 6 -.9.9.96.98 1 m η 3 1 Events / (.3 ) Events / (.3 ) Events / (.3 ).9.9.96.98 1 m η 1 -.9.9.96.98 1 m η Philip J. Clark, University of Edinburgh p. 3/6

splots η ηππ K + K π + sig qq BB E 7 6 3 1-1 - -. -.1.1 E (GeV) 18 16 1 1 8 6 -. -.1.1 E (GeV) 8 6 - -. -.1.1 E (GeV) m ES 7 6 3 1-1..6.7.8.9 (GeV) M ES 16 1 1 8 6..6.7.8.9 (GeV) M ES 6 -..6.7.8.9 (GeV) M ES F 8 6 - - -6 - - fisher 8 7 6 3 - - fisher 1 - - - - fisher cos θ H 8 6 - -.. 1 1 -.. 1 3 3 1 - - -.. 1 H Kpi H Kpi H Kpi m K 1 1 8 6 -.8.9 1 3.8.9 1 1 -.8.9 1 M Kpi M Kpi M Kpi m η 8 6.9.9.96.98 1 1 1 8 6.9.9.96.98 1 8 6 -.9.9.96.98 1 M etapipi M etapipi M etapipi Philip J. Clark, University of Edinburgh p. 3/6

B η ηππk Projection plots Events / (. GeV ) 18 * η K 16 ηππ 1 1 8 6..6.7.8.9 (GeV) B η ργk m ES Events / (. GeV ) * 16 η K ηππ 1 1 8 6 -. -.1.1 E (GeV) Events / (. GeV ) * η K ργ 3 3 1..6.7.8.9 (GeV) m ES Events / (. GeV ) η K 6 ργ * 3 -. -.1.1 E (GeV) Philip J. Clark, University of Edinburgh p. 36/6

B + η ηππk + K π + Events / (. GeV ) η K π + 8 6 ηππ *+ K S..6.7.8.9 (GeV) B + η ργk + K π + Events / (. GeV ) 1 η ργ K *+ K π + S Projection plots m ES..6.7.8.9 (GeV) m ES Events / (. GeV ) Events / (. GeV ) 1 8 6 η ηππ K *+ K π + S -. -.1.1 E (GeV) *+ η K ργ K π + S 3 3 1 -. -.1.1 E (GeV) Philip J. Clark, University of Edinburgh p. 37/6

B + η ηππρ + Projection plots Events / (. GeV ) η ρ 3 + ηππ 3 1..6.7.8.9 (GeV) B η ηππρ m ES Events / (. GeV ) η ρ + ηππ 3 3 1 -. -.1.1 E (GeV) Events / (. GeV ) 3 3 1 η ηππ ρ..6.7.8.9 (GeV) m ES Events / (. GeV ) η ρ ηππ 3 3 1 -. -.1.1 E (GeV) Philip J. Clark, University of Edinburgh p. 38/6

Likelihood ratio plots Events/bin 3 η ηππk Events/bin 3 η ηππk + K + π Events/bin 3 η ηππk + K π + Events/bin 3 η ηππρ 1.1..3...6.7.8.9 1 L(S)/[L(S)+L(B)] 1.1..3...6.7.8.9 1 L(S)/[L(S)+L(B)] 1.1..3...6.7.8.9 1 L(S)/[L(S)+L(B)] 1.1..3...6.7.8.9 1 L(S)/[L(S)+L(B)] Events/bin 3 η ργk Events/bin 3 η ργk + K + π Events/bin 3 η ργk + K π + Events/bin 3 η ηππρ + 1.1..3...6.7.8.9 1 L(S)/[L(S)+L(B)] 1.1..3...6.7.8.9 1 L(S)/[L(S)+L(B)] 1.1..3...6.7.8.9 1 L(S)/[L(S)+L(B)] 1.1..3...6.7.8.9 1 L(S)/[L(S)+L(B)] L sig /[L sig + L bkg ] for all modes. Points are on-peak data, background qq & BB expectation (pure toy) signal (pure toy) + background Philip J. Clark, University of Edinburgh p. 39/6

Systematics B η K /ρ Quantity η ηππk η ργk η ηππρ /η ηππf Multiplicative errors (%) Track multiplicity (C) 1. 1. 1. Tracking efficiency [C]..6. π /η γγ /γ eff [C] 3. 1.8 3. Number BB [C] 1.1 1.1 1.1 cos θ T [C]. 3.. Branching fractions [U] 3. 3. 3./3. MC statistics [U].6.6. Total multiplicative 7.3 7.6 7./7. Additive errors (events) Signal Model [U] ±. ±.83 ±1./.8 Fit bias [U] ±.9 ±.8 ±.7/. BB background [U] +.8 +. +1/3.6 Total additive (events) Total errors [B( 6 )] Total Additive Uncorrelated +1.3 1.1 +.6.1 +.3. +7..9 +.93.6 +.9.6 +1.8 /+.1. +1.6.6 /+.. +1.6.6 /+.. Correlated ±.6 ±. ±.3/.1 Philip J. Clark, University of Edinburgh p. /6

Systematics B + η K /ρ Quantity η ηππk + K π + η ργk + K π + η ηππk + K + π η ργk + K + π η ηππρ + Multiplicative errors (%) Track multiplicity [C] 1. 1. 1. 1. 1. Tracking efficiency [C].9 6.1 3.9.1. π /η γγ /γ eff [C] 3. 1.8 6..8 6. Number BB [C] 1.1 1.1 1.1 1.1 1.1 cos θ T [C]. 1.3. 1.3. Branching fractions [U] 3. 3. 3. 3. 3. MC statistics [U].6.6.8.9.7 Total multiplicative (%) 7.6 7. 8.1 7. 8. Additive errors (events) Signal model [U] ±.3 ±1.1 ±.13 ±1.6 ±1.6 Fit bias [U] ±. ±1. ±. ±1.3 ±6.8 BB background [U] +. +1.9 +.3 +17 + Total additive (events) Total errors [B( 6 )] Total Additive Uncorrelated +.6.7 +.36.3 +.. +.7 1.9 +1.1.7 +1.1.76 +.63. +.. +.6.1 +17 1.6 +9..88 +9..88 +1 7. +3.8 1.3 +3.8 1.3 Correlated ±. ±.31 ±.7 ±.19 ±. Philip J. Clark, University of Edinburgh p. 1/6

Log likelihood scan plots ) - ln (L/L 9 8 7 6 η K combined incl. syst. ) - ln (L/L. 1. η ρ incl. syst. 3 1. 6 8 1 1 16 18 BR(B η K * ) ( -6 ). 1 1.. BR(B η ρ ) ( -6 ) ) - ln (L/L 3 η K combined incl. syst. ) - ln (L/L 1 η ρ + incl. syst. 8 1 6 6 8 1 1 16 18 BR(B η K *+ ) ( -6 ) 6 8 1 1 16 18 + -6 BR(B η ρ ) ( ) Philip J. Clark, University of Edinburgh p. /6

B η f ( π + π ) Events / (. GeV ) η 1 f ηππ..6.7.8.9 (GeV) m ES Events / (. GeV ) 3 3 1 η ηππ f -. -.1.1 E (GeV) - ln (L/L ) 9 8 7 6 Events/bin 3 3 1. 1 1.. -6 BR(B η f ) ( ) 1.1..3...6.7.8.9 1 L(S)/[L(S)+L(B)] Philip J. Clark, University of Edinburgh p. 3/6

Comparison to predictions Central values agree well with QCD factorisation predictions Also agree with SU(3) numbers As expected B η ρ is probably very small New upper limit for B η f ( π + π ) Decay mode Theoretical predictions Experimental results SU(3) flavour QCD fact. HFAG BaBar Belle New results B η K 3. +1..3 3.9 +9..1 B + η K +.8 +1..3.1 +.3.9 < 7.6 < 7.6 < 3.8+1.1 < 1 < 1 < 9.9+1.9 +. 1.. +.8 1.7.7 (. σ) (3.6 σ) < 7.9 B η ρ.7 +...1+.1.6 B + η ρ +.9 +.7.7 6.3 +. 3.3 <.3 <.3 < 1.+1. < < 6.8+3. B η f ( π + π ).1 +.6 +1.6.9.6 +3.9.9 1.3 +.9.. (.3 σ) < 3.7 (.3 σ) < 1 (. σ) <. Philip J. Clark, University of Edinburgh p. /6

B(B (η, η ) (K ( ), π, ρ) CLEO Belle PDG New Avg. HFAG April 6 ηπ ηπ + ηk ηk + ηρ ηρ + ηk ηk + η π η π + η ρ η ρ + η K η K + η K η K +... Branching Ratio x 6 Philip J. Clark, University of Edinburgh p. /6

Conclusions Measurement of η K and evidence for η K + New upper limits for B η ρ and B + η ρ + Level of B η K enhancement wrt. B η K η Decay mode B( 6 ) η B η K 3.8 1. +1.1. +. (. σ) B ηk 18.7 ± 1.7 K B + η K +.9 1.7 +1.9.7 +.8 (3.6 σ) B+ ηk +.3 +3..9 B η K 63. ± 3.3 B ηk < 1.9 K B + η K + 69. ±.7 B + ηk +. ±.3 Philip J. Clark, University of Edinburgh p. 6/6