Higgs decay to two gluons

Σχετικά έγγραφα
MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Space-Time Symmetries

Srednicki Chapter 55

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Section 7.6 Double and Half Angle Formulas

EE512: Error Control Coding

2 Composition. Invertible Mappings

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Math221: HW# 1 solutions

Matrices and Determinants

derivation of the Laplacian from rectangular to spherical coordinates

C.S. 430 Assignment 6, Sample Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Higher Derivative Gravity Theories

Section 8.3 Trigonometric Equations

Approximation of distance between locations on earth given by latitude and longitude

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

CRASH COURSE IN PRECALCULUS

Areas and Lengths in Polar Coordinates

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Homework 3 Solutions

Areas and Lengths in Polar Coordinates

Section 9.2 Polar Equations and Graphs

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Finite Field Problems: Solutions

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

PARTIAL NOTES for 6.1 Trigonometric Identities

Solutions to Exercise Sheet 5

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

ST5224: Advanced Statistical Theory II

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Tutorial problem set 6,

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Example Sheet 3 Solutions

Reminders: linear functions

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

6.3 Forecasting ARMA processes

Fractional Colorings and Zykov Products of graphs

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Partial Trace and Partial Transpose

[1] P Q. Fig. 3.1

SOLVING CUBICS AND QUARTICS BY RADICALS

The Simply Typed Lambda Calculus

( ) 2 and compare to M.

Second Order Partial Differential Equations

Phys624 Quantization of Scalar Fields II Homework 3. Homework 3 Solutions. 3.1: U(1) symmetry for complex scalar

1 String with massive end-points

Tridiagonal matrices. Gérard MEURANT. October, 2008

( y) Partial Differential Equations

Homework 8 Model Solution Section

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

4.6 Autoregressive Moving Average Model ARMA(1,1)

Statistical Inference I Locally most powerful tests

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

On a four-dimensional hyperbolic manifold with finite volume

Uniform Convergence of Fourier Series Michael Taylor

Inverse trigonometric functions & General Solution of Trigonometric Equations

Parametrized Surfaces

Congruence Classes of Invertible Matrices of Order 3 over F 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Answer sheet: Third Midterm for Math 2339

Numerical Analysis FMN011

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

PHY 396 K/L. Solutions for problem set #12. Problem 1: Note the correct muon decay amplitude. The complex conjugate of this amplitude

If we restrict the domain of y = sin x to [ π 2, π 2

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

the total number of electrons passing through the lamp.

Lecture 15 - Root System Axiomatics

5.4 The Poisson Distribution.

Muon & Tau Lifetime. A. George January 18, 2012

Second Order RLC Filters

Exercises to Statistics of Material Fatigue No. 5

A Note on Intuitionistic Fuzzy. Equivalence Relation

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

Quantum Electrodynamics

Variational Wavefunction for the Helium Atom

Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x.

Geodesic Equations for the Wormhole Metric

Other Test Constructions: Likelihood Ratio & Bayes Tests

w o = R 1 p. (1) R = p =. = 1

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

Trigonometric Formula Sheet

Solution Series 9. i=1 x i and i=1 x i.

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Transcript:

Higgs ecay to two gluons Eleftherios Moschanreou (a) The ecay rate An unstable particle has a probability to ecay to a certain number of final states uring a given time interval. The process of ecaying is escribe by the ecay rate as Γ Number of ecays per unit time N umber of unecaye particles present One of the channels, the scalar Higgs ecays through is h g (two gluons) In the Higgs rest frame, the ecay rate in the neighborhoo of the final momenta p an k is: Γ m A 3 p (π) 3 E p 3 k M(m (π) 3 h p, k) (π) 4 δ (4) (m h p k) E k where M(m h p, k) is the the ecay amplitue, a quantity that escribes the interactions that take place uring the ecay. (b) From the Feynman iagram to the ecay amplitue. The ecay involves a fermion (quark) loop. For each quark there are two possible Feynman iagrams that contribute to the ecay amplitue. For the first iagram. We recognize three vertices an three fermion propagators: Each fermion propagator contributes: i( p + m) p m + iɛ

The Higgs-fermion-antifermion (quark-antiquark) vertex contribution to the amplitue is: i m q υ δab υ is the vacuum expectation value for the Higgs an the Kronecker elta ensures color conservation. The gluon-quark-anti quark vertex contribution is: igγ µ t α The iagram contailns a loop momentum l. We nee to intergrate over this loop momentum. So finally the matrix element can be written as: M i m q υ ( ) 4 l (π) T r[ i( l k + m q ) 4 (l k) m q + iɛ ig sγ ν i( l + m q ) l m q + iɛ ig sγ µ i( l + p + m q ) (l + p) m q + iɛ T r[t b t a ] ɛ λ µ (p) where ɛ λ ν (k), ɛ λ µ (p) the polarization vectors of the outcoming gluons. (c) Calculating the ecay amplitue: newline The numerator N of the loop momentum integral contains 3 3 8 terms. Using trace technology we can eventually simplify it: T r[n] (i) 5 g s T r[( l k + m q )γ ν ( l + m q )γ µ ( l + p + m q )] i g s T r[( l k + m q ) (γ ν l + γ ν m q )(γ µ l + γµ p + γ µ m q )] i g s T r{( l k + m q ) [γ ν l(γ µ l + γµ p + γ µ m q ) + γ ν m q (γ µ l + γµ p + γ µ m q )]} i g s T r{( l k + m q ) [γ ν lγ µ l + γ ν lγµ p + γ ν lγ µ m q +γ ν m q γ µ l + γ ν m q γ µ p + γ ν m q γ µ m q ]} i g s T r{ l [γ ν lγ µ l + γ ν lγµ p + γ ν lγ µ m q + γ ν m q γ µ l + γ ν m q γ µ p + γ ν m q γ µ m q ] k[γ ν lγ µ l + γ ν lγµ p + γ ν lγ µ m q + γ ν m q γ µ l + γ ν m q γ µ p + γ ν m q γ µ m q ] +m q [γ ν lγ µ l + γ ν lγµ p + γ ν lγ µ m q + γ ν m q γ µ l + γ ν m q γ µ p + γ ν m q γ µ m q ]} To simplify things we rop all the terms with o number of gamma matrices using the property T r[o number of γ s]

So T r[n] i gs T r{ lγ ν lγ µ m q + lγ ν m q γ µ l + lγ ν m q γ µ p kγ ν lγ µ m q kγ ν m q γ µ l kγ ν m q γ µ p +m q [γ ν lγ µ l + γ ν lγµ p + γ ν m q γ µ m q ]} Grouping some terms: T r[n] i gs m q T r[ lγ ν { l, γ µ } + { l, γ ν }γ µ p kγ ν { l, γ µ } kγ ν γ µ p +γ ν lγ µ l] + i g s m 3 q T r[γ ν γ µ ] Furthermore using an T r[γ ν γ µ ] 4g µν {γ µ, γ ν } g µν For the first term in the square bracket the calculations yiel: T r[ lγ ν { l, γ µ }] T r[ lγ ν {l α γ α, γ µ }] T r[ lγ ν l α {γ α, γ µ }] T r[ lγ ν l α g αµ ] T r[ lγ ν l µ ] T r[l ρ γ ρ γ ν l µ ] l µ l ρ T r[γ ρ γ ν ] 8l µ l ρ g ρν 8l µ l ν So the trace can now be written: T r[n] i gs m q [8l µ l ν + 8l ν p µ 8k ν l µ + T r[ k α γ α γ ν γ µ p β γ β + γ ν l α γ α γ µ l β γ β ]] +i gs m 3 q 4g µν i gs m q [8l µ l ν + 8l ν p µ 8k ν l µ + T r[ k α p β γ α γ ν γ µ γ β + l α l β γ ν γ α γ µ γ β ]] +i gs m 3 q 4g µν Also an other ientity that shoul be use: T r[γ µ γ ν γ ρ γ σ ] 4(g µν g ρσ g µρ g νσ + g µσ g νρ ) Giving: T r[n] i gs m q [8l µ l ν + 8l ν p µ 8k ν l µ 4k α p β (g αν g µβ g αµ g νβ + g αβ g µν ) +4l α l β (g να g µβ g νµ g αβ + g νβ g µα )] + i gs m 3 q 4g µν i gs m q [8l µ l ν + 8l ν p µ 8k ν l µ 4k ν p µ + 4k µ p ν 4 kp g µν +4l ν l µ 4l g νµ + 4l µ l ν ] + i gs m 3 q 4g µν i gs m q [6l µ l ν + 8l ν p µ 8k ν l µ 4k ν p µ + 4k µ p ν 4 kp g µν 4l g νµ ] +i gs m 3 q 4g µν i gs 4m q [4(l µ l ν l g νµ ) + (l ν p µ k ν l µ ) k ν p µ + k µ p ν + (m kp) g µν ] 3

The next task is to treat the enominator: ((l k) m q + iɛ)(l m q + iɛ)((l + p) m q + iɛ) The integration is over l. We see that we have a prouct l l l in terms of powers of l. So we can rewrite the enominator in the form of a quaratic polynomial raise in the thir power. This proceure is calle Feynman parametrization. We start from observing that the integral x x x [xa + ( x)b]. For three terms in the enominator the appro- is easily calculate an is equal with priate formula is: ABC x y z AB x x xy δ(x + y ) [xa + yb]! xyz δ(x + y + z ) [xa + yb + zc] 3 With A ((l k) m q + iɛ), B (l m q + iɛ), C ((l + p) m q + iɛ) : ABC x x,y,z x x,y,z x x,y,z δ(x + y + z ) xyz [xa + yb + zc] 3 δ(x + y + z ) xyz [x((l k) m q + iɛ) + y(l m q + iɛ) + z((l + p) m q + iɛ)] 3 δ(x + y + z ) xyz [(x + y + z)l + xk xlk + zlp + zp (x + y + z)m q + (x + y + z)iɛ)] 3 The elta function imposes the constraint x + y + z so ABC x z x z xz [l + xk + l(zp xk) + zp m q + iɛ)] 3 We complete the square by aing an subtracting the term (zp xk) ABC x x z x x z x x z xz [l + xk + l(zp xk) + (zp xk) (zp xk) + zp m q + iɛ)] 3 xz [(l + zp xk) + xk (zp xk) + zp m q + iɛ)] 3 xz [(l + zp xk) + xk (z p + x k xzpk) + zp m q + iɛ)] 3 4

k an p are zero since they express the masses of the gluons which are massless. So the enominator becomes: ABC x x z xz [(l + (zp xk)) + xzkp m q + iɛ)] 3 p + k is the four momentum of the Higgs scalar an p an k are the four momenta of the gluons. Also the square of the four momentum expresses the mass square. So we have (p + k) m h p + k + pk m h pk m h Finally by setting l + (zp xk) l an xzm h m q + iɛ the enominator becomes ABC x x xz [l + )] 3 Going back to the numerator: {}}{ N i gs 4m q [ 4(l µ l ν l g νµ ) + (l ν p µ k ν l µ ) k ν p µ + k µ p ν + (m q kp) g µν ] We will call the term uner the overbrace N(L), enoting the terms of the numerator that contain the loop momentum l. These terms will be shifte to the the new momentum l l + zp xk l l zp + xk N(L) 4(l µ l ν l g νµ ) + (l ν p µ k ν l µ ) 4[(l zp + xk) µ (l zp + xk) ν (l zp + xk) g µν ] +((l zp + xk) ν p µ k ν (l zp + xk) µ ) 4[(l µ zp µ + xk µ )(l ν zp ν + xk ν ) (l + l(xk zp) + x k + z p + xzkp)g µν ] Droping k an p : +[(l ν zp ν + xk ν )p µ k ν (l µ zp µ + xk µ )] 4[(l µ l ν + l µ (xk ν zp ν ) + l ν (xk µ zp µ ) + (xk ν zp ν )(xk µ zp µ ) (l + l(xk zp) xzkp)g µν )] + +(l ν p µ zp ν p µ + xk ν p µ k ν l µ + zk ν p µ xk ν k µ ) To simplify things even more we observe that we have some linear terms with respect to l. For example the term l µ (xk ν zp ν ) insie the integral will be x x x z xz 4 l lµ (xk ν zp ν ) [l + )] 3 5

Since the interval of integration is symmetric an the integran is an o function, the integral vanishes. So we can rop all linear (l) terms from the numerator, which now becomes. N(L) 4[(l µ l ν + (xk ν zp ν )(xk µ zp µ )] [l xzkp)g µν ] +( zp ν p µ + xk ν p µ + zk ν p µ xk ν k µ ) 4[(l µ l ν + x k ν k µ zxk ν p µ xzp ν k µ + z p ν p µ ] (l xzkp)g µν ) + ( zp ν p µ + xk ν p µ + zk ν p µ xk ν k µ ) 4l µ l ν l g µν + (4z z)p ν p µ + (4x x)k ν k µ 4xzp ν k µ + (x + z 4zx)k ν p µ + xz m hg µν Now we have everything that we nee to calculate the integral 4 l (π) T r[ i( l k + m q ) 4 (l k) m q + iɛ ig sγ ν i( l + m q ) l m q + iɛ ig sγ µ i( l + p + m q ) (l + p) m q + iɛ ] Which now becomes x xz With pk m h. x xz 4 l (π) 4 ig s4m q { [4lµ l ν l g µν + (4z z)p ν p µ + (4x x)k ν k µ 4xzp ν k µ ] + [l + )] 3 + (x + z 4zx)kν p µ + xz m h gµν k ν p µ + k µ p ν + (m kp) g µν [l + )] 3 } {}}{ 4 l (π) 4 ig s 4m q { [ 4l µ l ν l g µν +(4z z)p ν p µ + (4x x)k ν k µ ] [l + )] 3 [( 4xz)p ν k µ + (x + z 4zx)k ν p µ + (m q + m h + xz m h )gµν ] } [l + )] 3 Lets eal with the terms uner the overbrace, containing l an l µ l ν first. 4 l I(l) (π) ( 8l µ l ν 4 [l + )] l g µν 3 [l + )] ) 3 First the integral 4 l l µ l ν will vanish if µ ν this can be seen through the example (π) 4 [l +)] 3 4 l l l (π) 4 [l + )] 3 l 4 l l[ l l 3 (π) 4 [l + )] 3 ]l The integral in the brackets has an o integran in a symmetric integration interval so it vanishes. So only the terms where µ ν really matter. A tensorial quantity that has the µ ν elements zero is g µν. So assume that l µ l ν is proportional to g µν : l µ l ν λg µν g µν l µ l ν λg µν g µν 6

But g µν g µν is equal with, the imension of the space. So λ l. Now the integral I(l) can be written: 4 4 l ( I(l) )gµν l (π) 4 [l + )] 3 To procee we employ the technique calle imensional regularization. First we perform a Wick rotation l il. By oing this we get ri of the minus sign of the Minkowski metric an now 4 l Ω 3 3 l in polare coorinates can be written We start from the -imensional integral (in polar coorinates, D Eukliean) : l i l (π) [l )] i 3 Ω l (π) l l [l )] 3 Note that the factor i came from the replacement l il. Also notice that the sign of has change. The area of a -imensional sphere is Ω π / Γ( /) The secon integral is l + l [l )] 3 l (l (l ) ) [l ] 3 l l ( l ) (l ) l + ) ( l )(l l )(l ( + ) l y ( y + ) y l (l (l ) ) [l ] (l ) + ) ( l )(l l ( l ) ( l + ) l l )(l ( + ) l y y y (y + ) ( y) ( ) ( y) ( ) ( y ) x (x) (x ) x x (x ) + 7

Comparing with efinition of the beta function : the last integral can be written: x (x) α (x ) β B(α, β) Γ(α)Γ(β) Γ(α + β) l + l [l )] 3 So the integral we wish to calculate can be written: 4 l ( )l ( 4 (π) [l )] 3 ) ( 4 ) π / Γ( /) Γ( )Γ( + ) Γ(3) Γ( ) Γ( ) Γ(3) Ω l (π) (π) l l [l )] 3 ( 4 ) 4 Γ( ) π / Γ(3) Γ( ) Γ( ) Γ(3) This is potentially ivergent. We nee to examine the behavior in the neighborhoo of 4 which the imension of our Minkowski space. To o so we introuce ε 4. So This gives Γ( ) Γ(ε) ( 4 ) 4 π / Γ( ) Γ(3) Using now the expansion of the Γ function: (4 ) (4π) ( 4π ) Γ( ) Γ(3) ε (4π) ( Γ(ε) ) ε 4π Γ(3) Γ(ε) ε γ + O(ε) the above becomes ε (4π) ( Γ(ε) ) ε 4π Γ(3) ε (4π) (4π γ + O(ε) )ε ε 8

where γ the Euler - Mascheroni constant an ( 4π )ε. So 4 l ( )l (π) [l )] 3 ε (4π) [ ε γ + O(ε)] εγ + εo(ε) (4π) Taking the limit ε we see that for 4 the integral oes not iverge an its value i is. 6π The part of the integral in M that oes not contain any l (we enote it as I ): I x xz i g s 4m q 4 l (π) [ [(4z z)p ν p µ + (4x x)k ν k µ + ( 4xz)p ν k µ ] 4 [l + )] 3 [(x + z 4zx)k ν p µ + (m q + m h + xz m h )gµν ] ] [l + )] 3 xz i gs 4m q [(4z z)p ν p µ + (4x x)k ν k µ x +( 4xz)p ν k µ + (x + z 4zx)k ν p µ + (m q m h + xz m h)g µν ] 4 l (π) 4 [l + )] 3 9

Lets repeat the calculation for the integral: 4 l (l il) (π) 4 [l + )] 3 Ω 4 l 4 i l (π) 4 [l )] 3 Ω 4 l 4 i l (π) 4 [l )] 3 i π l 3 l 6π 4 [l ] 3 i 6π i 6π [ i 6π [ l l [l ] 3 6π l [l ] + x x + x x 3 ] l [l ] 3 ] (l + )l [l ] 3 i 6π [( x ) + ( x )] 6π [ + ] i 6π This quantity will be multiplie with the polarization vectors of the gluons ɛ λ ν (k), ɛ λ µ (p). But having in min the tranversality of the polarization: p µ ɛ λ µ (p) an k ν ɛ λ ν (k), many terms vanish. The terms that will survive are [( 4xz)p ν k µ + (m q m h + xz m h )gµν ]. So the initial expression of the 6π ecay amplitue M can now be written:

M i m υ ( ) i g s 4m q x x ɛ λ µ (p) T r[t b t a ] M i m υ ( ) i g s 4m q ɛ λ µ (p) T r[t b t a ] M m υ g s m q x x [( xz[ igµν 4xz)pνkµ + (m 6π + i q m h + xz m h )gµν ] ] 6π ɛ λ µ (p) T r[t b t a ] M m υ g s m q M m υ g s m q M m q υ g s x x x x M g s υ T r[tb t a ] x x g µν + [( 4xz)p ν k µ + (m q xz[ m h + xz m h )gµν ] ] 6π g µν ( m q + xzm h ) + [( 4xz)pν k µ + (m q xz[ m h + xz m h )gµν ] ] 4π g µν ( xz[ m h + xzm h ) + ( 4xz)pν k µ 4π ( m q + xzm h ) ] ɛ λ µ (p) T r[t b t a ] ( 4xz)[ xz[ m h gµν p ν k µ ] ] ɛ λ 4π m q( xz m µ (p) T r[t b t a ] h ) m q m h gµν p ν k µ 4π m q m h gµν p ν k µ 4π x xz[ 4xz ] xz m h x m q }{{} I( m h m q ) ɛ λ µ (p) ɛ λ µ (p) T r[t b t a ] From the GWS theory of weak interactions we have that υ m W g with g e sin θ W υ m W sin θ W. Also the trace T r[t b t a ]: e. So T r[t b t a ] δαb Plugging υ, g an T r[t b t a ]: M e g s m W sin θ W δαb m h gµν p ν k µ 4π I( m h m q ) ɛ λ µ (p)

This is our first achievement, the calculation of the transition amplitue for the first iagram: M λλ αb q e gs 8π m W sin θ W δαb ( m h g µν p ν k µ ) I( m h m q ) ɛ λ µ (p) We nee now to calculate the transition amplitue for the secon iagram. Lets compare an observe the two iagrams: We see that if we change in the first iagram p k, µ ν an λ λ we get the secon iagram. But these three transformations leave invariant the final (boxe) expression of M λλ αb q. So we conclue that the two iagrams contribute equally to the total amplitue M which is the boxe expression. Thus finally M λλ αb q e gs {}}{ 4π m W sin θ W δαb I( m h ) ( m h g µν p ν k µ ) ɛ λ µ (p) m q Now to fin the ecay rate we nee to sum this expression over all possible gluon polarizations λ an λ, over all colors α an b an over all possible intermeiate loop quarks an then square it. To simplify things lets eal first with the tensorial structure uner the overbrace (lets call it T λλ ).

T λλ λ,λ ( m h g µν p ν k µ ) ɛ λ µ (p) λ,λ ( m h g µ ν p ν k µ ) ( m h g µ ν p ν k µ ) ɛ λ ν (k) ɛ λ µ (p) ɛ λ (k) ɛ λ µ (p) λ,λ ν [ m4 h 4 gµ ν g µ ν m h gµ ν p ν k µ m h pν k µ g µ ν + p ν k µ p ν k µ ] ɛ λ ν (k) ɛ λ µ (p) ɛ λ (k) ɛ λ µ (p) λ,λ m4 h 4 gµ ν g µ ν λ ν m h gµ ν p ν k µ λ m h pν k µ g µ ν λ +p ν k µ p ν k µ λ ɛ λ µ (p) ɛ λ µ (p) λ ɛ λ ɛ λ µ (p) ɛ λ µ (p) ν (k) ɛ λ (k) λ ɛ λ µ (p) ɛ λ µ (p) ɛ λ µ (p) ɛ λ µ (p) λ λ ɛ λ ɛ λ ν ν (k) ɛ λ (k) ɛ λ ν ν (k) ɛ λ (k) ν ν (k) ɛ λ (k) When we have a sum over the polarization vectors of massless gauge bosons, we can use the replacement originate from War ientity: ɛ λ µ(p) ɛ λ ν (p) g µν λ So the above can be written: T λλ αb m4 h 4 gµ ν g µ ν g µ µ g ν ν m h gµ ν p ν k µ g µ µ g ν ν m h pν k µ g µ ν g µ µ g ν ν + p ν k µ p ν k µ g µ µ g ν ν m4 h 4 4 m h pν k µ g µ ν m h pν k µ g µ ν + p k m 4 h m hpk m 4 h m h m4 h So the total amplitue M λλ αb q (unerline expression) can be square: M e gs 4π m W sin θ W δαb I( m h ) T λλ m q e gs 4 6π 4 m W sin θ W 4 a,b m h δ αb a,b 3 q q ν λ,λ I( m h ) m4 h m q

The are 8 gluon colors so the inices a, b {, 8}. Thus: δ αb 8 a,b So finally M e gs 4 m 4 h I( m h ) 6π 4 m W sin θ W m q q Last thing is to go back to the ecay rate formula: Γ 3 p 3 k M(m m h (π) 3 E p (π) 3 h p, k) (π) 4 δ (4) (m h p k) E k In the rest frame of the scalar Higgs the energies of the two (massless) gluons are the same E p E k p k. Also the elta function can be analyze as: δ (4) (m h p k) δ(m h E p E k )δ (3) ( p h p + k) δ(m h p )δ (3) ( p + k) δ[ ( p m h )]δ(3) ( p + k) Using the ientity of the elta function δ[a(x x )] a δ(x x ). We have δ (4) (m h p k) δ( p m h )δ(3) ( p + k) Then Γ becomes: 3 p 3 k Γ m h (π) 3 (π) 3 4 p M(m h p, k) (π) 4 δ( p m h )δ(3) ( p + k) 64m h π M 3 p p δ( p m h ) 64m h π M Ω p p δ( p m h ) p 64m h π M 4π 4

The final result for the ecay rate is: Γ M 6m h π e gs 4 m 4 h I( m h ) 6m h π 6π 4 m W sin θ W m q If we introuce the fine structure constant α e 4π α s g s 4π : Γ 4 α α s m 3 h π m W sin θ W q q an its analogue in strong interactions I( m h ) m q Also the form factor implies that the heavier quarks contribute significantly to the ecay rate. So we expect only the top quark to play an important role. I ( m h m q ) x x z xz[ 4xz ] xz m h m q 5