MDSR. Proposition and Evaluation of MDSR Method for Core Analysis of Multiple Directed Graphs

Σχετικά έγγραφα


Newman Modularity Newman [4], [5] Newman Q Q Q greedy algorithm[6] Newman Newman Q 1 Tabu Search[7] Newman Newman Newman Q Newman 1 2 Newman 3

A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks

Web. Web p OutDegree(p) log 7 1/OutDegree(p) A New Difinition of Subjective Distance between Web Pages

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ. του Γεράσιμου Τουλιάτου ΑΜ: 697

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Statistical Inference I Locally most powerful tests

Σύνθετα Δίκτυα. com+plex: with+ -fold (having parts) Διδάζκων Δημήηριος Καηζαρός

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

GPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΠΟΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΒΙΟΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΣΤΗΜΗΣ ΤΡΟΦΙΜΩΝ. Πτυχιακή εργασία

Matrices and Determinants

Quick algorithm f or computing core attribute

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

2 Composition. Invertible Mappings

Homework 3 Solutions

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism of Intuitionistic Fuzzy Groups

Exercises to Statistics of Material Fatigue No. 5

3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙO ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΞΙΟΠΟΙΗΣΗΣ ΦΥΣΙΚΩΝ ΠΟΡΩΝ & ΓΕΩΡΓΙΚΗΣ ΜΗΧΑΝΙΚΗΣ

Anomaly Detection with Neighborhood Preservation Principle

ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΣΕΞΟΥΑΛΙΚΗΣ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ ΤΩΝ ΓΥΝΑΙΚΩΝ ΚΑΤΑ ΤΗ ΔΙΑΡΚΕΙΑ ΤΗΣ ΕΓΚΥΜΟΣΥΝΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ

IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He

Other Test Constructions: Likelihood Ratio & Bayes Tests

C.S. 430 Assignment 6, Sample Solutions

w o = R 1 p. (1) R = p =. = 1

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Automatic extraction of bibliography with machine learning

CRASH COURSE IN PRECALCULUS

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

HIV HIV HIV HIV AIDS 3 :.1 /-,**1 +332

{takasu, Conditional Random Field

c Key words: cultivation of blood, two-sets blood culture, detection rate of germ Vol. 18 No

GPU. CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA. Parallelizing the Number Partitioning Problem for GPUs


derivation of the Laplacian from rectangular to spherical coordinates

ΣΔΥΝΟΛΟΓΗΚΟ ΔΚΠΑΗΓΔΤΣΗΚΟ ΗΓΡΤΜΑ ΗΟΝΗΧΝ ΝΖΧΝ «ΗΣΟΔΛΗΓΔ ΠΟΛΗΣΗΚΖ ΔΠΗΚΟΗΝΧΝΗΑ:ΜΔΛΔΣΖ ΚΑΣΑΚΔΤΖ ΔΡΓΑΛΔΗΟΤ ΑΞΗΟΛΟΓΖΖ» ΠΣΤΥΗΑΚΖ ΔΡΓΑΗΑ ΔΤΑΓΓΔΛΗΑ ΣΔΓΟΤ

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

( ) 2 and compare to M.

ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Approximation of distance between locations on earth given by latitude and longitude

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ. Σχολή Τεχνολογικών Εφαρμογών Τμήμα Εφαρμοσμένης Πληροφορικής & Πολυμέσων

EE512: Error Control Coding

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

Fractional Colorings and Zykov Products of graphs

MSM Men who have Sex with Men HIV -

Αξιολόγηση των Φασματικού Διαχωρισμού στην Διάκριση Διαφορετικών Τύπων Εδάφους ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Σπίγγος Γεώργιος

Μηχανισμοί πρόβλεψης προσήμων σε προσημασμένα μοντέλα κοινωνικών δικτύων ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Feasible Regions Defined by Stability Constraints Based on the Argument Principle


HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΓΡΟΤΙΚΕΣ ΣΤΑΤΙΣΤΙΚΕΣ ΜΕ ΕΡΓΑΛΕΙΑ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ

Η ΠΡΟΣΩΠΙΚΗ ΟΡΙΟΘΕΤΗΣΗ ΤΟΥ ΧΩΡΟΥ Η ΠΕΡΙΠΤΩΣΗ ΤΩΝ CHAT ROOMS

Listening to the customers voice through social network analytics

ΦΩΤΟΓΡΑΜΜΕΤΡΙΚΕΣ ΚΑΙ ΤΗΛΕΠΙΣΚΟΠΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ ΜΕΛΕΤΗ ΘΕΜΑΤΩΝ ΔΑΣΙΚΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

AΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Α.Τ.Ε.Ι ΙΟΝΙΩΝ ΝΗΣΩΝ ΤΜΗΜΑ ΔΗΜΟΙΩΝ ΣΧΕΣΕΩΝ & ΕΠΙΚΟΙΝΩΝΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΜΕ ΘΕΜΑ: SOCIAL MEDIA FACEBOOK & TWITTER, ΠΟΙΑ Η ΔΙΑΦΟΡΑ ΜΕΤΑΞΥ ΤΟΥΣ;

The Simply Typed Lambda Calculus

ER-Tree (Extended R*-Tree)

ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΣΤΟ ΟΡΟΣ ΠΗΛΙΟ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

«Συμπεριφορά μαθητών δευτεροβάθμιας εκπαίδευσης ως προς την κατανάλωση τροφίμων στο σχολείο»

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. «Προστασία ηλεκτροδίων γείωσης από τη διάβρωση»

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Evolution of Novel Studies on Thermofluid Dynamics with Combustion

Math 6 SL Probability Distributions Practice Test Mark Scheme

Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer

ΔΙΑΜΟΡΦΩΣΗ ΣΧΟΛΙΚΩΝ ΧΩΡΩΝ: ΒΑΖΟΥΜΕ ΤΟ ΠΡΑΣΙΝΟ ΣΤΗ ΖΩΗ ΜΑΣ!

ΠΙΣΤΟΠΟΙΗΜΕΝΟ ΕΠΑΓΓΕΛΜΑΤΙΚΟ ΠΕΡΙΓΡΑΜΜΑ «ΧΕΙΡΙΣΤΗΣ ΚΙΝΗΤΩΝ ΜΗΧΑΝΗΜΑΤΩΝ ΜΗΧΑΝΗΜΑΤΩΝ ΕΡΓΟΥ»

ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ ΤΩΝ ΕΚΘΕΣΕΩΝ ΕΤΑΙΡΙΚΗΣ ΚΟΙΝΩΝΙΚΗΣ ΕΥΘΥΝΗΣ COSMOTE ΚΑΙ VODAFONE ΣΤΟΝ ΕΛΛΗΝΙΚΟ ΚΛΑΔΟ ΤΩΝ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

Περίληψη (Executive Summary)

Congruence Classes of Invertible Matrices of Order 3 over F 2

ΔΘΝΙΚΗ ΥΟΛΗ ΓΗΜΟΙΑ ΓΙΟΙΚΗΗ ΙΗ ΔΚΠΑΙΓΔΤΣΙΚΗ ΔΙΡΑ

ST5224: Advanced Statistical Theory II

n 1 n 3 choice node (shelf) choice node (rough group) choice node (representative candidate)

the total number of electrons passing through the lamp.

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

A research on the influence of dummy activity on float in an AOA network and its amendments

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016

(Υπογραϕή) (Υπογραϕή) (Υπογραϕή)

Τ.Ε.Ι. ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ & ΕΠΙΚΟΙΝΩΝΙΑΣ

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ ΥΓΕΙΑΣ "

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή εργασία

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH LEAN PRODUCTION TOOLS

Ημερίδα διάχυσης αποτελεσμάτων έργου Ιωάννινα, 14/10/2015

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Transcript:

MDSR Proposition and Evaluation of MDSR Method for Core Analysis of Multiple Directed Graphs Shoko KATO Kazumi SAITO Kazuhiro KAZAMA Tetsuji SATOH MDSR Multiple-Directed-Spectral-Relaxation MDSR 2 Twitter ( bot) ( null ) 3 k-core 2 MDSR In this paper, we propose the MDSR method for a problem of extracting core portions of a multiple directed network. The MDSR method extracts plural core portions by repeating the following two steps; quantizing elements of the left- and right-eigenvectors of an adjacency matrix of a network to binary ones as an indicator of extracting core portion, and removing links of the extracted one. By calculating the left- and right-eigenvectors, the MDSR method extracts 445.ka10@gmail.com k-saito@u-shizuoka-ken.ac.jp kazama@sys.wakayama-u.ac.jp satoh@ce.slis.tsukuba.ac.jp pairs of asymmetric node sets which have complementary roles, i.e., initial and terminal nodes. In our experiments using a reply network on Twitter, we demonstrate that the MDSR method uncover the following three types of users; 1) users who send tweets frequently (e.g., bots), 2) users who receive tweets frequently (e.g., null ), 3) small groups who send/receive tweets frequently each other. We also show that some communities were overlapped ones. Furthermore, we show that such communities were hard to be automatically found by two methods, which were constructed by straightforwardly extending the conventional k-core method. 1. Twitter Facebook [1, 2] [3] MDSR (Multiple- Directed-Spectral-Relaxation) Twitter [4] 2 1 [5, 6, 7] 1 1 ( ) [8, 9, 10, 11] MDSR MDSR SR [11] SR MDSR HITS [12] PageRank [13] MDSR 2 MDSR [4] 1 Vol. 14-J, Article No. 1

2. 2. 1 [14, 15] MDSR HITS [12] k-core [10] 2. 2 HITS Kleinberg HITS V = {1,, N} A G = (V, E) (i, j) A(i, j) A(i, j) i V j V A(i, j) A( j, i) A(i, i) = 0 v( j) = i j u(i) = i A(i, j)u(i) u(i) = j i v( j) = j A( j, i)v( j) v = Au Hub u = A T v Authority 2. 3 k-core k-core 2 G i V d + (i) = j>0 A(i, j) d (i) = j>0 A( j, i) d + (i) d (i) k S C(k) k-csc d + (i) d (i) k WC(k) k-cwc k k-csc V S C(k) V E S C(k) E S C(k) = (V S C(k), E S C(k) ) V S C(k) = {i : d + (i) k, d (i) k}, E S C(k) = {e i, j : i, j V S C(k) }. (1) k-cwc V WC(k) V E WC(k) E WC(k) = (V WC(k), E WC(k) ) V WC(k) = {i : d + (i) + d (i) k}, E WC(k) = {e i, j : i, j V WC(k) }. (2) S C(k) WC(k) k-csc k-cwc k k-csc G = (V, E) (V S C(k), E S C(k) ) A1. V S C(k) = V, E S C(k) = E ; A2. P = {i : d + (i) < k or d (i) < k} P ; A3. P = (V S C(k), E S C(k) ) ; V S C(k) = V S C(k) P, E S C(k) = E S C(k) {e i, j : i P, j P} A2. P k-csc (V WC(k), E WC(k) ) P = {i : d + (i) + d (i) < k} A2. k k-csc max i {d + (i)} max i {d (i)} S C(k + 1) S C(k) k k-csc B1. V S C(1) = V, E S C(1) = E, k = 2 ; B2. (V S C(k 1), E S C(k 1) ) (V S C(k), E S C(k) ) ; B3. V S C(k) = ; k = k + 1 B2. max i {d + (i) + d (i)} k-cwc 2 k-csc k-cwc 3. MDSR MDSR SR [11] Web MSDR 2 SR MDSR 2.2 HITS Authority Hub Twitter Hub Authority, 2 Vol. 14-J, Article No. 1

. 3. 1 G V = {1,, N} A (i, j) A(i, j) i j A(i, i) = 0 A(i, j) 2 W V X V G(W, X) = 1 A(i, j). (3) W X W W MDSR W X (3) W X N MDSR 3. 2 W N q i W q(i) = 1 q(i) = 0 X N r (3) G(q, r) = i W j X rt Aq qt qr T r. (4) r T r q G(q, r) A q r q r 2.2 Authority u = A T v Hub v = Au q r E1. t = 1, q (0) = (1,, 1) T ; E2. q = A T Aq (t 1), q (t) = q/ max i q(i) ; E3. max i q (t) (i) q (t 1) (i) < ϵ ; E4. t = t + 1 E2 ϵ q = q (t) r = Aq A q (0) q E2 0 q (t) (i) 1 1 L q L q N O(N) 3. 3 q r q r q S = [s(1),, s(n)] s(i) i q (s(i)) q (s(i + 1)) tie-break E(0) E(0) (5) E(0) = (q(i) 1 N q( j)) 2 = j=1 q(i) 2 1 N ( q(i)) 2. (5) S = [s(1),, s(n)] m W(m) N m E(m) (7) E(m) = = m mj=1 q(s( j))) 2 (q(s(i)) m N j=m+1 q(s( j)))2 + (q(s(i)) N m i=m+1 q(i) 2 1 m m ( q(s(i))) 2 1 N m ( i=m+1 (6) q(s(i))) 2 MDSR (7) E(m) m W(m ) m (q(s(1)),, q(s(n))) (y(0), y(1),..., y(n)) y(0) = 0, i y(i) = q(s( j)) = y(i 1) + q(s(i)) (i = 1,, N). (7) j=1 E(m) E(m) = q(i) 2 1 1 m y(m)2 N m (y(n) y(m))2. (8) F1. q s(i) ; F2. (q(s(1)),, q(s(n))) (y(1),..., y(n)) (7) ; F3. E(1),, E(N 1) (8) ; F4. m = arg max m E(m) W(m ) ; F1 O(N log N) F2 (7) N F3 E(1),, E(N 1) q(i) (8) O(N) 3 Vol. 14-J, Article No. 1

1: WX 1 2: WX 2 3. 4 T T G1. t = 1 T ; G2. E1 E4 q m ; G3. q F1 F4 W k (m ) ; G4. r F1 F4 X k (n ) ; G5. i W k (m ), j X k (n ) A(i, j) = 0 T T (W 1, X 1 ),, (W T, X T ) 4. Twitter MDSR k-csc CWC MDSR MDSR t (W t, X t ) WX t W t X t T = 100 1 t 10 4. 1 2012 3 14 2013 3 14 Twitter [16, 17] @screen name @screen name 1: MDSR 10 WX t W t X t accounts in W accounts in X WX 1 1 9 8 1 8 2...6, hir 1...4 WX 2 1 5 null gat, yuu,... WX 3 1 1 113 e21 WX 4 7 2 toa 1...4, mik,... toa 1,2 WX 5 1 1 Ten Key WX 6 4 1 kyo 1...4 Ya WX 7 8 1 ziz, dr8,... dq WX 8 1 1 pos S c WX 9 3 1 Sox, car, Ara mom WX 10 1 19 null chi, miy,... 11,500,369 1,649,048,139 12.8 4. 2 1 2 WX 1, WX 2 2 1 WX 1 2 t 3 2 2 WX 2 t 3 W t t = 2 W 2 t = 10 W 10 4.3 4. 3 MDSR MDSR MDSR 1 1 t 10 WX t Wt Wt Xt abc 1 1 WX 1 WX 4 WX 6 MDSR WX 2 WX 10 X 2 X 10 null Twitter null @null 4 Vol. 14-J, Article No. 1

2: k-csc 10 S C r k V S C(k) accounts WX t S C 1 35184 2 toa 1,2 WX 4 S C 2 22388 2 sen, get - S C 3 22010 2 twi, non - S C 4 18640 2 ant, hha - S C 5 10745 2 ats, Not - S C 6 10352 2 rks, gom - S C 7 9948 2 sou, 287 - S C 8 9599 3 AOI, bot 1,2 - S C 9 9423 2 U S, h t - S C 10 9124 2 God, eru - 3: k-cwc 10 WC r k V WC(k) accounts WX t 3: W t X t null X t t 11 100 W t X t 3 W t X t W t X t W t X t (1,1) (2,2) WX t 1 t 100 W t X t W t X t (1) W t X t (2) W t > X t (3) W t < X t 3 3 (1) (2) X t reply bot (3) W t = 1 W t null YouTube 1 YouTube null YouTube Twitter @YouTube W t X t 2 MDSR 4. 4 k-csc k-cwc MDSR k-csc k-cwc MDSR 2 3 k 10 r S C r WC r V S C(k) 1 http://www.youtube.com/ WC 1 110052 2 113, e21 WX 3 WC 2 91941 2 Ten, Key WX 5 WC 3 76086 3 toa 1...3 WX 4 WC 4 73394 2 pos, S c WX 8 WC 5 66623 2 null, gat WX 2 WC 6 65458 4 toa 1...3, mik WX 4 WC 7 58978 2 8 1, hir 1 WX 1 WC 8 58384 5 toa 1...4, mik WX 4 WC 9 57740 3 8 1, hir 1,2 WX 1 WC 10 52342 2 Sox, mom WX 9 S C(k) V WC(k) MDSR WX t 2 k-csc 2 3 k- CWC 10 MDSR WC 3 WC 6 WC 6 WC 8 WX 4 WC 7 WC 9 WX 1 k-cwc k k k MDSR k-csc k-cwc MDSR W t X t MDSR 5. MDSR 2 5 Vol. 14-J, Article No. 1

Twitter 1) 2) 3) 3 k-core 2 MDSR Twitter MDSR - 2 blog MDSR [ ] JSPS 25280110 [ ] [1] Huberman, B. A., Romero, D. M., Wu, F.: Social networks that matter: Twitter under the microscope, First Monday 14, (1.5). (2009) [2] Kwak, H., Lee, C., Park, H., Moon, S.: What is Twitter, a social network or a news media?, In: Proceedings of WWW 10. pp. 591 600 (2010) [3] Newman, M. E. J., Park, J.: Why social networks are different from other types of networks, Physical Review E, 68(3), 036122 (2003) [4] Kato, S., Saito. K., Kazama, K., Satoh, T.: MDSR: An Eigenvector Approach to Core Analysis of Multiple Directed Graphs, In PRICAI 2014: Trends in Artificial Intelligence. Springer International Publishing, pp. 447-458 (2014) [5] Shi, R., Malik, J.: Normalized cuts and image segmentation, IEEE Trans. PAMI, 22(8), pp.888 905 (2000) [6] Flake, G. W., Lawrence, S., Giles, C. L.: Efficient identification of Web communities, In: Proceedings of SIGKDD 00. pp.150 160, (2000) [7] Girvan, M., Newman, M. E. J.: Community structure in social and biological networks, In: Proceedings of the National Academy of Sciences of the United States of America, 99, pp.7821 7826 (2002) [8] Palla, G., Derenyi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community structure of complex networks in nature and society, Nature, Vol.435, pp.814 818 (2005) [9] Saito, K., Yamada, T., Kazama, K.: Extracting Communities from Complex Networks by the k- Dense Method, IEICE Transactions, Vol.E91-A, No.11, pp.3304 3311 (2008) [10] Seidman, S. B.: Network structure and minimum degree, Social Networks, Vol.5, No.3, pp.269 287 (1983) [11] Saito, K., Ueda, N.: Filtering Search Engine Spam based on Anomaly Detection Approach, In: Proceedings of the KDD2005 Workshop on Data Mining Methods for Anomaly Detection, pp.62 67 (2005) [12] Kleinberg, J.: Authoritative sources in a hyperlinked environment, Journal of the ACM, Vol.46, No.5, 604 632 (1999) [13] Brin, S., Page, L.: The anatomy of a large scale hypertextual Web search engine, In: Proceedings of WWW 98, pp.107 117 (1998) [14] Leicht, E. A., Newman, M. E.: Community structure in directed networks, Physical review letters, 100(11), 118703 (2008) [15] Barrat, A., Barthelemy, M., Pastor-Satorras, R., Vespignani, A.: The architecture of complex weighted networks, Proceedings of the National Academy of Sciences of the United States of America, 101(11), pp.3747 3752 (2004). [16] Yamamoto, S., Satoh, T.: Two Phase Extraction Method for Extracting Real Life Tweets using LDA, In: Proceedings of APWeb 13, pp.340 347 (2013) [17] Yamaguchi,Y., Yamamoto, S. and Satoh, T.: Behavior analysis methods for Twitter users based on transitions in posting activities, Journal of Web Information Systems, Vol.10, No. 4, pp. 363 377, Emerald (2014) Shoko KATO 2015 ( ) Kazumi SAITO 1985 ( ) 1998 ( ) Kazuhiro KAZAMA 1988 ( ) 2005 ( ) Web Web ACM Tetsuji SATOH 1980 1994 ( ) ACM 6 Vol. 14-J, Article No. 1