L. Kaßner a, K. Nagel a, R. E. Grützner b, M. Korb c, T. Rüffer c, H. Lang c and S. Spange a

Σχετικά έγγραφα
Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

chlorostibine Iou-Sheng Ke and François P. Gabbai Department of Chemistry, Texas A&M University, College Station, TX

Electronic Supplementary Information (ESI)

Cycloaddition of Homochiral Dihydroimidazoles: A 1,3-Dipolar Cycloaddition Route to Optically Active Pyrrolo[1,2-a]imidazoles

Enantioselective Synthesis of the Anti-inflammatory Agent ( )-Acanthoic Acid

IV. ANHANG 179. Anhang 178

Patrycja Miszczyk, Dorota Wieczorek, Joanna Gałęzowska, Błażej Dziuk, Joanna Wietrzyk and Ewa Chmielewska. 1. Spectroscopic Data.

Photo-Induced Self-Assembly of Pt(II)-Linked Rings and Cages via the Photolabilization of a Pt(II) Pyridine Bond

Nickel and Platinum PCP Pincer Complexes Incorporating an Acyclic Diaminoalkyl Central Moiety Connecting Imidazole or Pyrazole Rings

SUPPLEMENTARY MATERIAL. A Facile and Convenient Approach for the Synthesis of Novel Sesamol-Oxazine and Quinoline- Oxazine Hybrids

Supporting Information

Supporting Information. Research Center for Marine Drugs, Department of Pharmacy, State Key Laboratory

Electronic supplementary information (ESI) Bodipy functionalized ortho-carborane dyads for low-energy photosensitization

Supplementary Information. Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3

Supporting Information

Heavier chalcogenone complexes of bismuth(iii)trihalides: Potential catalysts for acylative cleavage of cyclic ethers. Supporting Information

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

College of Life Science, Dalian Nationalities University, Dalian , PR China.

Fused Bis-Benzothiadiazoles as Electron Acceptors

Electronic Supplementary Information (ESI)

Supporting Information for Substituent Effects on the Properties of Borafluorenes

Nitric oxide (NO) reactivity studies on mononuclear Iron(II) complexes supported by a tetradentate Schiff base Ligand

Multifunctinality and Crystal Dynamics of Highly Stable Porous Metal-Organic Framework [Zn 4 O(NTB) 2 ]

SUPPORTING INFORMATION. Diastereoselective synthesis of nitroso acetals from (S,E)- -aminated

Supporting Information for. Catalytic C H α-trifluoromethylation of α,β-unsaturated Carbonyl Compounds

Supporting Information. for

Zebra reaction or the recipe for heterodimeric zinc complexes synthesis

Supporting Information

Table of Contents 1 Supplementary Data MCD

Supplementary Material

Supporting Information

Supporting Information

Electronic Supplementary Information

Supporting Information. A catalyst-free multicomponent domino sequence for the. diastereoselective synthesis of (E)-3-[2-arylcarbonyl-3-

Table S1. Summary of data collections and structure refinements for crystals 1Rb-1h, 1Rb-2h, and 1Rb-4h.

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Synthesis, Characterization, and Computational Study of Three-Coordinate SNS-Copper(I) Complexes Based on Bis-Thione Precursors

Supporting Information. Palladium Complexes with Bulky Diphosphine. Synthesis of (Bio-) Adipic Acid from Pentenoic. Acid Mixtures.

Supporting Information

Supporting Information. Pd(0)-Catalyzed Decarboxylative Coupling and Tandem C H Arylation/Decarboxylation for the. Synthesis of Heteroaromatic Biaryls

SUPPORTING INFORMATION. Pyramidanes: The Covalent Form of the Ionic Compounds

Electronic Supplementary Information for Dalton Transactions. Supplementary Data

Supporting Information File 2. Crystallographic data of syn-bis-quinoxaline, 16c CH 3 CO 2 C 2 H 5 ;

Supporting Information

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Controlling Growth of Molecular Crystal Aggregates with Distinct Linear and Nonlinear Optical Properties

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008

C H Activation of Cp* Ligand Coordinated to Ruthenium. Center: Synthesis and Reactivity of a Thiolate-Bridged

Supporting Information

ANNEXE 2 : SPECTRES DE RÉSONANCE MAGNÉTIQUE NUCLÉAIRE

Synthesis of New Heteroscorpionate Iridium(I) and Iridium(III) Complexes

Divergent synthesis of various iminocyclitols from D-ribose

Supporting Information. Introduction of a α,β-unsaturated carbonyl conjugated pyrene-lactose hybrid

Supporting Information. Experimental section

Tunable Ligand Emission of Napthylsalophen Triple-Decker Dinuclear Lanthanide (III) Sandwich Complexes

Pyrrolo[2,3-d:5,4-d']bisthiazoles: Alternate Synthetic Routes and a Comparative Study to Analogous Fused-ring Bithiophenes

Stereochemistry and mechanistic insight in the [2 k +2 i +2 i ] annulations of ketenes and imines

Synthesis of Imines from Amines in Aliphatic Alcohols on Pd/ZrO 2 Catalyst at Ambient Conditions

Supporting Information

Supporting information for

Quantitative chemical analyses of rocks with X-ray fluorescence analyzer: major and trace elements in ultrabasic rocks

Supporting Information

Supporting Information

E-H (E = B, Si, C) Bond Activation by Tuning Structural and Electronic Properties of Phosphenium Cations

Supporting information

Supplementary information

Table S1 Selected bond lengths [Å] and angles [ ] for complexes 1 8. Complex 1. Complex 2. Complex 3. Complex 4. Complex 5.

NH-Type of chiral Ni(II) complexes of glycine Schiff base: design, structural evaluation, reactivity and synthetic applications

Four- and Five-membered Cobaltacycles by Regioselective Cyclometalation. of Benzylsulfide Derivatives via Co(V) intermediates

Palladium-Catalyzed Direct ortho-sulfonylation of. Azobenzenes with Arylsulfonyl Chlorides via C H. Table of Contents

Practical Pd(II)-catalyzed C H Alkylation with Epoxides: One-step Syntheses of 3,4-Dihydroisocoumarins

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

(M = Mn, Fe, Co, Ni, Cu and Zn)----Mimicking the M II - Substituted Quercetin 2,3-Dioxygenase

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N

using metal-organic framework Cu-MOF-74 as an efficient heterogeneous catalyst Hanh T. H. Nguyen, Oanh T. K. Nguyen, Thanh Truong *, Nam T. S.

SUPPLEMENTARY MATERIAL. In Situ Spectroelectrochemical Investigations of Ru II Complexes with Bispyrazolyl Methane Triarylamine Ligands

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Supplementary Material

Supporting Information

Synthesis, Crystal Structure and Supramolecular Understanding of 1,3,5-Tris(1-phenyl-1H-pyrazol-5- yl)benzenes

Supporting Information

Si + Al Mg Fe + Mn +Ni Ca rim Ca p.f.u

Electronic Supplementary Information:

Bloco A, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, Brazil. Contents Pages

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

Iodine-catalyzed synthesis of sulfur-bridged enaminones and chromones via double C(sp 2 )-H thiolation

Heterobimetallic Pd-Sn Catalysis: Michael Addition. Reaction with C-, N-, O-, S- Nucleophiles and In-situ. Diagnostics

Novel electroluminescent donor-acceptors based on dibenzo[a,c]phenazine as

Supporting Information

Supporting Information

Synthesis and effects of oxadiazole derivatives on tyrosinase activity and SK-MEL-28 malignant melanoma cells

SUPPLEMENTARY DATA. Waste-to-useful: Biowaste-derived heterogeneous catalyst for a green and sustainable Henry reaction

Supporting Information

Supporting Information

Synthesis and Biological Evaluation of Novel Acyclic and Cyclic Glyoxamide derivatives as Bacterial Quorum Sensing and Biofilm Inhibitors

Supporting Information

Supporting Information. Experimental section

Supplementary information

The Free Internet Journal for Organic Chemistry

Transcript:

Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2015 Supplementary Information L. Kaßner a, K. Nagel a, R. E. Grützner b, M. Korb c, T. Rüffer c, H. Lang c and S. Spange a a Polymer Chemistry, Technische Universität Chemnitz, 09107 Chemnitz, Germany. b BASF SE, Carl-Bosch-Str. 38, 67063 Ludwigshafen am Rhein, Germany. c Inorganic Chemistry, Technische Universität Chemnitz, 09107 Chemnitz, Germany; pertaining single X-ray structure analysis. Table S1 Elemental analysis and portion of extractables (48 h, MeOH) of composite P2 repeated for nine times; Remainder% = 100 % C% N% H%. Sample Extractables Quantitative elemental analysis (48 h MeOH) C% H% N% Remainder% P2 (1) 15 % 61.0 9.53 11.7 17.8 P2 (2) 13 % 61.0 9.56 11.8 17.6 P2 (3) 14 % 61.4 9.62 11.9 17.1 P2 (4) 16 % 61.2 9.60 11.8 17.4 P2 (5) 14 % 60.9 9.44 11.7 18.0 P2 (6) 17 % 61.2 9.55 11.7 17.6 P2 (7) 61.8 9.67 11.9 16.6 P2 (8) 61.6 9.61 11.8 17.0 P2 (9) 60.2 9.39 11.6 18.8 calculated 61.7 % 9.62 % 12.0 % 16.7 % Absorbance P2 (9) P2 (8) P2 (7) P2 (6) P2 (5) P2 (4) P2 (3) P2 (2) P2 (1) 4000 3500 3000 2500 2000 1500 1000 500 Wavenumber [cm 1 ] Fig. S1 ATR-FTIR spectra of composite P2 (extracted samples) showing repetition of synthesis procedure for nine times. endo first heating second heating P2 (9) P2 (8) dq/dt [a.u.] P2 (7) P2 (6) P2 (5) P2 (4) P2 (3) P2 (2) P2 (1) 40 60 80 100 120 140 160 180 200 220 240 temperature Fig. S2 DSC traces of composite P2, repetition of synthesis procedure for nine times; cyclic measurements, extracted samples (48 h, MeOH).

Table S2 Data acquisition details for the single X ray diffraction analyses of Si(ε-CL) 4 1 and Si(CHO) 4 2. parameter Value Si(ε-CL) 4 1 Si(CHO) 4 2 CCDC 1058156 1058182 empiric formula C 24 H 40 N 4 O 4 Si C 24 H 40 N 4 O 4 Si molecular weight 476.69 476.69 temperature 110 K 110 K wavelength 0.71073 Å 0.71073 Å crystal system, space group orthorhombic, P n a 21 Tetragonal, I-42d dimension of unit cell a = 18.1083(7) Å; α = 90 deg. b = 17.6737(9) Å; β = 90 deg. c = 7.6710(3) Å; γ = 90 deg. a = 13.9688(3) Å; α = 90 deg. b = 13.9688(3) Å; β = 90 deg. c = 13.3347(4) Å; γ = 90 deg. volume 2455.03(18) Å 3 2601.97(11) Å 3 Calculated density 1.290 mg/cm 3 1.217 g/cm 3 Absorption coefficient 0.133 mm 1 0.126 mm 1 F(000) 1032 1032 Crystal size 0.4 x 0.4 x 0.2 mm 0.5 x 0.5 x 0.4 mm Theta angle for data acquisition 2.895 to 25.495 3.60 to 25.00 Limiting indices 21 h 21, 20 k 21, 9 l 8 15 h 16, 16 k 16, 15 l 15 Reflections collected/unique 10195 / 4209 [R(int) = 0.0477] 3191 / 1107 [R(int) = 0.0215] Completeness of theta = 25.500 99.6 % 99.2 % Absorption correction Semi empirical from equivalents Semi empirical from equivalents Max. and min. transmission 1.00000 and 0.55157 1.00000 and 0.88537 Refinement method Full matrix least squares on F 2 Full matrix least squares on F 2 Data/restraints/parameters 4209 / 1 / 298 1107 / 0 / 75 Goodness of fit 1.044 1.040 Final R indices [I>2sigma(I)] R1 = 0.0562, wr2 = 0.1307 R1 = 0.0263, wr2 = 0.0621 R indices (all data) R1 = 0.0705, wr2 = 0.1384 R1 = 0.0282, wr2 = 0.0632 Absolute structure parameter 0.05 (12) 0.22 (16) Largest diff. peak and hole 0.683 and 0.262 e.a 3 0.131 and 0.172 e.a 3

Table S3 Measured bond lengths and angles in Si(ε-CL) 4 1. bond lengths in Å Si(1) N(1) 1.759(4) Si(1) N(2) 1.755(4) Si(1) N(3) 1.758(4) Si(1) N(4) 1.760(4) C(1) O(1) 1.238(5) C(1) N(1) 1.374(5) C(1) C(2) 1.507(6) C(2) C(3) 1.541(6) C(3) C(4) 1.519(6) C(4) C(5) 1.540(6) C(5) C(6) 1.517(6) C(6) N(1) 1.517(6) C(7) O(2) 1.227(5) C(7) O(2) 1.368(6) C(7) C(8) 1.512(6) C(8) C(9) 1.534(6) C(9) C(10) 1.525(6) C(10) C(11) 1.508(7) C(11) C(12) 1.521(6) C(12) N(2) 1.475(5) C(13) O(3) 1.229(5) C(13) N(3) 1.373(6) C(13) C(14) 1.501(6) C(14) C(15) 1.527(6) C(15) C(16) 1.517(6) C(16) C(17) 1.523(6) C(17) C(18) 1.516(6) C(18) N(3) 1.475(5) C(19) O(4) 1.231(5) C(19) N(4) 1.362(6) C(19) C(20) 1.505(6) C(20) C(21) 1.547(6) C(21) C(22) 1.523(6) C(22) C(23) 1.522(7) C(23) C(24) 1.508(6) C(24) N(4) 1.475(5) bond angels in O(1) C(1) N(1) 119.3(4) O(1) C(1) C(2) 121.3(4) N(1) C(1) C(2) 119.3(4) C(1) C(2) C(3) 113.2(4) C(4) C(3) C(2) 113.8(4) C(3) C(4) C(5) 114.7(4) C(6) C(5) C(4) 114.5(4) N(1) C(6) C(5) 115.8(4) O(2) C(7) N(2) 120.2(4) O(2) C(7) C(8) 120.5(4) N(2) C(7) C(8) 119.2(4) C(7) C(8) C(9) 112.7(4) C(10) C(9) C(8) 114.6(4) C(11) C(10) C(9) 115.9(4) C(10) C(11) C(12) 115.0(4) N(2) C(12) C(11) 114.3(4) O(3) C(13) N(3) 119.3(4) O(3) C(13) C(14) 121.3(4) N(3) C(13) C(14) 119.3(4) C(13) C(14) C(15) 114.1(4) C(16) C(15) C(14) 114.6(4) C(15) C(16) C(17) 115.7(4) C(18) C(17) C(16) 114.6(4) N(3) C(18) C(17) 115.3(3) O(4) C(19) N(4) 119.5(4) O(4) C(19) C(20) 120.8(4) N(4) C(19) C(20) 119.6(4) C(19) C(20) C(21) 112.5(4) C(22) C(21) C(20) 113.5(4) C(23) C(22) C(21) 114.6(4) C(24) C(23) C(22) 115.8(4) N(4) C(24) C(23) 114.9(4) C(1) N(1) C(6) 120.9(4) C(1) N(1) Si(1) 114.8(3) C(6) N(1) Si(1) 122.9(3) C(7) N(2) C(12) 120.7(4) C(7) N(2) Si(1) 114.6(3) C(12) N(2) Si(1) 123.3(3) C(13) N(3) C(18) 120.9(4) C(13) N(3) Si(1) 114.9(3) C(18) N(3) Si(1) 123.3(3) C(19) N(4) C(24) 120.5(4) C(19) N(4) Si(1) 114.9(3) C(24) N(4) Si(1) 123.4(3) N(2) Si(1) N(3) 109.92(16) N(2) Si(1) N(1) 110.08(18) N(3) Si(1) N(1) 108.24(19) N(2) Si(1) N(4) 107.84(19) N(3) Si(1) N(4) 110.28(17) N(1) Si(1) N(4) 110.49(16)

Table S4 Measured bond lengths and angles in Si(CHO) 4 2. bond lengths in Å bond angels in Si(1) O(1) 1.6353(10) (1)#1 Si(1) O(1)#2 108.93(3) O(1) N(2) 1.4596(15) O(1)#1 Si(1) O(1)#3 110.56(7) N(2) C(1) 1.275(2) O(1)#2 Si(1) O(1)#3 108.93(3) C(6) C(1) 1.498(2) O(1)#1 Si(1) O(1) 108.93(3) C(6) C(5) 1.533(2) O(1)#2 Si(1) O(1) 110.56(7) C(6) H(6A) 0.9700 O(1)#3 Si(1) O(1) 108.93(3) C(6) H(6B) 0.9700 N(2) O(1) Si(1) 107.59(8) C(2) C(1) 1.504(2) C(1) N(2) O(1) 111.64(12) C(2) C(3) 1.521(2) C(1) C(6) C(5) 110.78(14) C(2) H(2A) 0.9700 C(1) C(6) H(6A) 109.5 C(2) H(2B) 0.9700 C(5) C(6) H(6A) 109.5 C(4) C(3) 1.523(3) C(1) C(6) H(6B) 109.5 C(4) C(5) 1.523(3) C(5) C(6) H(6B) 109.5 C(4) H(4A) 0.9700 H(6A) C(6) H(6B) 108.1 C(4) H(4B) 0.9700 C(1) C(2) C(3) 111.70(14) C(3) H(3A) 0.9700 C(1) C(2) H(2A) 109.3 C(3) H(3B) 0.9700 C(3) C(2) H(2A) 109.3 C(5) H(5A) 0.9700 C(1) C(2) H(2B) 109.3 C(5) H(5B) 0.9700 C(3) C(2) H(2B) 109.3 H(2A) C(2) H(2B) 107.9 N(2) C(1) C(6) 127.79(13) N(2) C(1) C(2) 115.17(13) C(6) C(1) C(2) 117.04(12) C(3) C(4) C(5) 110.58(15) C(3) C(4) H(4A) 109.5 C(5) C(4) H(4A) 109.5 C(3) C(4) H(4B) 109.5 C(5) C(4) H(4B) 109.5 H(4A) C(4) H(4B) 108.1 C(4) C(3) C(2) 110.23(14) C(4) C(3) H(3A) 109.6 C(2) C(3) H(3A) 109.6 C(4) C(3) H(3B) 109.6 C(2) C(3) H(3B) 109.6 H(3A) C(3) H(3B) 108.1 C(4) C(5) C(6) 111.51(14) C(4) C(5) H(5A) 109.3 C(6) C(5) H(5A) 109.3 C(4) C(5) H(5B) 109.3 C(6) C(5) H(5B) 109.3 H(5A) C(5) H(5B) 108.0

43.0 Solid state NMR 43.5 Solution NMR (CDCl 3 ) -20-25 -30-35 -40-45 -50-55 -60-65 -70 [ppm] Fig. S3 solid state and solution NMR spectra of monomer 1 Table S5 Polymerization reactions with Si(CHO) 4 as twin monomer with molar ratios of reactants, reaction conditions and observations. catalyst Molar ratios of reactants Extractables Reaction conditions Result -ACA Si(CHO) 4 -CL (EtOH) 9 1 2.5 h, 100 C No reaction 4 1 0 2.5 h, 220 C PA6, -CL, CHO and cyclohexanone detectable 36 % 50 µl HCl 1 42 4 h, 230 C PA6 and -CL detectable 15 % in water insoluble residue 50 µl HCl 42 1 4 h, 230 C PA6, -CL and CHO detectable 23 % 50 µl CF 3 COOH 1 42 4 h, 230 C No reaction 50 µl HCl 8 1 1 h, 230 C PA6, -CL and CHO detectable 39 % 10 µl H 2 SO 4 6.5 1 30 min 200 C, 10 min 220 C PA6, -CL and CHO detectable CHO cyclohexanone oxime; -CL - -caprolactam At high temperatures above 220 C under usage of -ACA PA6 as well as -CL formation is detected, but both products were formed by -Aminocaproic acid monomers. Therefore high extractables from hydrolysed Si(CHO) 4 respectively formation of cyclohexanone oxime (CHO) were observed. Table S6 Experimental conditions and molar ratios of the tests under usage of water in comparison to the reference experiment with ACA as water source. sample Molar ratios of reactants Extractables Reaction conditions Picture H 2 O -ACA Si( -CL) 4 -CL (48 h, MeOH) Observation Reference PA6, -ACA as water source 1 4.4 3 h, 230 C, 8 bar 10.0 % PA6 PA6, PA6, 1 11.8 4 h, 230 C, 2 bar 19.0 % use of water discoloration PA6/SiO 2 hybrid material, use of water PA6/SiO 2 /MeSiO 1.5 hybrid material, use of water PA6/SiO 2 hybrid material, use of water 6.6 1 21.1 4.4 1.2 1.9 41 Precondensation of -CL + H 2 O; 2 h, 230 C; 2.5 bar Further reaction with Si( -CL) 4, 2 h, 230 C Addition of a second silicon monomer (1 equivalent); Premelting of ε-cl and silicon monomers, 1 h, 230 C; Addition of -ACA/H 2 O mixture, 3 h, 220 C, 1 bar 4 1 22 3.5 h, 230 C, 8 bar 25.4 % 99.1 % PA6, high extractables, discoloration No reaction, high extractables, discoloration No polymeric material obtained, IR: weak Amid IIsignal at 1543 cm 1

Table S7 Molar ratios of reactants and portion of extractables of polymerization procedures under variation of the order of reactant addition respectively prepolymerization temperatures. Molar ratios of reactants Extractables Reaction conditions and order of reactant addition (8 h H -ACA Si( -CL) 4 -CL 2 O, 8 h EtOH) -CL+ -ACA Si(ε-CL) 4.0 1 21.1 4 12.6 % 1.5 h, 180 C 140 C 2.5 h, 220 C, 7.5 bar 4.1 1 21.1 ε-cl+ -ACA 180 C Si(ε-CL) 4 2 h, 220 C, 8 0.7 % 1 h, 220 C 1 h, 180 C, 8 bar bar ε-cl+ -ACA Si(ε-CL) 4 4.0 1 21.0 6.1 % 1 h, 220 C 3 h, 230 C 4.0 1 11.3 +9.9 ε-cl+ -ACA, 2 h, 200 C, 10 bar ε CL+Si(ε-CL) 4, 1 h, 110 C 3 h, 220 C 31.3 % 4.0 1 21.1 ε-cl+ -ACA+Si(ε-CL) 4 6.6 % 3 h, 230 C Fig. S4 Electron microscopic images and EDX patterns of composite P1_1 with 1 wt% of SiO 2 in different magnifications; EDX showing the distribution of the elements silicon, carbon, nitrogen and oxygen.

Fig. S5 Electron microscopic images and EDX patterns of composite P1_2 with 1 wt% of SiO2 in different magnifications; EDX showing the distribution of the element silicon. Fig. S6 Electron microscopic images and EDX patterns of composite P1_3 with 1 wt% of SiO2 in different magnifications; EDX showing the distribution of the elements silicon, carbon, nitrogen and oxygen.

Fig. S7 Electron microscopic images and EDX patterns of composite P2 with 2 wt% of SiO2 in different magnifications; EDX showing the distribution of the elements silicon, carbon, nitrogen and oxygen. Fig.. S8 Electron microscopic images and EDX patterns of composite P5_1 with 5 wt% of SiO2 in different magnifications; EDX showing the distribution of the element silicon, carbon, nitrogen and oxygen.

Fig. S9 Electron microscopic images and EDX patterns of composite P5_2 with 5 wt% of SiO2 in different magnifications; EDX showing the distribution of the element silicon and carbon. Table S8 Results of cyclic DSC measurements of the PA6/SiO2 composite materials. 1. heating Sample SiO2 Int. [J g 1] crystallization 2. heating Onset Peak Int. [J g 1] Onset Peak Int. [J g 1] Onset Peak 1 Peak 2 1 3 R 0 wt% 83.7 213.0 220.5 65.1 190.7 185.1 82.7 211.8 220.5 36.0 P1_1 1 wt% 89.6 211.7 220.9 68.2 188.7 184.2 55.3 211.2 210.8 219.7 24.3 P2 2 wt% 84.4 211.4 219.5 64.3 190.8 187.3 84.9 210.8 211.4 219.0 37.7 P5_1 5 wt% 77.1 211.5 219.0 56.7 187.4 179.4 67.7 211.1 220.0 31.0 References 1 M. Schubnell, UserCom, 2001, 1, 12 13. 2 G. W. Ehrenstein, Polymer Werkstoffe, Carl Hanser Verlag GmbH & Co. KG, 3. Auflage, 2011. 3 G. Rusu, E. Rusu, High Perform. Polym., 2006, 18, 355 375. 100 P5_1 P2 P1_1 R weight remaining [%] 80 60 40 20 residue 7.2 wt% 2.7 wt% 0.6 wt% 0.1 wt% 0 300 400 500 600 700 800 900 temperature Fig. S10 TGA curves for samples with 1, 2 and 5 weight% SiO2 (P1_1, P2 and P5_1) in comparison to polyamide 6 (R).

dm/dlogm 1.0 0.8 0.6 0.4 R P1_1 P1_2 P1_3 P2 P5_1 P5_2 0.2 0.0 1000 10000 100000 1000000 M Fig. S11 SEC profiles of composite material P1_x with 1 weight% SiO 2, P2 with 2 wt% of SiO 2 and P5_x with 5 weight% SiO 2 in comparison to the PA6 as reference; extracted samples (48 h, MeOH); normalized to peak height.