Solutions for Mathematical Physics 1 (Dated: April 19, 2015)

Σχετικά έγγραφα
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Multi-dimensional Central Limit Theorem

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

Multi-dimensional Central Limit Theorem

1 Complete Set of Grassmann States

α & β spatial orbitals in

A Class of Orthohomological Triangles

8.324 Relativistic Quantum Field Theory II

LECTURE 4 : ARMA PROCESSES

C.S. 430 Assignment 6, Sample Solutions

Homework 8 Model Solution Section

Section 8.3 Trigonometric Equations

Phasor Diagram of an RC Circuit V R

Quantum ElectroDynamics II

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CRASH COURSE IN PRECALCULUS

Section 7.6 Double and Half Angle Formulas

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

2 Composition. Invertible Mappings

Journal of Theoretics Vol.4-5

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

PARTIAL NOTES for 6.1 Trigonometric Identities

Constant Elasticity of Substitution in Applied General Equilibrium

THE SECOND WEIGHTED MOMENT OF ζ. S. Bettin & J.B. Conrey

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Parametrized Surfaces

Matrices and Determinants

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

EE512: Error Control Coding

2 Lagrangian and Green functions in d dimensions

Srednicki Chapter 55

Areas and Lengths in Polar Coordinates

Homework 3 Solutions

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Numerical Analysis FMN011

8.323 Relativistic Quantum Field Theory I

Duals of the QCQP and SDP Sparse SVM. Antoni B. Chan, Nuno Vasconcelos, and Gert R. G. Lanckriet

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Concrete Mathematics Exercises from 30 September 2016

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Trigonometric Formula Sheet

Differentiation exercise show differential equation

On Integrability Conditions of Derivation Equations in a Subspace of Asymmetric Affine Connection Space

Solution Series 9. i=1 x i and i=1 x i.

Other Test Constructions: Likelihood Ratio & Bayes Tests

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

6.3 Forecasting ARMA processes

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Areas and Lengths in Polar Coordinates

( y) Partial Differential Equations

Spherical Coordinates

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

( ) 2 and compare to M.

derivation of the Laplacian from rectangular to spherical coordinates

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

1 String with massive end-points

Finite Field Problems: Solutions

Example Sheet 3 Solutions

Math221: HW# 1 solutions

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Some generalization of Cauchy s and Wilson s functional equations on abelian groups

Solution Set #2

The Simply Typed Lambda Calculus

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Answer sheet: Third Midterm for Math 2339

The challenges of non-stable predicates

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities

An Inventory of Continuous Distributions

PHYS606: Electrodynamics Feb. 01, Homework 1. A νµ = L ν α L µ β A αβ = L ν α L µ β A βα. = L µ β L ν α A βα = A µν (3)

Reminders: linear functions

[1] P Q. Fig. 3.1

Solutions to Exercise Sheet 5

Geodesic Equations for the Wormhole Metric

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

SOLVING CUBICS AND QUARTICS BY RADICALS

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Supporting information for: Functional Mixed Effects Model for Small Area Estimation

w o = R 1 p. (1) R = p =. = 1

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Second Order Partial Differential Equations

ST5224: Advanced Statistical Theory II

Durbin-Levinson recursive method

Fractional Colorings and Zykov Products of graphs

Non polynomial spline solutions for special linear tenth-order boundary value problems

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Transcript:

Solutons for Mathematcal Physcs 1 Dated: Aprl 19, 215 3.2.3 Usng the vectors P ê x cos θ + ê y sn θ, Q ê x cos ϕ ê y sn ϕ, R ê x cos ϕ ê y sn ϕ, 1 prove the famlar trgonometrc denttes snθ + ϕ sn θ cos ϕ + cos θ sn ϕ cosθ + ϕ cos θ cos ϕ sn θ sn ϕ. 2 One can use the fact that the angle between P and Q s θ + ϕ. From the dot product and cross product of these two vectors, one can obtan 3.2.9 Prove the Jacob s dentty for vector product: snθ + ϕ Q P sn θ cos ϕ + cos ϕ sn θ, Q P cosθ + ϕ P Q cos θ cos ϕ sn θ sn ϕ. 3 Q P Let s re-defne the vectors a, b, and c as a b c + b c a + c a b. 4 Then, one can rewrte Eq. 4 as x 1 a, x 2 b, x 3 c. 5 a b c + b c a + c a b 1 2 ɛ jkx x j x k 6 The repeated ndces mply the summaton. The α-th ndex of the vector gven n Eq. 6 s gven as [ 1 2 ɛ jkx x j x k ] α 1 2 ɛ jkɛ αβγ x β x j x k γ 1 2 ɛ jk ɛ αβγ ɛ γµν x β x j µ x k ν 1 2 ɛ jk δ αµ δ βν δ αν δ βµ x β x j µ x k ν 1 2 ɛ jk x β x j α x k β x β x j β xk α ɛ jk x βx j αx k β 7 Note that the fact that the dummy ndces can be freely exchanged each other has been employed. We can easly show that the last lne becomes zero by usng ant-symmetrc property of the tensor ɛ jk : ɛ jk x βx j αx k β 1 [ ɛjk x 2 βx j αx k β ɛ kj x βx j αx k 1 [ β] ɛjk x 2 βx j αx k β ɛ jk x k βx j αx β] 1 2 ɛ [ jk x β x j αx k β x k βx j αx ] β. 8

2 3.2.12 Three vectors A, B, and C are gven by A 3ê x 2ê y + 2ê z, B 6ê x + 4ê y 2ê z, A 3ê x 2ê y 4ê z. 9 Compute the values of A B C and A B C, C A B and B C A. A B C 12, A B C 6ê x 4ê y + 5ê z, C A B 24ê x + 88ê y 62ê z, B C A 36ê x 48ê y 12ê z. 1 3.2.15 An electrc charge q 1 movng wth velocty v 1 produces a magnetc nducton B gven by B µ 4π q v 1 ˆr 1 r 2, 11 where ˆr s a unt vector that ponts from q 1 to the pont at whch B s measured Bot and Savart law. a Show that the magnetc force exerted by q 1 on a second charge q 2, velocty v 2 s gven by the vector trple product F 2 µ q 1 q 2 4π r 2 v 2 v 1 ˆr. 12 F 2 q 2 v 2 B µ q 1 q 2 4π r 2 v 2 v 1 ˆr. 13 3.3.3 Let x and y be column vectors. Under an orthogonal transformatons S, they become x Sx and y Sy. Show that x T y x T y, a result equvalent to the nvarance of the dot product under a rotatonal transformaton. x T y can be rewrtten as The -th components of the vector x and y are gven by x T y x y. 14 Enterng ths to Eq. 14 gves x S j x j, y S j y j. 15 From the defnton of the orthogonal transform matrx, we fnd x T y S j S k x j y k. 16 where I s dentty matrx. By enterng ths to Eq. 14, one fnd S j S k S T j S k S 1 j S jk I jk, 17 x T y I jk x j y k x j x j x T y. 18

3 3.4.3 Verfy that the Euler angle rotaton matrx, Eq. 3.37, s nvarant under the transformaton α α + π, β β, γ γ π 19 cos γ cos β cos α sn γ sn α cos γ cos β sn α + sn γ cos α cos γ sn β sn γ cos β cos α cos γ sn α sn γ cos β sn α + cos γ cos α sn γ sn β sn β cos α sn β sn α cos β cos γ cos β cos α sn γ sn α cos γ cos β sn α + sn γ cos α cos γ sn β sn γ cos β cos α cos γ sn α sn γ cos β sn α + cos γ cos α sn γ sn β sn β cos α sn β sn α cos β cos γ cos β cos α sn γ sn α cos γ cos β sn α + sn γ cos α cos γ sn β sn γ cos β cos α cos γ sn α sn γ cos β sn α + cos γ cos α sn γ sn β. 2 sn β cos α sn β sn α cos β 3.5.2 a Fnd a vector perpendcular to the surface x 2 + y 2 + z 3 3 21 at the pont 1, 1, 1. The gven surface can be defned as the set of the pont satsfyng fr, where fr x 2 + y 2 + z 2 3. 22 Let s pck two nfntesmally close pont on the surface r and r + dr, then the followng must be satsfed fr + dr fr + dr fr dr fr. 23 Snce the nfntesmal vector dr can have any drecton defned on the surface, fr becomes the perpendcular vector to the surface. fr s gven by Unt vector parallel to the f1, 1, 1 can be found as fr 2xê x + 2yê y + 2zê z. 24 êx + ê y + ê z / 3. 25 b Derve the equaton of the plane tangent to the surface at 1, 1, 1 The plane shares the perpendcular unt vector wth the surface at 1, 1, 1. The functon defnng the plane s gven by gr a x + b y + c z d. 26 Employng the condton that the perpendcular vectors of each surfaces are parallel each other gves The condton g1, 1, 1 gves a b c 1. 27 d 3. 28

4 3.5.4 If a vector functon F depends on both space coordnate x, y, z and tme t, show that In general, df dr F + F dt. 29 t By replacng Y wth F and X wth x, y, z and t, we get dy dx Y X. 3 Ths can be rewrtten as F dx F x + dy F y + dz F z + dtf t dr F + F dt. 31 t 3.5.6 For a partcle movng n a crcular orbt r ê x r cos ωt + ê y r sn ωt: a Evaluate r ṙ, wth ṙ dr/dt v. df dr F + F dt. 32 t ṙ ê x rω sn ωt + ê y rω sn ωt. 33 b Show that r + ω 2 r wth r dv/dt. r ṙ ê z ωr 2. 34 3.5.8 Show, by dfferentatng components, that a r ω 2 ê x r cos ωt + ê y r sn ωt ω 2 r. 35 b d da A B dt dt B + A db dt. 36 d dt A B d dt A B da dt B db + A da dt dt B + A db dt. 37 d da A B dt dt B + A db dt. 38 [ ] d da j A B ɛ jk dt dt B db k k + ɛ jk A j dt [ da dt B + A db ]. 39 dt 3.5.12 Wth the ad of the result of Exercse 3.5.11, show that f two vectors a and b commute wth each other and wth L, that s, [a, b] [a, L] [b, L], show that

5 [a L, b L] a b L. 4 [a L, b L] [a L, b j L j ] a [L, b j L j ] a b [L, L j ] ɛ jk a b j L k a b L. 41 3.6.3 A rgd body s rotatng wth constant angular velocty ω. Show that the lnear velocty v s solenodal. Snce we treat a rgd body, we can assume that length of r s constant, whch s equvalent to By the defnton, the angular velocty s gven n form of By takng outer product on left and rght sdes of Eq. 43 wth r, we can get d dr r r 2r. 42 dt dt ω r dr dt. 43 r ω r r dr dr dt dt r2 dr dt r2. 44 Snce the norms of r and ω are constants, we can conclude that dr/dt s constant. Next, take outer product on left and rght sdes of Eq.43 after takng tme dervatve, whch gves We can rewrte ths equaton as 2 r 2 d2 r dt 2 r r d2 r dr r ω 2 dt 2 r dt r 4 r. 45 Snce r ω 2 /r 6 s constant, Eq. 46 becomes solenodal equaton. 3.6.6 As an alternatve to the vector dentty of Example 3.6.4, show that d 2 r ω 2 r dt2 r 6 r. 46 A B A B + B A + A B + B A. 47 The -th component of A B s Aj B j A j Bj + A j B j A j Bj B j A j + B j A j + A j B j A j B j + A j B j δ a δ jb δ ja δ b Bb a A j + B A + δ a δ jb δ ja δ b Ab a B j + A B ε jk ε abk B b a A j + A b a B j + B A + A B A B + B A + A B + B A 3.6.9 Verfy Eq. 3.7. 48 by drect expanson n Cartesan coordnates. V V V, 49

6 The -th component of V s gven by ε jk j ε klm l V m 3.6.15 Show that any of the equaton δ l δ jm δ jm δ m j l V m j V j j j V V V. 5 automatcally satsfes the vector Helmholtz equaton A k 2 A 51 and the solenodal condton 2 A + k 2 A, 52 Hnt Let operate on the frst equaton. Lke the Hnt suggests, take on left and rght sdes of Eq. 51 to get A. 53 Next, just expand the Eq. 51 to get k 2 A. 54 3.6.18 Usng the Paul matrxes σ of Eq. 2.28, show that A 2 A k 2 2 A k 2. 55 σ a σ b a b 12 + σ a b. 56 Here, a and b are ordnary vectors, and 1 2 s 2 2 unt matrx. Eq. 56 can be expended as σ ê x σ 1 + ê y σ 2 ê z σ 3, 57 σ a σ b a b j σ σ j. 58 One may need the followng property of Paul matrces. σ σ j 1 2 Enterng ths nto Eq. 58, one can get 1 σ σ j σ σ j + σ σ j σ σ j δj 1 2 + ε jk σ k. 59 2 3.1.12 - a a b j σ σ j a b 1 2 + ɛ jk σ k a b k. 6 v ω r ωρê z ê ρ ωρê φ. 61

7 b v 1 r ê ρ ρê ϕ ê z ρ ϕ z ρ ρω 2ωê z 2ω. 62 3.1.14- Vρ, ϕ 1 r ê ρ ρê ϕ ê z [ ρ ϕ z V ρ ρ, ϕ ρv ϕ ρ, ϕω 1 ê ρ ρ z ρv ρ + ê ϕ z V ρρ, ϕ + ê z ρ ρv ϕρ, ϕ ] ϕ V ρ 1 [ ρêz ρ ρv ϕ ] ϕ V ρ. 63 3.1.29 - We know that n sphercal coordnate system, the vector coordnate {x, y, z} becomes Combnng ths wth the Exercse 3.1.28, one can get x y y x {x, y, z} {cos ϕ sn θ, sn ϕ sn θ, cos θ}. 64 r sn 2 θ cos ϕ sn ϕ r + sn θ cos θ sn ϕ cos ϕ θ + cos2 ϕ ϕ r sn 2 θ cos ϕ sn ϕ r sn θ cos θ sn ϕ cos ϕ θ + sn2 ϕ ϕ ϕ. 65 3.1.3 - Agan, combnng Eq. 64 wth Exercse 3.1.28, we can get and L x r sn ϕ sn θ cos θ r sn ϕ sn2 θ θ r sn ϕ sn θ cos θ r sn ϕ cos2 θ cos ϕ cot θ θ ϕ sn ϕ + cos ϕ cot θ, 66 θ ϕ L y r sn θ cos θ cos ϕ r + cos2 θ cos ϕ θ cos ϕ sn ϕ cot θ θ ϕ sn ϕ cot θ ϕ r sn θ cos θ cos ϕ r + cos ϕ + sn2 θ θ 67 From these relatons, we can get 3.1.37 - ψ can be wrtten n sphercal coordnate system as L x ± L y e ϕ ± θ + cot θ. 68 ϕ From ths, we can get ψ p cos θ. 69 4πε r2

8 [ E ψ ê r r + ê 1 θ r θ + ê 1 ϕ r sn θ 5.1.1 - The bass of Hlbert space satsfy followng relaton ] ψ ϕ p 4πε r 3 [2ê r cos θ + ê θ sn θ]. 7 If there exst more than one seres of fx, we can say dxϕ mxϕ n x δ n,m. 71 fx a n ϕ n x b n ϕ n x. 72 n n By ntegratng above equaton n whole space after multplyng ϕ m x, we can get a m b m. 73 Snce ths volates the prevous assumpton, we can conclude there are only unque seres of fx. 5.1.4 - In vector notaton, F x can be rewrtten as F a n ϕ n. 74 n and a n can be determned by Then the mean square error becomes a n ϕ n F. 75 b [ F x a n 2 m c n ϕ n x] wxdx m [a n ϕ c n ϕ ] [a n ϕ n c n ϕ n ] + a n 2 ϕ n ϕ n n m a n c n 2 + n n>m n>m a n 2. 76 Ths can be mnmzed only f c n a n. 5.2.2 - L x u x, snce u x s normalzed already; By Gram-Schmdt scheme, L 1 x can be wrtten as dxe x 1. 77 L 1 x A 1 u 1 x u x u L 1, 78 where u L 1 dxe x x 1. 79

9 and A 1 s normalzed constant. By substtutng Eq. 79 nto Eq. 78 we get L 1 x have to be normalzed; L 1 x A 1 x 1. 8 dxe x [L 1 x] 2 A 1 2 dxe x x 2 2x + 1 1. 81 From ths, we can check A 1 1. L 2 x can be also calculated where L 2 x A 2 u 2 x u x u L 2 u 1 x u 1 L 2, 82 u L 2 u 1 L 2 dxe x x 2 2 dxe x x 2 x 1 4. 83 A 2 also can be found by normalzed process of L 2 x. From ths, we can conclude 1 dxe x x 2 4x + 2 2 4. 84 A 2 1 2. 85