Transitions, Overlaps. Spectroscopic Factors

Σχετικά έγγραφα
Space-Time Symmetries

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Fermion anticommutation relations

Three coupled amplitudes for the πη, K K and πη channels without data

EE512: Error Control Coding

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Matrix Hartree-Fock Equations for a Closed Shell System

Hartree-Fock Theory. Solving electronic structure problem on computers

Electronic structure and spectroscopy of HBr and HBr +

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Second Order RLC Filters

Srednicki Chapter 55

FORMULAS FOR STATISTICS 1

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Congruence Classes of Invertible Matrices of Order 3 over F 2

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Review: Molecules = + + = + + Start with the full Hamiltonian. Use the Born-Oppenheimer approximation

Numerical Analysis FMN011

3+1 Splitting of the Generalized Harmonic Equations

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Derivation of Optical-Bloch Equations

Some Microscopic Aspects of Double Beta Decay Nuclear Matrix Elements in IBM-2

Homework 3 Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

4.6 Autoregressive Moving Average Model ARMA(1,1)

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

( ) 2 and compare to M.

Wavelet based matrix compression for boundary integral equations on complex geometries

PARTIAL NOTES for 6.1 Trigonometric Identities

Other Test Constructions: Likelihood Ratio & Bayes Tests

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

6.3 Forecasting ARMA processes

Areas and Lengths in Polar Coordinates

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

2 Composition. Invertible Mappings

Math 6 SL Probability Distributions Practice Test Mark Scheme

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

Math221: HW# 1 solutions

1 String with massive end-points

Second Order Partial Differential Equations

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

Analytical Expression for Hessian

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

Assalamu `alaikum wr. wb.

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

The Spiral of Theodorus, Numerical Analysis, and Special Functions

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Spherical shell model

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Matrices and Determinants

Homomorphism in Intuitionistic Fuzzy Automata

Areas and Lengths in Polar Coordinates

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

The Hartree-Fock Equations

ECE 468: Digital Image Processing. Lecture 8

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Example Sheet 3 Solutions

Electronic Supplementary Information:

Tridiagonal matrices. Gérard MEURANT. October, 2008

6. MAXIMUM LIKELIHOOD ESTIMATION

Exercises to Statistics of Material Fatigue No. 5

Orbital angular momentum and the spherical harmonics

( ) = a(1)b( 2 ) c( N ) is a product of N orthonormal spatial


What happens when two or more waves overlap in a certain region of space at the same time?

Bounding Nonsplitting Enumeration Degrees

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Approximation of distance between locations on earth given by latitude and longitude

Solution Series 9. i=1 x i and i=1 x i.

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Parametrized Surfaces

Quantum Statistical Mechanics (equilibrium) solid state, magnetism black body radiation neutron stars molecules lasers, superuids, superconductors

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Solutions to Exercise Sheet 5

Inverse trigonometric functions & General Solution of Trigonometric Equations

CRASH COURSE IN PRECALCULUS

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Optimal Impartial Selection

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

ψ ( 1,2,...N ) = Aϕ ˆ σ j σ i χ j ψ ( 1,2,!N ) ψ ( 1,2,!N ) = 1 General Equations

Andreas Peters Regensburg Universtity

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

Reminders: linear functions

Trigonometric Formula Sheet

NN scattering formulations without partial-wave decomposition

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data

Transcript:

Transitions, Overlaps and Spectroscopic Factors A. Arriaga J. Carlson D. Kurath L. Lapikas T.-S. H. Lee L. E. Marcucci K. M. Nollett V. R. Pandharipande S. C. Pieper R. Schiavilla K. Varga R. B. Wiringa Pieper & Wiringa, Ann.Rev.Nucl.Part.Sci. 51, 53 (2002)

Hamiltonian H = K i + v ij + V ijk i i<j i<j<k K i = K CI i + K CSB i h2 4 [( 1 m p + 1 m n ) + ( 1 m p 1 m n )τ zi ] 2 i Argonne v 18 (AV18) v ij = v γ ij + vπ ij + v R ij = p v p (r ij )O p ij O p ij = [1, σ i σ j, S ij, L S, L 2, L 2 (σ i σ j ), (L S) 2 ] [1, τ i τ j ] + [1, σ i σ j, S ij, L S] [T ij, (τ iz + τ jz )] Urbana IX (UIX) V ijk = V 2πP ijk + V R ijk V 2πP ijk = A 2π {Xij, π Xik}τ π j τ k + i 4 [Xπ ij, Xik]τ π i τ j τ k cyc

Variational Monte Carlo E V = Ψ V H Ψ V Ψ V Ψ V E 0 Trial function Ψ V = [ 1 + U T NI ijk ] Ψ P Ψ P = [ S i<j i<j<k (1 + U ij ) ] Ψ J U ij = p=2,6 u p (r ij )O p ij ; U T NI ijk = ɛv ijk ( r ij, r jk, r ki ) s-shell nuclei [ ] Ψ J = f c (r ij ) Φ A (JMT T 3 ) i<j Φ α (0000) = A p p n n Functions f c (r ij ) and u p (r ij ) are obtained numerically from solution of coupled differential equations containing v ij

p-shell nuclei Ψ J = A i<j 4 4<l<m A f ss (r ij ) LS[n] Φ A (LS[n]JMT T 3 ) 1234 56...A = Φ α(0000) 1234 (β LS[n] k 4<l A f LS[n] sp (r kl ) ) } fpp LS[n] (r lm ) Φ A (LS[n]JMT T 3 ) 1234 56...A 4<l A φ LS[n] p (R αl ) { [Y m l 1 (Ω αl )] LML [χ l ( 1 2 m s)] SMS }JM [ν l( 1 2 t 3)] T T3 Permutation symmetry A [n] L (T, S) 6 [2] 0, 2 (1, 0), (0, 1) [11] 1 (1, 1), (0, 0) 7 [3] 1, 3 (1/2, 1/2) [21] 1, 2 (3/2, 1/2), (1/2, 3/2), (1/2, 1/2) [111] 0 (3/2, 3/2), (1/2, 1/2) 8 [4] 0, 2, 4 (0, 0) [31] 1, 2, 3 (1, 1), (1, 0), (0, 1) [22] 0, 2 (2, 0), (1, 1), (0, 2), (0, 0) [211] 1 (2, 1), (1, 2), (1, 1), (1, 0), (0, 1)

Diagonalization in β LS[n] basis to produce energy spectra E(Jx π ) and orthogonal excited states Ψ V (Jx π ) Expectation values Ψ V (R) is represented by a vector with 2 A ( A Z) spin-isospin components for each space configuration R = (r 1, r 2,..., r A ); Expectation values are given by summation over samples drawn from probability distribution W (R) = Ψ P (R) 2 : Ψ V O Ψ V Ψ V Ψ V = Ψ V (R)OΨ V (R) Ψ V / (R)Ψ V (R) W (R) W (R) Ψ Ψ is a dot product and Ψ OΨ a sparse matrix operation. Transition matrix elements Generate W from either initial or final state: Ψ f T Ψ i Ψ f Ψ i = Ψ f T Ψ i W / Ψf 2 W Ψi 2 W T may be a non-square matrix.

-20 Energy (MeV) -30-40 -50 0 + 4 He 1/2 α+n 3/2 α+2n 5 He 1 + 2 + 0 + 1 + 2 + 3 + 6 He 6 1 + Li α+d 5/2 1/2 3/2 6 He+n 7 He Argonne v 18 + UIX VMC Trial & GFMC Calculations 15 July 2004 6 He+2n 5/2 5/2 7/2 3/2 5/2 5/2 7/2 7 Li α+t 3/2 1/2 8 He 1 + 2 + 0 + 4 + 1 + 3 + 0 + 1 + 8 2 + Li 7 Li+n 8 Li+n 3 + 2 + 1 + 4 + 2 + 9 Li 7/2 3/2 5/2 1/2 3/2 8 Be+n 1/2 5/2-60 Ψ T GFMC α+α 8 Be 0 + 9 Be 3/2

APPLICATIONS F 2 T (q) = 1 F 2 L (q) = 1 2J i + 1 J=1 2J i + 1 J=0 J f T El J Electromagnetic form factors J f T J Coul (q) J i 2 (q) J i 2 + J f T Mag (q) J J i 2 6 Li(e,e) 6 Li 6 Li(e,e) 6 Li F L (q 2 ) IA IA+MEC Stanford (q 2 ) F T 2 10 4 10 5 10 6 IA IA+MEC Amsterdam Saskatoon Stanford 10 7 C0, C2 M1 10 4 0 1 2 3 4 q (fm 1 ) 10 8 0 1 2 3 4 q (fm 1 ) 6 Li(e,e ) 6 Li* (3 +,T=0) 6 Li(e,e ) 6 Li* (0 +,T=1) F L 2 (q 2) 10 4 IA IA+MEC Mainz Saskatoon Stanford (q 2 ) F T 2 10 4 10 5 IA IA+MEC Saskatoon Mainz 10 5 C2, C4 M1 10 6 10 6 0 1 2 3 4 q (fm 1 ) 10 7 0 1 2 3 4 q (fm 1 ) Wiringa & Schiavilla, Phys.Rev.Lett. 81, 4317 (1998)

APPLICATIONS Pion scattering Compute quadrupole transition densities for p and n: ρ t 2J f + 1 Ψ Jf M f 3 i δ(r r i )r2 E2 (r) = i Y 2 M (ˆr i ) 1+2t 3 τ(i) 2 J f M f J i 2M i M Ψ Ji M i 0.00 0.02 0.00 0.02 0.04 n=p 6 Li (0 + 3 + ) 7 Li ( 3 / 2 1 / 2 ) ρ E2 t 3 (fm 1 ) 0.00 0.02 0.04 0.06 0.00 0.02 0.04 n p 7 Li ( 3 / 2 7 / 2 ) 7 Li ( 3 / 2 5 / 2 ) 0 1 2 3 4 5 6 r (fm) B(E2 ) Experiment VMC p p n 6 Li(0 + 3 + ) 21.8±4.8 21.1±0.4 21.1±0.4 7 Li( 3 2 1 2 ) 7.59±0.1 5.7±0.1 16.5±0.3 7 Li( 3 2 7 2 ) 15.5±0.8 13.2±0.2 34.6±0.5 7 Li( 3 2 5 2 ) 4.1±2.0 2.3±0.1 5.4±0.2

Input to DWIA analysis of pion scattering: 6 Li(π,π) 6 Li 6 Li(π,π ) 6 Li 10 3 10 3 10 2 10 1 6Li(1 + ) 240 MeV π 6Li(3 + ) 240 MeV π 10 2 10 1 dσ/dω (mb/sr) 10 2 10 1 6 Li(1 + ) 180 MeV π 6 Li(3 + ) 180 MeV π 10 2 10 1 6 Li(1 + ) 100 MeV π 6 Li(3 + ) 100 MeV π 10 1 10 1 0 30 60 90 120 150 θ (deg) 0 30 60 90 120 150 180 10 1 Conventional shell-model prediction required enhancement factor E p = E n = 2.5 to fit data; no such factor needed with Ψ V. Lee & Kurath, Phys.Rev.C 21, 293 (1980)

π + (π ) scattering sensitive to p (n) transition strength: 7 Li(π,π ) 7 Li * @ 164 MeV π + 7 Li(5/2 ) p + n p only π 7 Li(5/2 ) p + n p only 10 4 10 4 dσ/dω (mb/sr) π + 7 Li(7/2 ) p + n p only π 7 Li(7/2 ) p + n p only π + 7 Li(1/2 ) p + n p only π 7 Li(1/2 ) p + n p only 0 30 60 90 120 150 θ (deg) 0 30 60 90 120 150 180 10 3 Conventional shell-model required different enhancement factors E p = 2.5, E n = 1.75 to fit data; again none needed with Ψ V. Lee & Wiringa, Phys.Rev.C 63, 014006 (2001)

APPLICATIONS 7 Li(e, e p) 6 He reaction Coulomb DWIA analysis using VMC overlap in momentum distribution: ρ(p m ) = e ipm r 6 He a(r) 7 Li dr 2 10-6 10-7 (x 10) ρ(p m ) [(MeV/c) -3 ] 10-8 10-9 10-10 10-11 3/2 - -> 0 + 3/2 - -> 2 + VMC: S=0.39 VMC: S=0.27 MFT: S=0.42(4) MFT: S=0.16(2) 10-12 -100 0 100 200 300 p m [MeV/c] Lapikás, Wesseling, & Wiringa, Phys.Rev.Lett. 82, 4404 (1999)

Cluster overlaps & spectroscopic factors Two-cluster overlap A ab (J a, J b, J, r ab ) = AΨ a (J a )Ψ b (J b ), r ab Ψ(J) = LM L,SM S LM L, SM S JM J J a M a, J b M b SM S R L (r ab )Y LML (ˆr ab ) Radial functions R L (r ab ) are evaluated in VMC calculation Momentum distribution N ab (k) = Ãab(J a, J b, J, k) 2 computed from Fourier transform of A ab Spectroscopic factor S ab (J a, J b, J) = = A 2 ab (J a, J b, J, r) d 3 r 1 (2π) 3 N ab (k) d 3 k

< 6 He(J + ) + p(p j ) 7 Li(3/2 - ) > 10 3 10 2 10 1 AV18/UIX (VMC) Spectroscopic Factor CK VMC Expt* 7 6 Li(p) - He(p) 1.00 1.00 6 + He(0 )+p(p3/2) 0.59 0.39 0.42(4) 6 + He(2 )+p(p3/2) 0.22 0.14 6 + 0.16(2) He(2 )+p(p1/2) 0.18 0.13 6 He + p total 0.99 0.66 0.58(5) N(k) (fm -1 ) 10-1 10-2 10-3 10-4 0 1 2 3 4 5 * Lapikas et al., PRL 82, 4404 (1999) k (fm -1 )

Sum rules for p-shell spectroscopic factors Fixed Center For single-nucleon pickup or knockout reactions J,j while in stripping reactions, J,j 2J A + 1 S(J A 1, j, J A ) N p 2J A 1 + 1 S(J A 1, j, J A ) N h where N p (N h) is the number of p-shell particles (holes) Translationally Invariant For Harmonic Oscillator wave functions S T I = A A 1 S F C assuming same HO parameter in s- and p-shells; similar modifcation to sum rules (known since 1970s)

Tests for 6 He + p 7 Li HO wave functions Ψ s (r i ) = exp[ α s (r i R A ) 2 ] Ψ p (r i ) = (r i R A )exp[ α p (r i R A ) 2 ] choose α s to give correct 4 He rms radius r p = r n = 1.47 fm A Z α s α p r p /r n S T I p 3/2 + p 1/2 7 Li(3/2-) 0.26 0.26 1.76/1.85 6 He(0+) 0.26 0.26 1.55/1.83 0.64(1) 6 He(2+) 0.26 0.26 1.55/1.83 0.26(1)+0.26(1) Total 1.16(1) 7 Li(3/2-) 0.26 0.11 2.22/2.47 6 He(0+) 0.26 0.11 1.60/2.44 0.59(1) 6 He(2+) 0.26 0.11 1.60/2.44 0.22(1)+0.22(1) Total 1.04(1) Woods-Saxon wave functions Single WS cannot produce both A=4,7 radii; TI/FC = 1.09 Double WS can produce both A=4,7 radii; TI/FC = 0.99

Fully correlated Ψ V and different Hamiltonians A Z H E(VMC) r p /r n S T I p 3/2 + p 1/2 7 Li(3/2-) AV1-101.5(2) 1.47/1.56 6 He(0+) -67.5(1) 1.31/1.64 0.62(1) 6 He(2+) -67.5(1) 1.31/1.64 0.24(1)+0.24(1) Total 1.10(2) 7 Li(3/2-) AV4-42.5(1) 2.32/2.48 6 He(0+) -31.0(1) 1.83/2.72 0.44(2) 6 He(2+) -29.0(1) 1.86/2.91 0.19(1)+0.19(1) Total 0.82(4) 7 Li(3/2-) AV18/UIX -33.1(1) 2.32/2.47 6 He(0+) -24.2(1) 1.96/2.95 0.39(1) 6 He(2+) -22.3(1) 1.98/3.19 0.14(1)+0.13(1) Total 0.66(2)

< 6 Li(J + ) + n(p j ) 7 Li(3/2 - ) > 10 3 10 2 AV18/UIX (VMC) Spectroscopic Factor CK VMC 2[ 7 Li(n) - 6 Li(n)] 2.00 2.00 6 Li(1 + ;0)+n(pj ) 0.72 0.68 6 Li(3 + ;0)+n(pj ) 0.55 0.41 N(k) (fm -1 ) 10 1 10-1 6 + Li(0 ;1)+n(pj ) 0.30 0.20 6 + Li(2 ;0)+n(pj ) 0.16 0.13 6 + Li(2 ;1)+n(pj ) 0.20 0.14 6 Li + n total 1.93 1.56 10-2 10-3 10-4 0 1 2 3 4 5 k (fm -1 )

Results Single-nucleon spectroscopic factors for A = 5 10 for AV18/UIX compared to N p and N h J + j J Pickup (J =gs) Stripping (J=gs) 4 He+n 5 He 6.07 / 6 = 101% 5 He+n 6 He 1.90 / 2 = 95% 5 He+p 6 Li 0.83 / 1 = 83% 6 He+n 7 He 4.25 / 4 = 106% 6 He+p 7 Li 0.71 / 1 = 71% 4.79 / 6 = 80% 6 Li +n 7 Li 1.57 / 2 = 79% 4.59 / 5 = 92% 7 He+n 8 He 3.83 / 4 = 96% 7 He+p 8 Li 0.86 / 1 = 86% 7 Li +n 8 Li 2.72 / 3 = 91% 3.66 / 4 = 91% 7 Li +p 8 Be 4.29 / 5 = 86% 8 He+n 9 He 2.04 / 2 = 102% 8 He+p 9 Li 0.73 / 1 = 73% 4.11 / 5.6 = 74% 8 Li +n 9 Li 3.46 / 4 = 87% 2.94 / 3 = 98% 8 Li +p 9 Be 1.53 / 2 = 77% 3.62 / 4.2 = 87% 8 Be+n 9 Be 2.50 / 3 = 83% 9 Be+p 10 B 2.07 / 3 = 69% 2.73 / 3.6 = 76% Stable A He+n unstable A+1 He no quenching Stable A He unstable A 1 He+n almost no quenching Pickup A Z much less bound A 1 Z-1+p lots of quenching Pickup A Z somewhat less bound A 1 Z+n moderate quenching

Cluster-cluster overlaps A αd A αt 0.6 0.4 0.2 0-0.2 0.3 0.2 0.1 0-0.1-0.2 6 + Li(1 ) L=0 6 + Li(1 ) L=2 (x10) 6 + Li(3 ) L=2 6 + Li(3 ) L=4 (x10) 7 - Li(3/2 ) 7 - Li(7/2 ) A αα 0.4 0.3 0.2 0.1 0-0.1-0.2 8 Be(0 + ) 8 Be(2 + ) 8 Be(4 + ) -0.3 0 2 4 6 8 r (fm)

Future prospects Paper on A = 5 10 VMC survey in preparation; will include CK factors for rare isotopes from Kurath. Incorporate A ab (J, j, J, r) overlaps into ptolemy code for direct reactions (Pieper). Utilize A ab (J, j, J, r) overlaps in coupled-channels reaction codes (Nunes). Explore relation between R-matrix reduced widths and spectroscopic factors (Schiffer & Nollett). Astrophysically interesting transitions such as 3 He(α, γ) 7 Li, 7 Be(ε) 7 Li, being studied (Marcucci, Nollett, Schiavilla,...).