Parameter Estimation of Stochastic Grammars with Probabilistic Logic Programs

Σχετικά έγγραφα
Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008

EM Baum-Welch. Step by Step the Baum-Welch Algorithm and its Application 2. HMM Baum-Welch. Baum-Welch. Baum-Welch Baum-Welch.

«ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ ΓΔΓΟΜΔΝΩΝ ΣΟΝ ΔΛΛΑΓΗΚΟ ΥΩΡΟ»

Η ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΟΡΦΟΛΟΓΙΚΩΝ ΔΙΑΔΙΚΑΣΙΩΝ ΤΗΣ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΤΗΣ ΣΥΝΘΕΣΗΣ ΥΠΟ ΤΟ ΠΡΙΣΜΑ ΤΩΝ ΑΠΣ: ΜΙΑ ΚΡΙΤΙΚΗ ΘΕΩΡΗΣΗ

Maxima SCORM. Algebraic Manipulations and Visualizing Graphs in SCORM contents by Maxima and Mashup Approach. Jia Yunpeng, 1 Takayuki Nagai, 2, 1

Buried Markov Model Pairwise

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2)

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Lecture 2. Soundness and completeness of propositional logic

derivation of the Laplacian from rectangular to spherical coordinates

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Homomorphism in Intuitionistic Fuzzy Automata

Models for Probabilistic Programs with an Adversary

2 Composition. Invertible Mappings

Detection and Recognition of Traffic Signal Using Machine Learning

CRASH COURSE IN PRECALCULUS

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

Areas and Lengths in Polar Coordinates

Formal Semantics. 1 Type Logic

HIV HIV HIV HIV AIDS 3 :.1 /-,**1 +332

Areas and Lengths in Polar Coordinates

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016

The Simply Typed Lambda Calculus

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Assalamu `alaikum wr. wb.

Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας

Other Test Constructions: Likelihood Ratio & Bayes Tests

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. «Θεσμικό Πλαίσιο Φωτοβολταïκών Συστημάτων- Βέλτιστη Απόδοση Μέσω Τρόπων Στήριξης»

ΙΕΥΘΥΝΤΗΣ: Καθηγητής Γ. ΧΡΥΣΟΛΟΥΡΗΣ Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ

Homework 3 Solutions

6.3 Forecasting ARMA processes

Statistical Inference I Locally most powerful tests

ST5224: Advanced Statistical Theory II

ΠΑΝΔΠΙΣΗΜΙΟ ΜΑΚΔΓΟΝΙΑ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΙΑΚΧΝ ΠΟΤΓΧΝ ΣΜΗΜΑΣΟ ΔΦΑΡΜΟΜΔΝΗ ΠΛΗΡΟΦΟΡΙΚΗ

IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

LAP 2013 Problems in formulating the consecution calculus of contraction less relevant logics

4.6 Autoregressive Moving Average Model ARMA(1,1)

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data

ΕΘΝΙΚΗ ΣΧΟΛΗ ΗΜΟΣΙΑΣ ΙΟΙΚΗΣΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ. του Γεράσιμου Τουλιάτου ΑΜ: 697

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Solution Series 9. i=1 x i and i=1 x i.

Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ ΥΓΕΙΑΣ "

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Δήµου Δράµας Παιδαγωγικό Τµήµα Νηπιαγωγών Τµήµα Επιστηµών Προσχολικής Αγωγής και Εκπαίδευσης Τµήµα Δηµοτικής Εκπαίδευσης του Πανεπιστηµίου Frederick

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΜΣ «ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΚΗΣ» ΚΑΤΕΥΘΥΝΣΗ «ΕΥΦΥΕΙΣ ΤΕΧΝΟΛΟΓΙΕΣ ΕΠΙΚΟΙΝΩΝΙΑΣ ΑΝΘΡΩΠΟΥ - ΥΠΟΛΟΓΙΣΤΗ»

C.S. 430 Assignment 6, Sample Solutions

Τμήμα Ψηφιακών Συστημάτων. Διπλωματική Εργασία

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

þÿ»» ± - ±»» ± - ½É¼ ½ ±Ã»

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH LEAN PRODUCTION TOOLS

EPL 603 TOPICS IN SOFTWARE ENGINEERING. Lab 5: Component Adaptation Environment (COPE)

Approximation of distance between locations on earth given by latitude and longitude

Second Order Partial Differential Equations

Tridiagonal matrices. Gérard MEURANT. October, 2008

ADVANCED STRUCTURAL MECHANICS

About these lecture notes. Simply Typed λ-calculus. Types

6.003: Signals and Systems. Modulation

Προβλήματα πρόσληψης της ορολογίας και θεωρίας στη μέση εκπαίδευση Καλλιόπη Πολυμέρου ΠΕΡΙΛΗΨΗ

Every set of first-order formulas is equivalent to an independent set

1530 ( ) 2014,54(12),, E (, 1, X ) [4],,, α, T α, β,, T β, c, P(T β 1 T α,α, β,c) 1 1,,X X F, X E F X E X F X F E X E 1 [1-2] , 2 : X X 1 X 2 ;

Solutions to Exercise Sheet 5

The Algorithm to Extract Characteristic Chord Progression Extended the Sequential Pattern Mining

Spherical Coordinates

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Numerical Analysis FMN011

Space-Time Symmetries

c Key words: cultivation of blood, two-sets blood culture, detection rate of germ Vol. 18 No

Ανάκτηση Πληροφορίας

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΗΣ ΙΣΧΥΟΣ

Διπλωματική Εργασία του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών

Stabilization of stock price prediction by cross entropy optimization

90 [, ] p Panel nested error structure) : Lagrange-multiple LM) Honda [3] LM ; King Wu, Baltagi, Chang Li [4] Moulton Randolph ANOVA) F p Panel,, p Z

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Χρειάζεται να φέρω μαζί μου τα πρωτότυπα έγγραφα ή τα αντίγραφα; Asking if you need to provide the original documents or copies Ποια είναι τα κριτήρια

Simplex Crossover for Real-coded Genetic Algolithms

Applying Markov Decision Processes to Role-playing Game

Abstract Storage Devices

Test Data Management in Practice

[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1

ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. ΘΕΜΑ: «ιερεύνηση της σχέσης µεταξύ φωνηµικής επίγνωσης και ορθογραφικής δεξιότητας σε παιδιά προσχολικής ηλικίας»

Math 6 SL Probability Distributions Practice Test Mark Scheme

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Concrete Mathematics Exercises from 30 September 2016

Τεχνολογία Ψυχαγωγικού Λογισμικού και Εικονικοί Κόσμοι Ενότητα 8η - Εικονικοί Κόσμοι και Πολιτιστικό Περιεχόμενο

Συντακτικές λειτουργίες

A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΑΙ ΤΗΣ ΑΓΩΓΗΣ ΣΤΗΝ ΠΡΟΣΧΟΛΙΚΗ ΗΛΙΚΙΑ ΜΕΤΑΠΤΥΧΙΑΚΟΣ ΚΥΚΛΟΣ ΣΠΟΥΔΩΝ

Lecture 34 Bootstrap confidence intervals

GPU. CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA. Parallelizing the Number Partitioning Problem for GPUs

Transcript:

人工知能学会研究会資料 SIG-FPAI-B502-20 Parameter Estimation of Stochastic Grammars with Probabilistic Logic Programs 1 1 1 Satoru Yamaguchi 1 Ryo Yoshinaka 1 Akihiro Yamamoto 1 1 1 Graduate School of Informatics, Kyoto University Abstract: We propose a parameter estimation method of stochastic grammars by utilizing elementary formal systems and probabilistic logic progarams. A stochastic grammar is a formal grammar where probabilisties are assigned to production rules. Stochastic context-free grammars are well-known because they are used for statistical parsing and predicting secondaty structures of RNA sequences. However, some natural language sentences and RNA sequences have more complicated structure than that expressed with context-free grammars. Our method can be applied to the class of phrase structure grammars. The advantage of our method is from using a kind of logic programs called elementary formal systems (EFSs) to express grammars. We extend them into probabilistic EFSs by assigning probabilities to each clause. We estimate those probabilities by utilizing a parameter estimation method of a kind of logic programs called probabilistic logic programs (PLPs). We convert a probabilistic EFS into an extended PLP and apply the parameter estimation method to the PLP. 1,,,. (Elementary Formal System, EFS) EFS, EFS (Probabilistic Logic Program, PLP) EFS EFS EFS, EFS,,. Cuturi 606-8501 E-mail: yamaguchi.satoru@iip.ist.i.kyoto-u.ac.jp, RNA [2][4]., Inside-Outside EM,,, (Multiple Context-Free Grammar), RNA.., RNA [5].,,, {a 2n n 1} {a n b n c n n 1},,., (Elementary Formal System, EFS) - 81 -

[6]. EFS EFS, EFS EFS, EFS [3]., EFS,, EFS, EFS 2 2.1 Σ Π Σ, Π Σ Π X. X. X Σ, 1. n p t 1,..., t n, p(t 1,..., t n ),,. h 1,..., h m, b 1,..., b n (m, n 0) h 1,..., h m : b 1,..., b n., h 1,..., h m, b 1,..., b n. : b 1,..., b n. h : b 1,..., b n.,.. Γ. (Σ, Π, Γ) (Elementary Formal System, EFS). 2.1. Γ, ({a, b, c}, {p, q}, Γ) EFS. p(xy Z) : q(x, Y, Z) (1) q(ax, by, cz) : q(x, Y, Z) (2) q(a, b, c) : (3) v 1,..., v n (n 0), t 1,..., t n, {v 1 /t 1,..., v n /t n }. t, θ, tθ t v i (i = 1,..., n) t i. a = p(t 1,..., t n ), aθ = p(t 1 θ,..., t n θ). c = h : b 1,..., b n, cθ = hθ : b 1 θ,..., b n θ. cθ, cθ c. Γ c, Γ c. 1. c Γ Γ c. 2. θ, Γ c Γ cθ. 3. Γ h : b 1,..., b n Γ b n : Γ h : b 1,..., b n 1. Γ c c Γ( EFS(Σ, Π, Γ)) EFS E = (Σ, Π, Γ) 1 p Π, L(E, p) = {t Σ + Γ p(t) : } Σ. L L(E, p) = L EFS E p, L EFS 2.2. 2.1 EFS E, L(E, p) = { a n b n c n n 1}. e, V (e) e h : b 1,..., b n V (h) V (b i ) (i = 1,..., n),, EFS (Σ, Π, Γ), Γ, EFS., V (h) n i=1 V (b i), Γ, EFS EFS EFS, EFS 1. EFS. a 1, a 2, a 1 θ = a 2 θ θ a 1, a 2. a 1, a 2, a 1, a 2 EFS E = (Σ, Π, Γ) g, E g, g i, c i θ (g i, c i, θ i ). 1. g 0 = g. 2. g i =: h 1,..., h k, i h 1 h:- b 1,..., b n,c i = h : b 1,..., b n θ i a 1 a, g i+1 = (b 1,..., b n, h 2,..., h k )θ i. ii, c i =, θ i = {} (g i, c i, θ i ). 3 g i =, c i =, θ i = {} (g i, c i, θ i ) - 82 -

(,, {}) 2.2 EFS, EFS C, Π Ψ. C, Π, Ψ.. X C, Π Ψ X.,.,, Xyz X y,z. [t 1,..., t n ] (n 0) [t 1,..., t n v] (n 1), t 1,..., t n, v s 1,..., s m, [t 1,..., t n [s 1,..., s n v]] [t 1,..., t n, s 1,..., s n v], [t 1,..., t n [s 1,..., s n ]] [t 1,..., t n, s 1,..., s n ].,. p(t 1,..., t n ). p n, t 1,..., t n.,, a, a \+a. a, \ + a. a,. h b 1,..., b n, h : b 1,..., b n h, b 1,..., b n.,., h.,. (Probabilistic Logic Program, PLP) D L. c L 0 1 w c, c = h : b 1,..., b n, w c :: h b 1,..., b n. 2.3. append([],x,x). append([h X],Y,[H Z]):-append(X,Y,Z). p(xyz):-append(x,yz,xyz), append(y,z,yz), q(x,y,z). 0.8::q([a X],[b Y],[c Z]):-q(X,Y,Z). 0.2::q([a,b,c]). v 1,..., v n (n 0), t 1,..., t n, {v 1 /t 1,..., v n /t n }. t, θ, tθ t v i (i = 1,..., n) t i. a = p(t 1,..., t n ), aθ aθ = p(t 1 θ,..., t n θ). a, aθ = a. l l = a, lθ = aθ, l = \ + a lθ = \ + aθ. c = h : b 1,..., b n, cθ cθ = hθ : b 1 θ,..., b n θ. cθ cθ c. Γ c, Γ c. 1. c Γ Γ c. 2. θ, Γ c Γ cθ. 3. Γ h : b 1,..., b n,b 1 Γ b n : Γ h : b 1,..., b n 1. 4. Γ h : b 1,..., b n,b 1 Γ b n : Γ h : b 1,..., b n 1. Γ c c Γ. PLP T = (D, L), L G T, G G T. T G { }{ } P (G T ) = w c (1 w c ). (4) cθ G cθ / G PLP T l. P (l T ) = P (G T ). (5) G G T,G D l PLP T, P (l). 2.3 PLP. PLP, PLP T = (D, L), p(i), L PLP, Deterministic Decompos- I = {i j j 1}, n j=1-83 -

able Negation Normal Form (d-dnnf) Knowledge Compilation [3]. d-dnnf, PLP T (Conjunctive Normal Form, CNF) d-dnnf, d-dnnf [3]., d-dnnf, d-dnnf, d-dnnf 3 Elementary Formal System 4 EFS EFS PLP, PLP EFS. EFS PLP., PLP EFS PLP, EFS PLP 1. 2. 3. ( ), EFS PLP EFS EFS. EFS EFS E = (Σ, Π, Γ), (Σ, Π, Γ, Ω, p 0 ) EFS. Ω 0 1, p 0 Γ 1. c Γ w c Ω. p Π Γ p, c Γ p w c = 1. w c c = h : b 1,..., b n w c :: h : b 1,..., b n 3.1. Γ,, ({a, b, c}, {p, q}, Γ, {1.0, 0.8, 0.2}, p) EFS. 1.0 :: p(xy Z) : q(x, Y, Z) (6) 0.8 :: q(ax, by, cz) : q(x, Y, Z) (7) 0.2 :: q(a, b, c) : (8) EFS E = (Σ, Π, Γ, Ω, p 0 ) Σ. EFS EFS. d = (g 1, c 1, θ 1 ),..., (g n, c n, θ n ) g E., d P (d) = { wc1 P ((g 2, c 2, θ 2 ),..., (g n, c n, θ n )) (if c 1 ) 1 (otherwise) g S g. g P (g) = d S g P (d) (9). Σ t P (t) = P (: p 0 (t)). 4.1 EFS, PLP,. 4.1. EFS aabbcc a PLP [a, a, b, b, c, c] [a]., EFS,, PLP, EFS PLP,,. append append([], Xs, Xs). (10) append([x Xs], Ys, [X, Zs]) : append(xs, Ys, Zs). (11) append(xs, Ys, Zs) Zs Xs Ys. 4.2. PEFS 0.7 :: p(xy Z) : q(x, Y ), r(z) (12) PLP, 0.7 :: p(xyz) : append(x, Yz, Xyz), append(y, Z, Yz),. q(x, Y), r(z) (13) - 84 -

4.2 EFS PLP. PLP 4.3. EFS p, p Γ p w c1 :: h 1 :. (14) w c2 :: h 2 : b 1, b 2. (15) w c3 :: h 3 : b 3. (16) c 1, c 2 c 3. PLP h 1 : choose p 1. (17) h 2 : b 1, b 2, choose p 2. (18) h 3 : b 3, choose p 3. (19) w c1 :: choose p 1. (20) w c2 /(1 w c1 ) :: choose p 2 : \ + choosep 1. (21) choose p 3 : \ + choosep 1, \ + choosep 2. (22), choose p i, p i,,. (20) (22), c i. (20), choose p 1 w c 1., (21) choose p 2, choose p 1. c 1 c 2. (22), choose p 3 choosep i,,. 4.4, p(xy) : q(x), r(y) EFS, p(abc) p(abc) : q(ab), r(c) p(abc) : q(a), r(bc), PLP, PLP. excl., PLP c, V (c) c v 1,..., v m, c h : b 1,..., b n, excl([v 1,..., v k ], [v k+1,..., v m ]) (23). {v 1,..., v k } V (c) (24) {v k+1,..., v m } V (c)\{v 1,..., v k } (25). excl c,. PLP CNF,, 4.5 EFS PLP, EFS,,,,, PLP,,.. PLP,.,,, EFS, c Γ p i - 85 -

,, append j [p, i, j]., (13) Γ p,. 0.7 :: p(xyz, C) : append(x, Y, Xy), append(xy, Z, Xyz), 4.6 q(x, Y, [[p, 3, 1] C]), r(z, [[p, 3, 2] C]), choose p 3 (C), excl([x, Y, Xy, Z], [Xyz, C]).. EFS c, clause P LP (c, C) C PLP,. 1., i,. ii, 2. append 3. choose p i. 4. 5., excl(l 1, l 2 )., l 1, l 2 EFS E = (Σ, Π, Γ, Ω, p 0 ) PLP T = (D, L) 1. D, L. 2. D (10) (11). 3. p Π. i i = 1,..., n, c p i Γ p i a L w c p i :: choose p i (C) : \+choosep 1 (C),..., \+choose p i 1 (C).. b D clause P LP (c p i, C)., w = w c p c p /(1 w i i c p w 1 c p ). i 1 PLP p 0 p 0, EFS t t p 0 (t) = p 0(t, []). PLP, EFS 5 (EFS) EFS, EFS EFS (PLP), PLP. EFS PLP., PLP [1] Adnan Darwiche: On the tractability of counting theory models and its application to belief revision and truth maintenance, Journal of Applied Non-Classical Logics 11(1-2): 11-34, (2001). [2] Rogin D. Dowell and Sean R. Eddy: Evaluation of several lightweight stochastic context-free grammars for RNA secondary structure prediction, BMC Bioinformatics, (2004). [3] Daan Fierens, Guy Van den Broeck, Joris Renkens, Dimitar Shterionov, Bernd Gutmann, Ingo Thon, Gerda Janssens and Luc De Raedt: Inference and learning in probabilistic logic programs using weighted Boolean formulas, Theory and Practice of Logic Programming, (2013). [4] Daniel Jurafsky, Chuck Wooters, Jonathan Segal, Andreas Stolcke, Eriv Fosler, Gary Tajchman and Nelson Morgan: Using a stochastic contextfree grammar as a language model for speech recognition, Acoustics, Speech, and Signal Processing, (1995). [5] Yuki Kato, Hiroyuki Seki, and Tadao Kasami: RNA Structure Prediction Including Pseudoknots Based on Stochastic Multiple Context-Free Grammar, Workshop on Probabilistic Modeling and Machine Learning in Structural and Systems Biology, (2006). [6],, :,, pp.133-159, (1999). - 86 -