Charmonium experimental overview

Σχετικά έγγραφα
Hadronic Tau Decays at BaBar

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

LIGHT UNFLAVORED MESONS (S = C = B = 0)

Light Hadrons and New Enhancements in J/ψ Decays at BESII

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Section 8.3 Trigonometric Equations

Belle Hawaii activities in Belle New particles in BES & Belle

Three coupled amplitudes for the πη, K K and πη channels without data

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Section 7.6 Double and Half Angle Formulas

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

4.6 Autoregressive Moving Average Model ARMA(1,1)

the total number of electrons passing through the lamp.

derivation of the Laplacian from rectangular to spherical coordinates

Numerical Analysis FMN011

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

The Simply Typed Lambda Calculus

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Matrices and Determinants

Math 6 SL Probability Distributions Practice Test Mark Scheme

2 Composition. Invertible Mappings

Areas and Lengths in Polar Coordinates

The challenges of non-stable predicates

Math221: HW# 1 solutions

EE512: Error Control Coding

CRASH COURSE IN PRECALCULUS

Models for Probabilistic Programs with an Adversary

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Approximation of distance between locations on earth given by latitude and longitude

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Example Sheet 3 Solutions

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

Finite Field Problems: Solutions

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

Second Order RLC Filters

Homework 3 Solutions

Large β 0 corrections to the energy levels and wave function at N 3 LO

Durbin-Levinson recursive method

Instruction Execution Times

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

Statistical Inference I Locally most powerful tests

Solar Neutrinos: Fluxes

PARTIAL NOTES for 6.1 Trigonometric Identities

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Every set of first-order formulas is equivalent to an independent set

LESSON 14 (ΜΑΘΗΜΑ ΔΕΚΑΤΕΣΣΕΡΑ) REF : 202/057/34-ADV. 18 February 2014

Nuclear Physics 5. Name: Date: 8 (1)

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is

[1] P Q. Fig. 3.1

Areas and Lengths in Polar Coordinates

PHOS π 0 analysis, for production, R AA, and Flow analysis, LHC11h

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

5.4 The Poisson Distribution.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Strain gauge and rosettes

Section 9.2 Polar Equations and Graphs

Baryon Studies. Dongliang Zhang (University of Michigan) Hadron2015, Jefferson Lab September 13-18, on behalf of ATLAS Collaboration

CE 530 Molecular Simulation

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

TMA4115 Matematikk 3

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Assalamu `alaikum wr. wb.

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Solutions to Exercise Sheet 5

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

e + e - physics in the tau charm energy region Part I Frederick A. Harris University of Hawaii Jan. 5, 2005

Partial Differential Equations in Biology The boundary element method. March 26, 2013

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä664

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Μηχανισμοί πρόβλεψης προσήμων σε προσημασμένα μοντέλα κοινωνικών δικτύων ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Μεταπτυχιακή διατριβή. Ανδρέας Παπαευσταθίου

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Lecture 21: Scattering and FGR

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

EE 570: Location and Navigation

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

10.7 Performance of Second-Order System (Unit Step Response)

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Srednicki Chapter 55

Lecture 26: Circular domains

Inverse trigonometric functions & General Solution of Trigonometric Equations

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Galatia SIL Keyboard Information

C.S. 430 Assignment 6, Sample Solutions

Other Test Constructions: Likelihood Ratio & Bayes Tests

Capacitors - Capacitance, Charge and Potential Difference

ST5224: Advanced Statistical Theory II

ΑΓΓΛΙΚΑ Ι. Ενότητα 7α: Impact of the Internet on Economic Education. Ζωή Κανταρίδου Τμήμα Εφαρμοσμένης Πληροφορικής

Αναερόβια Φυσική Κατάσταση

Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων

Transcript:

Charmonium experimental overview Stephen Lars Olsen Seoul National University Topical Seminar on Frontier of Particle Physics Hu Yu Village, Beijing CHINA August 27-28, 2010

outline Lecture1: History & the discovery of the bound charmonium states Yesterday Lecture 2: The non-charmonium, charmonium-like states & the future Today

Summary (lecture 1) The charmonium spectrum is strong evidence that hadrons are composed of spin=1/2 constituent particles All of the charmonium states below the M=2m D open charm threshold have been found Most of the above-threshold 1 -- states & the χ c2 have been identified The masses of the assigned states match theory predictions -variations are less than ~50 MeV Transitions between charmonium states are in reasonably good agreement with theoretical expectations

ψ(4415) ψ(4040) χ c2 ψ(4150) ψ 2m D 0

γ Transitions M1 transitions (Γ(keV)) Th. Expt J/ψ γ η c 2.4 1.6 ± 0.4 ψ γ η c 4.6 1.1 ± 0.2 ππ,η,π 0 γ e - E1 transitions Th. Expt 24 27 ± 4 29 27 ± 3 26 27 ± 3 313 426 ± 51 239 291 ± 48 114 110 + 19

Hadronic transitions ππ,η,π 0 γ ψ J/ψ +hadrons Γ exp (kev) ψ π + π J/ψ 88 ± 7 ψ η J/ψ 9 ± 1 ψ π 0 J/ψ 0.4±0.1 ππ, η, π 0 ψ J/ψ Ispin violation: ψ π 0 J/ψ ψ ππj/ψ ~1/200

Predictions for the ψ γ γ Γ exp (kev) th. Expt ψ π + π J/ψ ~80 55 ± 15 ψ γχ c1 77 70 ± 17 ψ γχ c0 213 172 ±30 ππ,η,π 0 γ e -

Can we find other abovethreshold states? ψ(4415) ψ(4040) χ c2 η c2 ψ(4150) ψ ψ c2 These 2 may be simpler 2m D 0

_ 2 -+ & 2 -- DD not allowed η c2 ψ c2 J = 2 P=-1 c q Spin=0 D 0 or D + D ψ c2 (or η c2 ) c c q J = L P = (-1) L For J = 2 P = (-1) 2 = +1 q c D Spin=0 D 0 or D - ψ c2 (η c2 ) DD violates parity

Lowest possibility is DD* (or D*D) J = 2 P=-1 c q Spin=0 D 0 or D + D ψ c2 (or η c2 ) c c q J = L + S P = (-1) L For J = 2, L=1 is OK P = (-1) 1 = -1 q c D* Spin=1 D* 0 or D* - ψ c2 (η c2 ) DD* doesn t violate parity

ψ c2 & η c2 are expected to be below m D +m D* threshold ψ(4415) ψ(4040) χ c2 ψ(4150) η c2 ψ c2 ψ m D + m D* 2m D

Belle: search for ψ c2 in B Kψ c2 K(π + π - J/ψ) Eichten et al: PRL 98, 162002 (2002) c_ c ψ c2 π + π - J/ψ?? B meson ψ π + π - J/ψ s_ q K ψ c2??? M(π + π - J/ψ)-M(J/ψ) Belle PRL 91, 262001 (2003)

X(3872) M X =3872.0±0.6 MeV Γ<2.3 MeV Belle PRL 91, 262001 (2003)

X 3872 is well established seen in 4 experiments 9.4σ 11.6σ CDF X(3872) D0 BaBar X(3872)

Is the X(3872) the ψ c2? Eichten et al: PRL 98, 162002 (2002) Bf(ψ c2 γχ c1 ) Bf(ψ c2 π + π - J/ψ) >5 Look for X γ χ c1, you should be flooded by events Eichten

Belle search for X(3872) γχ c1 3872 Belle PRL 91, 262001 (2003) Bf(ψ c2 γχ c1 ) Bf(ψ c2 π + π - J/ψ) <0.9 The X(3872) is not the ψ c2!!

If not ψ c2, what??? Look for other decay modes: X(3872) γ J/ψ? BaBar 2009: PRL 102, 132001 Belle 2010: Yes Agreement Yes X(3872) γ ψ? BaBar 2009: Belle 2010: Contradiction Yes No V. Bhardwaj QWG 2010

C(X 3872 )= + X 3872 γ J/ψ C = - C = - C(X 3872 ) must be (-) (-) = + if C(X 3872 ) is + : π + π - system in X 3872 π + π - J/ψ must come from ρ π + π - X 3872 C = - ρ π + π Belle agrees ρ π + π - lineshape CDF agrees C = - J/ψ M(π + π - ) M(π + π - )

0 -+?? p* ε r ρ ρ π + π L int J PC of X 3872 spin polarization vectors r r ( ε ) ρ ε p * J / ψ r J/ψ r X ε 3872 J /ψ p r * ε r ρ r ε J / ψ mutually perpendicular d dγ cosϑ μ sin 2 ϑ μ ϑr μ μ + d dγ cosϑ π 2 cos ϑ π ϑ π π + μ - ε J /ψ π - ε r ρ

Does the X(3872) J PC = 0 -+?? dγ 2 2 sin ψ sin ϑ d cosψd cosϑ 0 -+ r ε J /ψ p r * ε r ρ!!! No, the X(3872) cannot be 0 -+

Does the X(3872) J PC = 1 ++?? L int r r ( ) ε ε ε ρ J ψ X / r r ε X ε r ρ r ε J / ψ mutually perpendicular x K S=0 B X(3872) S x =0 ε r X ε J / ψ ε r r ρ

1 ++ fits well r ε J /ψ dγ sin dcosχd cosϑ μ 2 χsin 2 ϑ μ Belle Data ε r X ε r ρ

CDF angular correlation analysis Only 1 ++ or 2 -+ fit data PRL 98 132002 1 ++ no adj. params 2 -+ 2 adj. 2arams 1 -- O ++ 1 ++ fits well with no adjustable parameters 2 -+ looks like 1 ++ o i for, at least with current statistics α 0.6e 20

_ a 1 ++ cc state for the X 3872? set by: Mχ c2 =3930 MeV Mass is too low? 3872 vs 3905 MeV χ c1 Γ(χ c1 γψ ) ~180 kev Γ(χ c1 γ J/ψ) ~14 kev T.Barnes et al PRD 72, 054026 Γ(γ ψ )/Γ( γ J/ψ)>>1 Γ π+π J/ψ =(3.4±1.2) Γ γj/ψ ~45 kev huge for Isospin-violating deca c.f.: Γ(ψ π 0 J/ψ) 0.4 kev

_ a 2 -+ cc state for the X 3872? set by: Mψ =3770 MeV Mass is too high? 3872 vs 3837 MeV T.J. Burns et al arxiv:1008.0018 η c2 Γ(η c2 γψ ) ~0.4 kev Γ(η c2 γ J/ψ) ~9 kev Y. Jia et al arxiv:1007.4541 Γ(η c2 γψ )/Γ(η c2 γ J/ψ)<<1 Γ π+π J/ψ =(3.4±1.2) Γ γj/ψ ~30 kev huge for Ispin-violating decay c.f.: Γ(ψ π 0 J/ψ) 0.4 kev B Kη c2 violates factorization B Kh c not seen B Kχ c2 barely seen η c2 DD* expected to be tiny Y. Kalasnakova et al arxiv:1008.2895 Belle & BaBar: Γ(X DD )/Γ(X ππj/ψ)=9.5±3.1

If not charmonium, what is it?

CDF X(3872) π + π J/ψ Mass recent results ~6000 events! arxiv:0906.5218 M X = 3871.61 ± 0.16 ± 0.19 MeV

M X(3872) M D 0 +M D* 0 <M X >= 3871.46 ± 0.19 MeV new Belle meas. new CDF meas. M D0 + M D*0 3871.8±0.4 MeV δm = -0.35 ± 0.41 MeV

X(3872) looks like a D 0 D* 0 molecule N. Tornqvist Z. Phys C 61, 525 (1994) predicted by Tornqvist in 1994, requires: J PC = 1 ++ or 0 -+

States near 3940 MeV

Search for other states in B K π + π - π 0 J/ψ decays B meson c_ c π + π 0 π J/ψ s_ q K ω π + π π 0

M(ω J/ψ) unexpected peak at 3940 MeV Y(3940) Y 3940 π + π π 0 J/ψ?? ω M=3940 ± 11 MeV Γ= 92 ± 24 MeV S.-K. Choi et al (Belle) PRL94, 182002 (2005)

Y(3940) confirmed by BaBar B ± K ± ωj/ψ B 0 K S ωj/ψ Μ(ωJ/ψ) ratio PRL 101, 082001 Some discrepancy in M & Γ; general features agree

Belle-BaBar direct comparison 492fb -1 Same binning (Belle published result : 253 fb -1 ) Belle will update with the complete ϒ(4S) date set later this Fall

Does Y(3940) DD*? _ B KDD* _ 3940 MeV 3940 MeV No signal:

Study e + e - J/ψ + anything detected J/ψ J/ψ recoil system is undetected e + e - Recoil Mass: M 2 recoil = ( E cm E J / ψ ) ( p J / ψ ) r 2

_ σ(e + e - J/ψ+cc) unexpectedly big Unexpected peak at 3940 MeV e + e - J/ψ+η c

Use partial reconstruction to study X 3940 DD or DD* J/ψ reconstruct these e + e - _ D (or D*) _ D (or D*) _ Recoil D ( * ) undetected _ (inferred from kinematics) M D (*) 2 2 = ( Ecm EJ / ψ E (*) ) ( pj / + p (*) ) D ψ D r r

_ X(3940) DD* is large 3940 MeV _ e + e - J/ψ + DD* M = 3942 +7 ± 6 MeV Γ tot = 37 +26 ±12 MeV _ -6-15 Nsig =52 +24 ± -16 arxiv:0708.3812 PRL 98, 802001 (2007) Bg subtracted

Use partial reconstruction to search for X(3940) ωj/ψ J/ψ reconstruct these e + e - π π π ω 3π 3940 MeV J/ψ no signal: Recoil J/ψ undetected (inferred from kinematics)

X 3940 & Y 3940 are not the same from: _ e + e - J/ψ DD* & J/ψ ωj/ψ from: B K ωj/ψ & _ KDD*

_ M(D*D*) has a peak too _ e + e - J/ψ D* D* _ M = 4156 +25 ± 15 MeV -20 Γ tot = 139 +111 ± -61 Nsig =24 +12-8 arxiv:0708.3812 ± 11evts It has to have C=+; most likely 0 -+

_ cc assignments for X(3940), Y(3915) & X(4160)? η c 3940MeV η c χ c0 4160MeV 3915MeV Y(3915) = χ co? Γ(ωJ/ψ) too large? X(3940) = η c? mass too low? X(4160) = η c? mass too high? X(4160) = η c? mass much too low?

1 -- states seen via radiative return initial-state-radiation photon: γ ISR k γ E cm E 1 -- if k γ = 3.8~4.5 GeV, E = 3~5GeV

Radiative return γ B-factory energies ss cc bb 10.58 GeV 3~5 GeV E cm (GeV)

e + e - γ isr Y(4260) at BaBar π + π - J/ψ BaBar PRL95, 142001 (2005) 233 fb -1 fitted values: M=4259 ± 8 +2 MeV Γ = 88 ± 23 +6-9 -6 MeV Y(4260) ~50pb

(4260) confirmed by Belle M=4247 ± 12 +17 MeV -32 Γ = 108 ± 19 ±10 MeV BaBar values: M=4259 ± 8 +2 MeV Γ = 88 ± 23 +6-9 -6 MeV M=4008 ± 40 +114 MeV -28 Γ = 226 ± 44 ±87 MeV??? C.Z Yuan et al (Belle) PRL 99, 182004

Not seen in e + e - hadrons J.Z.Bai et al (BES), PRL 88, 101802 (2006) σ(e+e- hadrons) σ(e+e- μ+μ-) 4260 No sign of Y(4260) D ( * ) D ( * ) σ peak (Y(4260) π + π J/ψ) 50 pb ~3nb BES data Huge by charmonium standards Γ(Y 4260 π + π J/ψ) > 1.6MeV @ 90% CL X.H. Mo et al, PL B640, 182 (2006)

cc assignment for the Y(4260)?? only unfilled 1 - - state left 3 3 D 1 4260MeV Y(4260) = 3 3 D 1? mass too low & Γ(π + π J/ψ) too large

another peak in e + e - γ ISR π + π - ψ e + e - γ ISR π + π - ψ 2 Events / 50MeV/c 10 BaBar Data Y(4260) + BKG New resonance + BKG BKG (non-ψ(2s)) M=4324 ± 24 MeV Γ = 172 ± 33 MeV 5 4 4.5 5 5.5-2 m(2(π + π )J/ψ) (GeV/c ) Peak is 4324 MeV, distinct from 4260 MeV

4325 MeV π + π ψ peak in Belle Two peaks! (both relatively narrow) (& neither consistent with 4260) M=4361 ± 9 ±9 MeV Γ = 74 ± 15 ±10 MeV 4260 M=4664 ± 11 ±5 MeV Γ = 48 ± 15 ±3 MeV BaBar values M=4324 ± 24 MeV Γ = 172 ± 33 MeV X.L. Wang et al (Belle) PRL 99, 142002 (2007) 548 fb -1

At least three peaks for only one empty level 4664MeV 4260MeV 3 3 D 1 4361MeV

exclusive e + e - γ ISR D ( * ) D ( * ) channels

DD DD * D * D * DD π Sum of all exclusive contributions DD * π Λ + c Λ c Phi to Psi 2009 Only small room for unaccounted contributions Charm strange final states Limited inclusive data above 4.5 GeV Galina Pakhlova Charm baryons final states

Experiment for BES III?: Search for other Y(4260) modes Scan the 4260 ± 100 MeV region & measure dominant channels to ± 1% DD * D * D * σ 2nb 4 Nevts 10 1 dtlum = = 50 pb / 3 s effic 2 10 pb 0.1 20 points ~1 year of BES III data taking pt

The Z(4430) + π + ψ smoking gun for a four quark meson? ψ B 0 Z +? Ḵ B 0

B K ± π m ψ (in Belle)?? M 2 (π + ψ ) K*(1430) K + π -? K*(890) K + π - M 2 (K + π - )

The Z(4430) ± π ± ψ peak B K π + ψ M(Κπ ) GeV Z(4430) M(π ± ψ ) GeV M 2 (π ± ψ ) GeV 2 M 2 (Κπ ) GeV 2 K* Veto

Shows up in all data subsamples

Could the Z + (4430) be due to a reflection from the Kπ channel?

Cos θ π vs M 2 (πψ ) θ π π ψ K 22 GeV 2 +1.0 (4.43) 2 GeV 2 0.25 cosθ π M 2 (πψ ) 16 GeV 2-1.0 M (πψ ) & cosθ π are tightly correlated; a peak in cosθ π peak in M(πψ )

S- P- & D-waves cannot make a peak (+ nothing else) at cosθ π 0.25 not without introducing other, even more dramatic features at other cosθ π (i.e., other M πψ ) values.

HW θ π π ψ K Compute the relation between cosθ π and M 2 (πψ )

But

BaBar doesn t see a significant Z(4430) + For the fit equivalent to the Belle analysis we obtain mass & width values that are consistent with theirs, but only ~1.9σ from zero; fixing mass and width increases this to only ~3.1σ. Belle PRL: (4.1±1.0±1.4)x10-5

Reanalysis of Belle s B Kπψ data using Dalitz Plot techniques

2-body isobar model for Kπψ Our default model K*ψ κψ Β K 2 *ψ Kπψ K*(890)ψ K*(1410)ψ K 0 *(1430)ψ KZ + K 2 *(1430)ψ K*(1680)ψ KZ +

Results with no KZ + term 1 2 12 3 4 5 C B 3 4 A A B 5 fit CL=0.1% C 51

Results with a KZ + term 1 2 3 4 1 2 3 4 5 C A B B C 5 A fit CL=36%

Compare with PRL results K* veto applied With Z(4430) Signif: 6.4σ Published results Without Z(4430) Mass & significance similar, width & errors are larger BaBar: Belle: = (3.2 +1.8+9.6 )x10 0.9-1.6-5 No big contradiction

Variations of the model Z(4430) + significance Others: Blatt f-f term 0 r=1.6fm 4fm; Z + spin J=0 J=1; incl K* in the bkg fcn

HW Devise strategies to determine J P of the Z(4430) + π J P =0 - J P =?? Z + B Spin=0 J P =0 - Κ ψ J P =1 - Are any J P values immediately ruled out? Can we use parity conservation? For which decays?

The Z 1 (4050) + & Z 2 (4250) + π + χ c1 peaks R. Mizuk et al (Belle), PRD 78,072004 (2008)

Dalitz analysis of B 0 K - π + χ c1 ΔE GeV Γ K*(890) K*(1400) s K*(1680) K3 *(1780) M(J/ψγ) GeV???

B Kπχ c1 Dalitz-plot analyses Default Model Β K*χ c1 K 2 *χ c1 Kπχ c1 κχ c1 K*(890)χ c1 K*(1410)χ c1 KZ + K 0 *(1430)χ c1 K 2 *(1430)χ c1 K*(1680)χ c1 K 3 *(1780)χ c1 KZ +

Fit model: all low-lying K* s (no Z + state) a b c d g f e a b e f c d g C.L.=3 10-10

Fit model: all K* s + one Z + state a b c d g f e a b e f c d g C.L.=0.1%

Are there two????? a b c d

Fit model: all K* s + two Z + states a b c d g f e a b e f c d g C.L.=42%

Two Z-states give best fit Projection with K* veto

Systematics of B 0 K - π + χ c1 fit M=1.04 GeV; G=0.26 GeV Significance of Z 1 (4050) + and Z 2 (4250) + is high. Fit assumes J Z1 =0, J Z2 =0; no signif. improvement for J Z1 =1 &/or J Z2 =1.

Z states cannot be charmonium u c c ud Need confirmation from other experiments (CDF? D0?)

Are there XYZ counterparts in the b- and s-quark sectors? What about here? 233 fb -1 Y(4260)

b-quark threshold region

Belle: Γ(ϒ(4S) π + π - ϒ(1S)) 477 fb -1 ϒ(4S) ϒ(1S) π + π 2S 3S 52±10 4S N(ϒ 4S ) N(π + π - ϒ 1S ) B(Y 4S ππϒ 1S ) Γ(Y 4S ππϒ 1S ) Γ theory 535x10 6 52±10 9 ± 2 x10-5 1.75 ± 0.35 kev 1.47±0.03 kev

Belle: Γ(ϒ 5S π + π ϒ 1S ) 2 Entries / 0.010 GeV/c 250 200 150 100 50 0 23.6 fb -1 + - (a) μμππ candidates in Υ(1S) μ μ region 325±20 evts! 0.4 0.6 0.8 1 1.2 1.4 2 ΔM = M(μμππ)-M(μμ) (GeV/c ) 1/20 th the data & 1/10 th the cross-section >6 times as many events!! K.F. Chen et al (Belle) PRL 100, 112001 (2008)

Partial Widths Assuming the source is the ϒ(5S) PDG value taken for ϒ(nS) properties N.B. Resonance cross section 0.302 ± 0.015 nb at 10.87 GeV PRD 98, 052001 (2007) [Belle] >300 times bigger than that for the ϒ 4S!! c.f. ϒ(2S) ϒ(1S)π + π ϒ(3S) ϒ(4S) ~ 6 kev 0.9 kev 1.8 kev

Are these events from the ϒ 5S? σ(e+e- π + π ϒ ns ) from a cm energy scan ϒ 5S peak position K.F. Chen et al (Belle) arxiv: 0810.3829 PDG(ϒ 5S ): Fitted parameters

Peak & width in π + π - ϒ(nS) different from ϒ(5S) &ϒ(6S) Simplest interpretation: b-quark-sector equivalent to the c-quark-sector s Y(4260) e + e - π + π Y(nS) e + e - hadrons

Y(4260) equivalent with s-quarks? e+e- γ f 0 (980)φ σ(e + e - π + π φ(1020)) Y(2175) f 0 (980)φ BaBar f 0 (980) π + π - M(f 0 (980)φ) BaBar, PRD 74, 091103

Confirmed by BES & Belle confirmed by BESII in J/ψ η φ f 0 (980) σ(e + e - f 0 (980)φ(1020)) BES Belle M(f 0 (980)φ GeV C.P.Shen et al (Belle) arxiv: 0808.0006 M.Ablikim et al (BES) PRL 100, 102003 (2008)

The XYZ mesons

Concluding remarks Charmonium mesons are strong evidence for quarks All the lowest-lying charmonium states have been found Good agreement between their measured properties & theory Charmonium is the best understood hadronic system Higher-mass charmonium meson searches have produced surprizes A number of non-charmonium meson candidates have been found. They have strong transitions to ordinary charmonium states Corresponding states sem to exist in the b-qyark & s-quark sectors Most of the new states are in the BEPC-II E cm range We have to figure out how to access them (& find new ones) So far only final states with a J/ψ or ψ have been studied e.g., final states with an η c or a h c may be interesting Lots of opportunities for BES III Need creativity and new ideas

Thank You 감사합니다