Solvability of Brinkman-Forchheimer equations of flow in double-diffusive convection

Σχετικά έγγραφα
Example Sheet 3 Solutions

Uniform Convergence of Fourier Series Michael Taylor

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

2 Composition. Invertible Mappings

ST5224: Advanced Statistical Theory II

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

C.S. 430 Assignment 6, Sample Solutions

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Inverse trigonometric functions & General Solution of Trigonometric Equations

Reminders: linear functions

Homework 3 Solutions

The Pohozaev identity for the fractional Laplacian

Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Statistical Inference I Locally most powerful tests

Section 7.6 Double and Half Angle Formulas

Partial Differential Equations in Biology The boundary element method. March 26, 2013

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Section 8.3 Trigonometric Equations

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Numerical Analysis FMN011

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Math221: HW# 1 solutions

derivation of the Laplacian from rectangular to spherical coordinates

12. Radon-Nikodym Theorem

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Srednicki Chapter 55

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

EE512: Error Control Coding

The Simply Typed Lambda Calculus

( y) Partial Differential Equations

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Matrices and Determinants

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Finite Field Problems: Solutions

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

PULLBACK D-ATTRACTORS FOR THE NON-AUTONOMOUS NEWTON-BOUSSINESQ EQUATION IN TWO-DIMENSIONAL BOUNDED DOMAIN. Xue-Li Song.

5. Choice under Uncertainty

Fractional Colorings and Zykov Products of graphs

6.3 Forecasting ARMA processes

A Note on Intuitionistic Fuzzy. Equivalence Relation

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

The challenges of non-stable predicates

Lecture 34 Bootstrap confidence intervals

Other Test Constructions: Likelihood Ratio & Bayes Tests

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

D Alembert s Solution to the Wave Equation

Parametrized Surfaces

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Every set of first-order formulas is equivalent to an independent set

Areas and Lengths in Polar Coordinates

CRASH COURSE IN PRECALCULUS

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

4.6 Autoregressive Moving Average Model ARMA(1,1)

Homework 8 Model Solution Section

MA 342N Assignment 1 Due 24 February 2016

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Quadratic Expressions

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Congruence Classes of Invertible Matrices of Order 3 over F 2

Solutions to Exercise Sheet 5

Areas and Lengths in Polar Coordinates

Space-Time Symmetries

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

Second Order Partial Differential Equations

Solution Series 9. i=1 x i and i=1 x i.

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Approximation of distance between locations on earth given by latitude and longitude

1 String with massive end-points

STABILITY FOR RAYLEIGH-BENARD CONVECTIVE SOLUTIONS OF THE BOLTZMANN EQUATION

1. Introduction and Preliminaries.

EXISTENCE OF POSITIVE SOLUTIONS FOR SINGULAR FRACTIONAL DIFFERENTIAL EQUATIONS

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y

w o = R 1 p. (1) R = p =. = 1

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

Lecture 13 - Root Space Decomposition II

Lecture 2. Soundness and completeness of propositional logic

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

SOME PROPERTIES OF FUZZY REAL NUMBERS

PARTIAL NOTES for 6.1 Trigonometric Identities

Research Article Existence of Positive Solutions for m-point Boundary Value Problems on Time Scales

The semiclassical Garding inequality

Derivation of Optical-Bloch Equations

POSITIVE SOLUTIONS FOR A FUNCTIONAL DELAY SECOND-ORDER THREE-POINT BOUNDARY-VALUE PROBLEM

F19MC2 Solutions 9 Complex Analysis

Transcript:

Solvability of Brinkman-Forchheimer equations of flow in double-diffusive convection Mitsuharu ÔTANI Waseda University, Tokyo, JAPAN One Forum, Two Cities: Aspect of Nonlinear PDEs 29 August, 211 Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 1 / 46

Introduction (BF) Double-difusive convection flow based upon Brinkman-Forchheimer equations u t = ν u u u au p + gt + hc + f 1 in {t > }, T t + u T = T + f 2 in {t > }, C t + u C = C + ρ T + f 3 in {t > }, (BF) (π) u = in {t > }, u = ; T = ; C =, u t= = u (x) ; T t= = T (x) ; C t= = C (x), (u() = u(s ) ; T() = T(S ) ; C() = C(S ), ) u(x, t) : solenoidal velocity of the fluid, T(x, t) : temperature, u t = u t, T t = T t, C t = C t, C(x, t) : concentration of solute (salt for oceanography( ) ), p(x, t) : pressure, g, h, ρ, a : constant vector term derived from gravity, Soret coefficient, and Darcy coefficient R N : bounded domain, f 1, f 2, f 3 : external forces Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 2 / 46

Introduction Navier-Stokes Equations (NS) (π) u t = ν u u u p + f( t ) in {t > }, u = in {t > }, u = u t= = u (x), (u() = u(s )) u(x, t) : solenoidal velocity of the fluid, p(x, t) : pressure. u t = u t, Known Results (NS) N = 2 : unique global solution (NS) N = 3 : unique local solution, unique global small solution (NS) π N = 2 : S periodic solution for any f L 2 (, S ; L 2 ()) (NS) π N = 3 : S periodic solution for small f L 2 (, S ; L 2 ()) Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 3 / 46

Main Results Theorem 1 Main Results For all N 3 and for any u H 1 σ(), T, C H 1(), f 1 Lloc 2 ([, ); L2 ()), f 2, f 3 Lloc 2 ([, ); L2 ()), (BF) has a unique (global) solution U = (u, T, C) t satisfying u t, Au L 2 (, S ; L 2 σ()), where A : Stokes Operator T t, C t, T, C L 2 (, S ; L 2 ()), u C([, S ]; H 1 σ()), T, C C([, S ]; H 1 ()) S (, ). Theorem 2 For all N 3 and for any f 1 L 2 (, S ; L 2 ()), f 2, f 3 L 2 (, S ; L 2 ()), (BF) π has a S -periodic solution U = (u, T, C) t satisfying u t, Au L 2 (, S ; L 2 σ()), where A : Stokes Operator T t, C t, T, C L 2 (, S ; L 2 ()), u C([, S ]; H 1 σ()), T, C C([, S ]; H 1()). Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 4 / 46

Proof of Teorem 1 Preliminaries Proof of Theorem 1 Local Existence Reduce our problem to an abstract Cauchy Problem. Apply an abstract Theorem ( Ô, JDE 1982) to the problem. Existence of Global Solution in time Establish some a priori estimates. Uniquness of the Solution Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 5 / 46

Proof of Teorem 1 Preliminaries Function Spaces C σ () = { u = (u 1, u 2,..., u N ); u j C (), j = 1, 2,..., N, u = }, L 2 σ() = the completion of C σ () under the L 2 ()-norm, L 2 () = (L 2 ()) N, H j () = (H j ()) N, ( j = 1, 2) P = the orthogonal projection from L 2 () onto L 2 σ(), H 1 () = the completion of C () under the H1 ()-norm, H 1 σ() = H 1 () L 2 σ(), The Stokes operator A() is defined as follows: A() = P with domain D(A()) = H 2 () H 1 σ(). Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 6 / 46

Proof of Teorem 1 Abstract Formulation Reduction to an abstract Cauchy Problem (BF) u t = ν u au p + gt + hc in {t > }, T t + u T = T in {t > }, C t + u C = C + ρ T in {t > }. Operate P to u t = ν u au p + gt + hc, then we have u t = ν P u au + PgT + PhC and take u ν P u au PgT PhC U = T, φ(u) = T, B(U) = u T C C u C ρ T Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 7 / 46

Proof of Teorem 1 Abstract Formulation Reduction (CP) du + φ(u(t)) + B(U(t)) = t (, T) dt U() = U = (u, T, C ) t inner product H() = L 2 σ() L 2 () L 2 () (U 1, U 2 ) H = (u 1, u 2 ) L 2 σ + (T 1, T 2 ) L 2 + 1 3ρ 2 (C 1, C 2 ) L 2 φ(u) = ν 2 u 2 + 1 L 2 σ 2 T 2 L + 1 2 6ρ 2 C 2 L if U D(φ) 2 + if U H \ D(φ) D(φ) = H 1 σ() H 1 () H1 () Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 8 / 46

Proof of Teorem 1 Abstract Result Local Solvability Theorem (M.Ô, 1982(JDE)) Assume (A.1) For each L (, + ), the set {U H; φ(u) + U 2 H L} is compact in H, (A.2) B( ) is φ demiclosed: If U k U in C([, S ]; H) and φ(u k ) φ(u), B(U k ) b weakly in L 2 (, S ; H), then b = B(U) holds. (A.3) monotone increasing function l( ), a( ) L 2 (, S ), k (, 1) s.t. B(U) 2 H k φ(u) 2 H + l(φ(u) + U 2 H ) c(t), t [, S ], U D( φ), Let U D(φ) and f (t) L 2 (, S ; H), then there exists S (, S ) such that du (CP) + φ(u(t)) + B(U(t)) = f (t), U() = U has a local solution U(t) dt on [, S ] satisfying U C([, S ]; H), U t, φ(u) L 2 (, S ; H) Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 9 / 46

Proof of Teorem 1 Local Existence Check of (A.1) {U H; φ(u) + U 2 H L} = {u H; ν 2 u 2 L 2 + 1 2 T 2 L 2 + 1 6ρ 2 C 2 L 2 + u 2 L 2 + T 2 L 2 + 1 3ρ 2 C 2 L 2 L} From Rellich-Kondrachev s theorem, the level set is compact in H() = L 2 σ() L 2 () L 2 (). Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 1 / 46

Proof of Teorem 1 Local Existence Assume Check of (A.2) 1/3 u k u in C([, S ]; L 2 σ()), T k T in C([, S ]; L 2 ()), C k C in C([, S ]; L 2 ()), ν P u k ν P u in L 2 (, S ; L 2 σ()), T k T in L 2 (, S ; L 2 ()), C k C in L 2 (, S ; L 2 ()). Let h 1, h 2, h 3 be weak limit as au k PgT k PhC k h 1 in L 2 (, S ; L 2 σ()), u k T k h 2 in L 2 (, S ; L 2 ()), u k C k ρ T k h 3 in L 2 (, S ; L 2 ()). Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 11 / 46

Proof of Teorem 1 Local Existence Check of (A.2) 2/3 then we have to show h 1 = au PgT PhC for a.e. t [, S ], h 2 = u T for a.e. t [, S ], h 3 = u C ρ T for a.e. t [, S ]. Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 12 / 46

Proof of Teorem 1 Local Existence Check of (A.2) 3/3 Take ϕ C ( (, S )) u k T k, ϕ = u k T k, ϕ u k T k, ϕ = u k T k, ϕ ut, ϕ = u T, ϕ Let us recall the assumption we imposed: u k T k h 2 in L 2 (, S ; L 2 ()). So we obtain h 2 = u T f or a.e. t [, S ] Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 13 / 46

Proof of Teorem 1 Local Existence Check of (A.3) 1/2 B(U) = (au PgT PhC, u T, u C ρ T) t, U = (u, T, C) t B(U) 2 H 3(a2 u 2 + g 2 T 2 L 2 σ L + h 2 C 2 2 L ) + u 2 T 2 + 2 ( u 2 C 2 + ρ 2 T 2 ) 2 3ρ 2 C U 2 H + (ε + 2 3 ) φ(u) 2 H + γφ(u)3 since 1 3 + 1 6 + 1 2 = 1 u 2 T 2 dx C u 2 L 6 T L 6 T L 2 ε T 2 L 2 + C ε u 4 L 2 T 2 L 2, u 2 C 2 dx C u 2 L 6 C L 6 C L 2 ε C 2 L 2 + C ε u 4 L 2 C 2 L 2, hold and by Young s inequality we get C ε u 4 L 2 T 2 L 2 + C ε u 4 L 2 C 2 L 2 C( u 6 L 2 + T 6 L 2 + C 6 L 2 ) γφ(u) 3 Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 14 / 46

Proof of Teorem 1 Local Existence Check of (A.3) 2/2 And So we obtain 2 3ρ ( u 2 C 2 + ρ 2 T 2 ) 2 T 2 dx + 2 u 2 C 2 dx. 2 3 3ρ 2 Estimates for the Nonlinear Term B(U) 2 H C U 2 H + (ε + 2 3 ) φ(u) 2 H + γφ(u)3 Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 15 / 46

Proof of Teorem 1 Global Existence A priori estimate 1 (BF) u t = νp u au + PgT + PhC T t + u T = T in {t > }, C t + u C = C + ρ T in {t > }, First of all, multiplying T t + u T = T by T and integrating over, we have (L) = T t T + T)T = (u 1 d T 2 + u ( 1 2 dt 2 T 2 ) (R) = T T = T 2 1 d 2 dt T 2 L + T 2 2 L = 2 Awhence priori estimate follows 1 S sup T 2 L + 2 t S T 2 L dt T 2 2 L, 2 S >. Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 16 / 46

Proof of Teorem 1 Global Existence A priori estimate 2 Multiplying C t + u C = C + ρ T by C and integrating over, we get 1 d C 2 + C 2 = u C C + ρ T C 2 dt = u ( 1 2 C2 ) + ρ T C ρ T L 2 C L 2 1 2 C 2 L + ρ2 2 2 T 2 L, 2 S S C(t) 2 L + C 2 2 L dt C 2 2 L + ρ 2 T 2 2 L dt 2 Hence A priori estimate 2 sup C 2 L + 2 t S S C 2 L 2 dt C 2 L 2 + ρ 2 T 2 L 2, S >. Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 17 / 46

Proof of Teorem 1 Global Existence A priori estimate 3 Multiplying u t = νp u au + PgT + PhC by u t and integrating over, we have u t 2 L + νau u 2 t + au u t = (PgT + PhC)u t, u t 2 L + ν d 2 2 dt u 2 L + a d 2 2 dt u 2 L γ u 2 t L 2 ( T L 2 + C L 2) 1 2 u t 2 L + γ ( T 2 2 L + C 2 2 L ). 2 Hence u t 2 L 2 + ν d dt u 2 L 2 + a d dt u 2 L 2 γ ( T L 2, C L 2) which implies A priori estimate 3 sup u 2 L + 2 t S S S u t 2 L dt + Au 2 2 L dt γ ( u 2 L 2, T L 2, C L 2), S >. Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 18 / 46

Proof of Teorem 1 Global Existence A priori estimate 4 Multiplying T t + u T = T by T and integrating over, we get T 2 L + T T 2 t = T u T, Hence A priori estimate 4 sup T 2 L + 2 t S T 2 L + 1 d 2 2 dt T 2 L 1 2 4 T 2 L + u 2 T 2. 2 ( u 2 T 2 dx ε T 2 L + C 2 ε u 4 L T 2 2 L ) 2 S 1 2 T 2 L 2 + γ u 4 L 2 T 2 L 2. T 2 L 2 dt γ ( T L 2, u L 2, T L 2, C L 2), S >. Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 19 / 46

Proof of Teorem 1 Global Existence A priori estimate 5 Multiplying C t + u C = C + ρ T by C and integrating over, we get C 2 L + C C 2 t = C u C + ρ C T, C 2 L + 1 d 2 2 dt C 2 L 1 2 2 C 2 L + u 2 C 2 + ρ 2 T 2 2 L 2 ( u 2 C 2 dx ε C 2 L + C 2 ε u 4 L C 2 2 L ) 2 A priori estimate 5 sup C 2 L + 2 t S S 3 4 C 2 L 2 + γ u 4 L 2 C 2 L 2 + ρ 2 T 2 L 2. C 2 L 2 dt γ ( C L 2, T L 2, u L 2), S >. Global Existence So, the every local solution can be continued globally in time. Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 2 / 46

Proof of Teorem 1 Uniqueness Uniquness(1/4) Let V 1 and V 2 are the two solutions of (BF) with same initial data: and put Then (w, τ, θ) t satisfy V 1 = (u 1, T 1, C 1 ) t, V 2 = (u 2, T 2, C 2 ) t V = V 1 V 2 = (w, τ, θ) t, V() = V =. (W) w,t = ν P w aw + P gτ + P hθ, τ t = τ u 1 T 1 + u 2 T 2, θ t = θ + ρ τ u 1 C 1 + u 2 C 2. Multiplying (W) by w, τ, θ, respectively, and integrating over, we have w t wdx = ν w w aw 2 + τg w + θh w dx, (1) τ t τdx = τ τ (u 1 T 1 u 2 T 2 )τdx, (2) θ t θdx = θ θ (u 1 C 1 u 2 C 2 )θ + ρθ τdx. (3) Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 21 / 46

Proof of Teorem 1 Uniqueness Uniquness(2/4) From (1), we obtain 1 d 2 dt w 2 + ν w 2 + a w 2 g τ L 2 σ L 2 σ L 2 σ L 2 w L 2 σ + h θ L 2 w L 2 σ 1 2 ( g + h ) w 2 + 1 L 2 σ 2 g τ 2 L + 1 2 2 h θ 2 L. (4) 2 From (2) and v 2 v L 3 L 2 v L 6, we have 1 d 2 dt τ 2 L + τ 2 2 L = {u 1 τ τ w T 2 τ}dx 2 = u 1 1 2 τ2 dx + T 2 wτdx τ L 6 T 2 L 2 w L 3 1 4 τ 2 L 2 + γ T 2 2 L 2 w L 2 σ w L 2 1 4 τ 2 L 2 + ν 4 w 2 L 2 + γ ν T 2 4 L 2 w 2 L 2 σ. (5) Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 22 / 46

Proof of Teorem 1 Uniqueness Uniquness(3/4) By the argument similar to that for (5), from (3) we obtain 1 d 2 dt θ 2 L + θ 2 2 L = u 1 θ θdx + w C 2 θdx ρ τ θdx 2 = u 1 1 2 θ2 dx + C 2 wθdx ρ τ θdx C 2 L 2 w L 6 θ 1 2 L 2 θ 1 2 L 2 + ρ τ L 2 θ L 2 ρ2 ν 4 w 2 L 2 + γ ρ 2 ν C2 2 L 2 θ L 2 θ L 2 + 1 4 θ 2 L 2 + ρ 2 τ 2 L 2 ρ2 ν 4 w 2 L 2 + ρ 2 τ 2 L 2 + 1 2 θ 2 L 2 + γ2 ρ 4 ν 2 C2 4 L 2 θ 2 L 2. (6) Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 23 / 46

Proof of Teorem 1 Uniqueness Put y(t) = w(t) 2 L 2 σ Uniquness(4/4) and sum up (4), (5) and (6) 1 2ρ 2, then we get Since + τ(t) 2 L 2 + 1 2ρ 2 θ(t) 2 L 2 1 d 2 dt y(t) γy(t) + γ ν T 2 4 L w 2 2 L + γ2 2 2ρ 6 ν 2 C2 4 L θ 2 2 L 2 by Gronwall s inequality, we have whence follows the uniqueness. γ( T 2 4 L 2 + C 2 4 L 2 + 1)y(t). ξ(t) = γ( T 2 4 L 2 + C 2 4 L 2 + 1) L 1 (, T) V(t) 2 H V H exp( t ξ(s)ds) =, Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 24 / 46

Conclusion Conclusion Theorem 1 For all N 3 and for any u H 1 σ(), T, C H 1(), f 1 Lloc 2 ([, ); L2 ()), f 2, f 3 Lloc 2 ([, ); L2 ()), (BF) has a unique (global) solution U = (u, T, C) t satisfying u t, Au L 2 (, S ; L 2 σ()), where A : Stokes Operator T t, C t, T, C L 2 (, S ; L 2 ()), u C([, S ]; H 1 σ()), T, C C([, S ]; H 1 ()) S (, ). Generally speaking, it is difficult to show the existence of global solution of Navier-Stokes equations in 3 dimensional space. The absence of nonlinear convective term of the 1st equation in our problem enables us to prove the global existence in 3D space, even if similar nonlinear convective terms apear in 2nd and 3rd equations. Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 25 / 46

Periodic Problem Proof of Theorem 2 Reduce our problem to an Abstract Periodic Problem Introduce Approximation Problems Apply an abstract Theorem ( Ô, JDE 1984) to approximation problems Establish some a priori estimates Convergence of solutions of approximation problems Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 26 / 46

Periodic Problem Reduction to an Abstract Problem Reduction (PP) du(t) + φ(u(t)) + B(U(t)) = F(t) t (, S ) dt U() = U(S ) H() = L 2 σ() L 2 () L 2 () (U 1, U 2 ) H = (u 1, u 2 ) L 2 σ + (T 1, T 2 ) L 2 + 1 3ρ (C 1, C 2 2 ) L 2 ν φ(u) = 2 u 2 + 1 L 2 σ 2 T 2 L + 1 2 6ρ L 2 + if U H \ D(φ) if U D(φ) D(φ) = H 1 σ() H 1 () H1 () φ(u) = ( ν P u, T, C ) t B(U) = (au PgT PhC, u T, u C ρ T ) t F(t) = ( f 1 (t), f 2 (t), f 3 (t)) t Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 27 / 46

Proof of Theorem 2 Abstract Result Abstract Result for Periodic Problem Theorem (M.Ô, 1984(JDE)) Assume (A.1) For each L (, + ), the set {U H; φ(u) + U 2 H L} is compact in H, (A.2) B( ) is φ demiclosed: If U k U in C([, S ]; H) and φ(u k ) φ(u), B(U k ) b weakly in L 2 (, S ; H), then b = B(U) holds. (A.3) monotone increasing function l( ), k (, 1) s.t. B(U) 2 H k φ(u) 2 H + l( U H)(φ(U) + 1) 2, U D( φ), (A.4) α, K > s.t. ( φ(u) B(U), U) H + αφ(u) K, U D( φ) Let f (t) L 2 (, S ; H), then there exists a solution of (PP) satisfying U C π ([, S ]; H), U t, φ(u) L 2 (, S ; H) Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 28 / 46

Proof of Theorem 2 Approximation Approximation Problems We can not apply our abstract result directly, since B(U) 2 H C U 2 H + (ε + 2 3 ) φ(u) 2 H + γφ(u)3 We introduce the following Approximation Problems u t = ν P u au + P g[t] ε + P h[c] ε + P f 1, T t + u T = T ε T p 2 T + f 2, (BF) ε C t + u C = C + ρ T ε C p 2 C + f 3, u() = u(s ), T() = T(S ), C() = C(S ), [T] ε = T if T 1/ε, = sign T 1/ε if T > 1/ε. ν φ ε (U) = 2 u 2 + 1 L 2 σ 2 T 2 L + 1 2 6ρ 2 C 2 L + ε 2 p T p L + ε p 3ρ 2 p C p L if U D(φ p ε ) + if U H \ D(φ ε ) B ε (U) = (au Pg[T] ε Ph[C] ε, u T, u C ρ T ) t Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 29 / 46

Proof of Theorem 2 Solvability of Approximation Problems Check of (A3) 1/2 B ε (U) 2 H u T 2 L 2 + u C 2 L 2 u T 2 L = (u i D 2 i T)(u j D j T)dx = u i T D i (u j D j T)dx = u i T u j D i D j T dx + u i T D i (u j )D j T dx C u L 6 T L 12 u L 4 T L 2 + C u L 4 T L 12 u L 6 T L 2 u L 6 T L 12 u L 4 T L 2 ε T 2 L 2 + C ε u 2 L 2 T 2 L 12 u 2 L 4 ε T 2 L 2 + u 4 L 2 + C ε T 4 L 12 u 4 L 4 ε T 2 L 2 + 2 u 4 L 2 + C ε u 4 L 2 T 16 L 12 ( u 4 L 4 C u L 2 u 3 L 2 ) Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 3 / 46

Proof of Theorem 2 Solvability of Approximation Problems Check of (A3) 2/2 u L 4 T L 12 u L 6 T L 2 ε u 2 L 2 + C ε u 2 L 4 T 2 L 12 T 2 L 2 Let p 12, then we have ε u 2 L 2 + T 4 L 2 + C ε T 4 L 12 u 4 L 4 ε u 2 L 2 + T 4 L 2 + u 4 L 2 + C ε u 4 L 2 T 16 L 12 B ε (U) 2 H C(ε + 2 3 ) φ ε(u) 2 H + C ε U 4 H φ ε(u) 2 ε (, ε ). Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 31 / 46

Proof of Theorem 2 Solvability of Approximation Problems Check of (A4) (A4) α, K > s.t. ( φ(u) + B(U), U ) H αφ(u) K, U D( φ) φ ε (U) = ( ν P u, T + ε T p 2 T, C + ε C p 2 C ) t ( φ ε (U), U ) H = ν u 2 L 2 σ 2φ ε (U) + T 2 L + 1 2 3ρ 2 C 2 L + ε T p 2 L + ε p 3ρ 2 C p L p B ε (U) = (au Pg[T] ε Ph[C] ε, u T, u C ρ T ) t ( B ε (U), U ) H a u 2 g u L 2 σ L 2 σ [T] ε L 2 h u L 2 σ [C] ε L 2 1 ρ T L 2 C L 2 a 2 u 2 L 2 σ C ε 2 4 5 T 2 L 2 5 16ρ 2 C 2 L 2 Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 32 / 46

Proof of Theorem 2 A priori estimates A proori estimates 1 T t + u T = T ε T p 2 T + f 2, T dx S dt S S T 2 L dt + ε T p 2 L dt C p ( f 2 L 2 (,S ;L 2 ())) t [, S ] s.t. K T(t ) L 2 T(t ) L 2 C ( f 2 L 2 (,S ;L 2 ()))/S t t dt max t S T(t) L 2 C ( f 2 L 2 (,S ;L 2 ()), S ) Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 33 / 46

Proof of Theorem 2 A priori estimates A proori estimates 2 C t + u C = C + ρ T ε C p 2 C + f 3, C dx 1 ρ 2 S dt 1 S C 2 ρ 2 L dt + ε S C p 2 ρ 2 L dt C p ( f 2 L 2 (,S ;L 2 ()), f 3 L 2 (,S ;L 2 ())) t [, S ] s.t. K C(t ) L 2 C(t ) L 2 C /S t t dt max t S C(t) L 2 C ( f 2 L 2 (,S ;L 2 ()), f 3 L 2 (,S ;L 2 ()), S, ρ) Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 34 / 46

Proof of Theorem 2 A priori estimates A proori estimates 3 u t = ν P u au + P g[t] ε + P h[c] ε + P f 1, u dx S dt S (a uν 2 L 2 σ + u 2 )dt L 2 σ S ( g [T] ε L 2 + h [C] ε L 2 + f 1 L 2 ) u L 2 σ dt C ( f 1 L 2, f 2 L 2 (,S ;L 2 ()), f 3 L 2 (,S ;L 2 ())) t [, S ] s.t. K u(t ) L 2 σ u(t ) 2 C L 2 /S σ t t dt max t S u(t) L 2 σ C ( f 1 L 2, f 2 L 2 (,S ;L 2 ()), f 3 L 2 (,S ;L 2 ()), S, ρ) Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 35 / 46

Proof of Theorem 2 A priori estimates A proori estimates 4 u t = ν P u au + P g[t] ε + P h[c] ε + P f 1, u t dx S dt Eq. S S u t 2 L 2 σ dt C ( f 1 L 2, f 2 L 2, f 3 L 2) P u 2 L 2 σ dt C t [, S ] s.t. u(t ) 2 C L 2 /S σ t t dt max t S u(t) L 2 σ C ( f 1 L 2, f 2 L 2, f 3 L 2, S, ρ) Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 36 / 46

Proof of Theorem 2 A priori estimates A proori estimates 5-i T t + u T = T ε T p 2 T + f 2, T dx 1 d 2 dt T(t) 2 L + T(t) 2 2 L + ε(p 1) T p 2 T(t) 2 2 L dx 2 ( u T L 2 + f 1 L 2 ) T(t) L 2 u T 2 L 2 T 2 L 4 u 2 L 4 K T 1/2 L 2 T 3/2 ε T 2 L + C 2 ε T 2 L u 2 u 6 2 L 2 σ L 2 σ t [, S ] s.t. T(t ) L 2 C /S t t dt max t S T(t) L 2 + S u 1/2 L 2 L 2 σ u 3/2 L 2 σ T(t) 2 L 2 dt C. Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 37 / 46

Proof of Theorem 2 A priori estimates A proori estimates 5-ii T t + u T = T ε T p 2 T + f 2, T t dx 1 2 d dt T(t) 2 L 2 + T t (t) 2 L 2 + ε p d dt T(t) p L p ( u T L 2 + f 1 L 2 ) T t (t) L 2 u T 2 L ε T 2 2 L + C 2 ε T 2 L u 2 u 6 2 L 2 σ L 2 σ S dt Eq. S T t (t) 2 L 2 dt C S ε 2 T p 2 T(t) 2 L dt C 2 Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 38 / 46

Proof of Theorem 2 A priori estimates A proori estimates 6-i C t + u C = C + ρ T ε C p 2 C + f 3, T dx 1 d 2 dt C(t) 2 L + C(t) 2 2 L + ε(p 1) C p 2 C(t) 2 2 L dx 2 ( u C L 2 + f 1 L 2 + ρ T L 2 ) C(t) L 2 u C 2 L 2 C 2 L 4 u 2 L 4 K C 1/2 L 2 C 3/2 ε C 2 L + C 2 ε C 2 L u 2 u 6 2 L 2 σ L 2 σ t [, S ] s.t. C(t ) L 2 C /S t t dt max t S C(t) L 2 + S u 1/2 L 2 L 2 σ u 3/2 L 2 σ C(t) 2 L 2 dt C. Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 39 / 46

Proof of Theorem 2 A priori estimates A proori estimates 6-ii C t + u C = C + ρ T ε C p 2 C + f 2, C t dx 1 2 d dt C(t) 2 L 2 + C t (t) 2 L 2 + ε p d dt C(t) p L p ( u C L 2 + f 1 L 2 + ρ T L 2 ) C t (t) L 2 u C 2 L ε C 2 2 L + C 2 ε C 2 L u 2 u 6 2 L 2 σ L 2 σ S dt Eq. S C t (t) 2 L 2 dt C S ε 2 C p 2 C(t) 2 L dt C 2 Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 4 / 46

Proof of Theorem 2 Convergence Convergence 1 A priori estimates 1 max U ε (t) H + max φ ε(u ε (t)) + t S t S S ( U ε t (t) 2 H + φ ε(u ε (t)) 2 H )dt C, U ε = (u ε, T ε, C ε ) t max φ ε(u ε (t)) C {U ε (t)} ε (,1) forms a precompact set in H t [, S ] t S S U ε t (t) 2 H dt C {U ε (t)} ε (,1) is equi-continuous in C π ([, S ]; H) Ascoli stheorem U n (t) = U ε n (t) (ε n as n ) s.t. U n U = (u, T, C ) t strongly in C π ([, S ]; H) as n U n t U t = U = (u t, T t, C t ) t weakly in L 2 (, S ; H) as n. Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 41 / 46

Proof of Theorem 2 Convergence Convergence 2 A priori estimates 2 ε T ε p L p (,S ;L p ()) + ε T ε p 2 T ε L 2 (,S ;L 2 ()) C, ε T ε p 2 T ε L p ε n T ε n p 2 T ε n g weakly in L 2 (, S ; L 2 ()) p p 1 (,S ;L p 1 ()) = ε 1 p g = ( ε T ε p L p (,S ;L p ())) p 1 p Similarly ε n C ε n p 2 C ε n weakly in L 2 (, S ; L 2 ()) φ εn (U ε n ) φ(u) weakly in L 2 (, S ; H) [T] εn T, [C] εn C strongly in C π ([, S ]; L 2 ()) as ε B εn (U ε n ) B(U) weakly in L 2 (, S ; L 2 ()) U gives a solution of (PP). Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 42 / 46

Concluding Remarks Related Results Concluding Remarks(1/4) Our main theorem holds true also for unbounded domains. For bounded domain case, U(t) = (u(t), T(t), C(t)) t zero. decays exponentially to Existence of global attractors and exponential attractors Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 43 / 46

Concluding Remarks More general initial data Concluding Remarks(2/4) B α,p = {u D( φ); t α u (I + t φ) 1 u H L p (, 1)}, where f L p (,1) = ( 1 f (t) p 1 t dt)1/p 1 < p <, L (, 1) = L (, 1). Theorem (M.Ô, 1982(JDE)) Assume (A.1), (A.2) and (A.3) α monotone increasing function l( ), l ( ) s.t. B(U) 2 H l( U H){ε φ(u) 2 H + l (1/ε) φ(u) 2(1 α) 1 2α + 1}, ε >, U D( φ). Let U B α,2 and f (t) L 2 (, S ; H), then there exists S (, S ) such that (CP) has a local solution U(t) C([, S ]; H) on [, S ] satisfying t 1/2 α U t, t 1/2 α φ(u) L 2 (, S ; H); t 1/2 α φ(u) 1/2 L q (, S ) q [2, ] Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 44 / 46

Concluding Remarks More general initial data Concluding Remarks(3/4) Estimates for the Nonlinear Term B(U) 2 H C U 2 H + (ε + 2 3 ) φ(u) 2 H + γφ(u)3 (U 1, U 2 ) H = (u 1, u 2 ) L 2 σ + (T 1, T 2 ) L 2 + 1 3ρ (C 1, C 2 2 ) L 2 1 1 is replaced by (ε + 2 3ρ2 kρ 2 3 ) is replaced by (ε + 2 3k ) k Then (A.3) α is satisfied with 3 = 2(1 α) 1 2α α = 1/4 U = (u, T, c ) B α,2 u D(A 1/4 ), T, C D(( ) 1/4 ) (u, T, c ) D(A 1/4 ) D(( ) 1/4 ) D(( ) 1/4 ),!sol.u C(, S ; H) s, t. t 1/2 α φ(u) 1/2 L q (, S ) q [2, ] Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 45 / 46

Concluding Remarks More general initial data Concluding Remarks(4/4) q = 4, α = 1/4 t (1/2 1/4)4 1 φ(u) 4/2 L 1 (, S ) φ(u) 2 L 1 (, S ) Uniquness q =, α = 1/4 t 1/4 φ(u) L (, S ) U(S ) D(φ) u(s ) H 1 σ(); T(S ), C(S ) H 1 ()!Global solution Mitsuharu ÔTANI (Waseda University, Tokyo, JAPAN) Double-Diffusive Convection One Forum, Two Cities 46 / 46