Electronic Supplementary Information

Σχετικά έγγραφα
9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

Supporting Information

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Divergent synthesis of various iminocyclitols from D-ribose

Supporting information

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran

Available online at shd.org.rs/jscs/

SUPPLEMENTARY MATERIAL

Table S1 Selected bond lengths [Å] and angles [ ] for complexes 1 8. Complex 1. Complex 2. Complex 3. Complex 4. Complex 5.

Supporting Information

Electronic Supplementary Information

Synthesis of novel 1,2,3-triazolyl derivatives of pregnane, androstane and D-homoandrostane. Tandem Click reaction/cu-catalyzed D-homo rearrangement

College of Life Science, Dalian Nationalities University, Dalian , PR China.

Supplementary Data. Engineering, Nanjing University, Nanjing , P. R. China;

Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%.

Synthesis and evaluation of novel aza-caged Garcinia xanthones

Electronic supplementary information for

Dalton Transactions, 2017, Katarzyna Czerwińska et al.

The Free Internet Journal for Organic Chemistry

Available online at

Supporting Information

Vilsmeier Haack reagent-promoted formyloxylation of α-chloro-narylacetamides

Supporting Information

Heterobimetallic Pd-Sn Catalysis: Michael Addition. Reaction with C-, N-, O-, S- Nucleophiles and In-situ. Diagnostics

Synthesis of Imines from Amines in Aliphatic Alcohols on Pd/ZrO 2 Catalyst at Ambient Conditions

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

SUPPORTING INFORMATION

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

Heavier chalcogenone complexes of bismuth(iii)trihalides: Potential catalysts for acylative cleavage of cyclic ethers. Supporting Information

Comparison of carbon-sulfur and carbon-amine bond in therapeutic drug: -S-aromatic heterocyclic podophyllum derivatives display antitumor activity

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

Supporting Information

Nitric oxide (NO) reactivity studies on mononuclear Iron(II) complexes supported by a tetradentate Schiff base Ligand

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

Electronic Supplementary Information

Supplementary Information

Supplementary information

Selective mono reduction of bisphosphine

SUPPLEMENTARY DATA. Waste-to-useful: Biowaste-derived heterogeneous catalyst for a green and sustainable Henry reaction

Supporting Information. Experimental section

Supporting information

First DMAP-mediated direct conversion of Morita Baylis. Hillman alcohols into γ-ketoallylphosphonates: Synthesis of

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

Eco-friendly synthesis of diverse and valuable 2-pyridones by catalyst- and solvent-free thermal multicomponent domino reaction

Supporting Information

Electronic Supplementary Information (ESI)

Electronic Supplementary Information

Iodine-catalyzed synthesis of sulfur-bridged enaminones and chromones via double C(sp 2 )-H thiolation

Supporting Information. Experimental section

Supporting Information

Electronic Supplementary information

Available online at shd.org.rs/jscs/

Supporting Information

Novel electroluminescent donor-acceptors based on dibenzo[a,c]phenazine as

Supporting Information

Supporting Information

Supporting Information. for

Supporting Information

Supporting Information

National d Histoire Naturelle, 57 rue Cuvier (C.P. 54), Paris, France. Contents:

Table of Contents 1 Supplementary Data MCD

The N,S-Bidentate Ligand Assisted Pd-Catalyzed C(sp 2 )-H. Carbonylation using Langlois Reagent as CO Source. Supporting Information.

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

Supporting Information for

Rhodium-Catalyzed Oxidative Decarbonylative Heck-type Coupling of Aromatic Aldehydes with Terminal Alkenes

Patrycja Miszczyk, Dorota Wieczorek, Joanna Gałęzowska, Błażej Dziuk, Joanna Wietrzyk and Ewa Chmielewska. 1. Spectroscopic Data.

using metal-organic framework Cu-MOF-74 as an efficient heterogeneous catalyst Hanh T. H. Nguyen, Oanh T. K. Nguyen, Thanh Truong *, Nam T. S.

Highly enantioselective cascade synthesis of spiropyrazolones. Supporting Information. NMR spectra and HPLC traces

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone.

Supporting Information. Consecutive hydrazino-ugi-azide reactions: synthesis of acylhydrazines bearing 1,5- disubstituted tetrazoles

Supporting Information

Electronic Supplementary Information

D-Glucosamine-derived copper catalyst for Ullmann-type C- N coupling reaction: theoretical and experimental study

C H Activation of Cp* Ligand Coordinated to Ruthenium. Center: Synthesis and Reactivity of a Thiolate-Bridged

Supporting Information. Introduction of a α,β-unsaturated carbonyl conjugated pyrene-lactose hybrid

Fluorinative Ring-opening of Cyclopropanes by Hypervalent Iodine Reagents. An Efficient Method for 1,3- Oxyfluorination and 1,3-Difluorination

Phosphorus Oxychloride as an Efficient Coupling Reagent for the Synthesis of Ester, Amide and Peptide under Mild Conditions

Room Temperature Highly Diastereoselective Zn-Mediated. Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled

Supporting Information

Supporting information

Electronic Supporting Information

Zebra reaction or the recipe for heterodimeric zinc complexes synthesis

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Synthesis of New Heteroscorpionate Iridium(I) and Iridium(III) Complexes

Novel and Selective Palladium-Catalyzed Annulation of 2-Alkynylphenols to Form 2-Substituted 3-Halobenzo[b]furans. Supporting Information

Asymmetric Synthesis of New Chiral β-amino Acid Derivatives by Mannich-type Reactions of Chiral N- Sulfinyl Imidates with N-Tosyl Aldimines

Facile construction of the functionalized 4H-chromene via tandem. benzylation and cyclization. Jinmin Fan and Zhiyong Wang*

Electronic Supplementary Information

Effect of uridine protecting groups on the diastereoselectivity

Supporting Information

Supporting Information. Synthesis and biological evaluation of nojirimycin- and

Peptidomimetics as Protein Arginine Deiminase 4 (PAD4) Inhibitors

Supporting Information. Partial thioamide scan on the lipopeptaibiotic trichogin GA IV. Effects on

Supplementary Information

Hiyama Cross-Coupling of Chloro-, Fluoroand Methoxy- pyridyl trimethylsilanes : Room-temperature Novel Access to Functional Bi(het)aryl

Supporting Information. A catalyst-free multicomponent domino sequence for the. diastereoselective synthesis of (E)-3-[2-arylcarbonyl-3-

Transcript:

Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Information Lanthanide Derivatives Comprising Arylhydrazones of β-diketones: Cooperative E/Z Isomerization and Catalytic Activity in Nitroaldol Reaction Kamran T. Mahmudov, *a,b M. Fátima C. Guedes da Silva, *a,c Manas Sutradhar, a Maximilian N. Kopylovich, a Fatali E. Huseynov, b Nazim T. Shamilov b Anna A. Voronina, a,d Tatyana M. Buslaeva, d and Armando J. L. Pombeiro *a a Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049 001 Lisbon, Portugal b Department of Ecology and Soil Sciences, Baku State University, Z. Xalilov Str. 23, Az 1148 Baku, Azerbaijan c Universidade Lusófona de Humanidades e Tecnologias, ULHT Lisbon, Av. Campo Grande nº 376, 1749-024, Lisbon, Portugal d Lomonosov Moscow University of Fine Chemical Technology, Vernadskogo pr. 86, Moscow 119571, Russian Federation *Corresponding authors. Phone: +351 218419237. E-mail addresses: kamran_chem@yahoo.com, kamran_chem@mail.ru (K.T. Mahmudov), fatima.guedes@tecnico.ulisboa.pt (M. Fátima C. Guedes da Silva), pombeiro@tecnico.ulisboa.pt (A.J.L. Pombeiro). 1

1. Synthesis and analytical data for compounds KH 2 L 1,2 Synthesis of KH 2 L 1,2 KH 2 L 1,2 were synthesized according to the Japp Klingemann reaction 4 between the diazonium salt of substituted aniline and acetylacetone (or benzoylacetone in the case of KH 2 L 2 ). Diazotization: 0.0250 mol 2-amino-4-chloro-6-sulfophenol-1 (in the case of H 3 L 2 ) was dissolved in 50.00 ml water upon addition of 1.500 g of crystalline KOH. The solution was cooled in an ice bath to 0 C, and 0.025 mol NaNO 2 was added with subsequent addition of 5.00 ml HCl in portions of 0.20 ml for 1 h, under vigorous stirring. During the reaction the temperature of the mixture must not exceed +5 C. Azocoupling: For the preparation of compound KH 2 L 2, 8.000 g CH 3 COONa were added to a mixture of 0.0250 mol benzoylacetone with 100.0 ml ethanol. The mixture was cooled in an ice bath, and a suspension of 2-amino-4-chloro-6-sulfophenol-1 diazonium (prepared according to the procedure of section 2.2.1) was added in two equal portions under vigorous stirring for 1 h. On the next day, the formed precipitate of KH 2 L 2 was filtered off and recrystallized from methanol. The syntheses of KH 2 L 1 was performed analogously, but using 2-amino-4-nitro-6-sulfophenol-1 as a strarting material instead of 2-amino-4-chloro-6-sulfophenol-1, and acetylacetone instead of benzoylacetone. KH 2 L 1 : Yield 81 % (based on pentane-2,4-dione), dark orange powder, soluble in water, DMSO, dimethylformamide, ethanol, acetone and insoluble in chloroform. Calcd for C 11 H 10 KN 3 O 8 S (M = 383.38): C, 34.46; H, 2.63; N, 10.96. Found: C, 34.15; H, 2.37; N, 11.02 %. IR (KBr), cm 1 : 3450 (m br.) ν(oh), 3145 (m br.) ν(nh), 1656 (s) ν(c=o), 1640 (w) ν(c=o H), 1594 (w) ν(c=n), 1561 (w), 1505 (s), 1445 (w), 1413 (w), 1367 (m), 1312 (m), 1276 (s), 1197 (s), 1073 (m), 1042 (s), 979 (w), 932 (w), 891 (w), 783 (w), 750 (w) cm 1. 1 H NMR (DMSO-d 6 ): δ = 2.38 (s, 3H, CH 3 ), 2.47 (s, 3H, CH 3 ), 8.15 8.28 (2H, Ar H), 9.87 (s, 1H, OH), 14.52 (s, 1H, NH). 13 C{ 1 H} (DMSO-d 6 ): δ = 26.43 (CH 3 ), 31.26 (CH 3 ), 124.71 (Ar H), 127.45 (Ar H), 128.98 (Ar NO 2 ), 133.38 (Ar NH N), 134.45 (C=N), 140.75 (Ar SO 3 K), 146.34 (Ar OH), 195.53 (C=O), 196.21 (C=O). KH 2 L 2 : yield, 77 % (based on benzoylacetone), yellow powder, soluble in water, methanol, ethanol, and insoluble in chloroform. Anal. Calcd for C 16 H 12 ClKN 2 O 6 S (M = 434.89): C, 44.19; H, 2.78; N, 6.44. Found: C, 44.05; H, 2.65; N, 6.28 %. IR (KBr), cm 1 : 3480 (m br.) ν(oh), 3267 (m br.) ν(nh), 1649 (s) ν(c=o), 1596 (w) ν(c=n), 1510 (s), 1448 (w), 1362 (w), 1327 (m), 1192 (b.m), 1128 (m), 1044 (s), 983 (w), 950 (w), 876 (m), 854 (m), 729 (m). 1 H NMR of a mixture of E- hydrazone and Z-hydrazone isomers, (300.13 MHz, DMSO-d 6 ). E-hydrazone, δ: 2.53 CH 3, 7.02 7.87 (5H, C 6 H 5 and 2H, C 6 H 4 ), 11.19 (s, 1H, HO Ar), 14.23 (s, 1H, NH). Z-hydrazone, δ: 2.54 CH 3, 7.02 7.87 (5H, C 6 H 5 and 2H, C 6 H 4 ), 11.19 (s, 1H, HO Ar), 11.95 (s, 1H, NH). 13 C{ 1 H} NMR (100.61 MHz, DMSO-d 6 ). E-hydrazone, δ: 30.3 (CH 3 ), 114.8 (Ar H), 121.7 (Ar H), 123.2 (2Ar H), 130.2 (Ar Cl), 128.6 (2Ar H), 131.3 (ArNH N), 132.6 (Ar SO 3 K), 133.9 (Ar H), 137.5 (Ar CO), 138.1 (C=N), 140.9 (Ar OH), 191.7 (ArC=O), 197.6 (CH 3 C=O). Z-hydrazone, δ: 25.6 (CH 3 ), 114.8 (Ar H), 121.0 (Ar H), 123.2 (2Ar H), 127.9 (Ar Cl), 128.4 (2Ar H), 131,2 (ArNH N), 132.3 (Ar SO 3 K), 133.2 (Ar H), 137.2 (Ar CO), 138.1 (C=N), 141.2 (Ar OH), 192.8 (ArC=O), 196.3 (CH 3 C=O). 2

2. 1H NMR spectra of compounds KH2L2, 1 and 2 Fig. S1. 1H NMR spectrum of KH2L2 in DMSO-d6. Fig. S2. 1H NMR spectrum of [KLa(HL1)2{(CH3)2NCHO}2(H2O)3] (1) in DMSO-d6. 3

Fig. S3. 1H NMR spectrum of [Sm(H2O)9](H2L2)3 2H2O (2) in DMSO-d6. 3. X-ray data of compounds 1 and 2 Fig. S4. Crystal packing diagram of 1, viewed down the crystalographic c axis. 4

Fig. S5. Crystal packing diagram of 2, viewed down the crystalographic b axis. Table S1. Comparison of some selected bond distances (Å) and angles (º) in 1 and 2 1 2 In the organic L moieties N N 1.297(11) 1.298(14) C=O ketone 1.19(2), 1.21(2) 1.227(13), 1.254(13) between the aromatic ring and l.s. plane of OCCCO 11.79 12.08 OCCN torsion angle 175.23 179.71 Surrounding the lanthanide cations Metal-O phenolate 2.442(8) 2.525(8) Metal-O sulphonate 2.610(8) 2.641(7) 1.277(9) 1.284(10) 1.292(9) 1.206(10), 1.216(10) 1.215(11), 1.219(13) 1.207(10), 1.250(11) 23.57 28.58 29.30 145.46 146.85 150.54 2.579(8) Metal-O water 2.590(9) 2.430(7) 2.477(9) 2.600(7) 2.458(9) Metal-O DMF - 2.502(9) M M 8.538 6.810 - - 5

Table S2. Hydrogen bond geometry [Å, ] in 1 and 2. D H A d(h A) d(d A) (D H A) Symmetry codes 1 N1 H1 O1 2.40 2.698(13) 101 intra N1 H1 O2 1.85 2.509(18) 133 intra N4 H4 O6 2.31 2.661(12) 105 intra N4 H4 O8 1.93 2.579(12) 132 intra O60 H60A O22 2.15 2.793(12) 123 1/2-x,1/2+y,1/2-z O60 H60C O23 1.88 2.796(10) 156 intra O70 H70A O23 1.84 2.742(13) 154 1/2-x,1/2+y,1/2-z O70 H70C O7 2.06 2.761(11) 127 x,2-y,1/2+z O80 H80A O3 2.03 2.841(15) 140 x,1+y,z 2 N1 H1 O1 1.90 2.575(11) 134 intra N1 H1 O3 2.27 2.620(10) 104 Intra N3 H3 O4 1.93 2.590(9) 133 Intra N3 H3 O6 2.30 2.644(9) 104 intra N5 H5 O7 1.86 2.545(9) 136 Intra N5 H5 O9 2.26 2.613(10) 105 Intra O10 H110 O12B 2.36 3.11(2) 147 1+x,y,z O30 H130 O6 2.59 3.197(11) 130 1+x,y,z O30 H130 O31 2.50 2.859(12) 106 O40 H140 O32 2.21 3.008(13) 155 O50 H150 O7 2.36 2.726(13) 106 x,-1+y,z O60 H160 O1W 2.28 2.710(12) 111 O60 H160 O13B 2.53 2.82(2) 101 1-x,-y,1-z O70 H170 O1W 1.85 2.673(15) 160 1-x,-y,1-z O80 H180 O12B 2.15 2.94(3) 151 1-x,-y,1-z O90 H190 O1 2.23 3.084(13) 178 1-x,1-y,1-z O10 H210 O21B 2.08 2.797(17) 140 1-x,1-y,1-z O10 H210 O22A 2.18 2.75(2) 123 1-x,1-y,1-z O20 H220 O22B 2.41 2.960(17) 123 1+x,-1+y,z O30 H230 O4 2.58 3.282(11) 140 1+x,y,z O40 H240 O33 2.04 2.848(13) 159 1-x,1-y,1-z O50 H250 O13B 2.30 2.82(2) 117 O60 H260 O9 2.49 3.213(10) 143 1-x,1-y,1-z O80 H280 O22A 1.82 2.53(3) 139 1-x,1-y,1-z O80 H280 O22B 1.89 2.72(2) 164 1-x,1-y,1-z O90 H290 O2W 2.11 2.94(2) 162 1-x,1-y,1-z 6

4. Calculation of the yield and selectivity for complex 1 in the Henry reaction Yield: Total amount of compounds (see Fig. S6): Bezaldehyde + anti + syn = 0.0989 + 0.2376 + 0.7624 = 1.0989 Percentage of the unreacted bezaldehyde: 0.0989/1.0989 100 = 9.0 %. Conversion of benzaldehyde = yield of -nitroalkanols = 100 9.0 = 91.0 %. See Table 1, Entry 19. Selectivity: Selectivity towards anti: 0.2376/(0.2376 + 0.7624) 100 = 24 %. Selectivity towards syn: 0.7624/(0.2376 + 0.7624) 100 = 76 %. Fig. S6. Example of integration in the 1 H NMR spectrum for the determination of Henry reaction products (Table 1, Entry 19). 1 H NMR(400 MHz, CDCl 3 ) δ 9.91 (s, 0.1H), 7.42-7.31 (m, 5.00H + 0.49H Ar of benzaldehyde), 5.38 (d, J = 3.6 Hz, 0.24H) (anti), 5.02 (d, J = 8.8 Hz, 0.76H) (syn), 4.80-4.68 (m, 1H) (syn + anti), 2.73 (b, 0.24H) (anti), 2.62 (b, 0.76H) (syn), 1.50 (d, J = 7.2 Hz, 0.95H) (anti), 1.32 (d, J = 6.8 Hz, 2.05H) (syn). 7