LP Decoding Achieves Capacity

Σχετικά έγγραφα
Fractional Colorings and Zykov Products of graphs

Models for Probabilistic Programs with an Adversary

Statistical Inference I Locally most powerful tests

Elements of Information Theory

The Simply Typed Lambda Calculus

2 Composition. Invertible Mappings

Θεωρία Πληροφορίας και Κωδίκων

Abstract Storage Devices

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

ST5224: Advanced Statistical Theory II

Problem Set 3: Solutions

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Homework 3 Solutions

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

New bounds for spherical two-distance sets and equiangular lines

Γραµµικός Προγραµµατισµός (ΓΠ)

A Hierarchy of Theta Bodies for Polynomial Systems

Section 8.3 Trigonometric Equations

Section 7.6 Double and Half Angle Formulas

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Other Test Constructions: Likelihood Ratio & Bayes Tests

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

( y) Partial Differential Equations

Approximation of distance between locations on earth given by latitude and longitude

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible.

Bounding Nonsplitting Enumeration Degrees

Example Sheet 3 Solutions

The challenges of non-stable predicates

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

C.S. 430 Assignment 6, Sample Solutions

Areas and Lengths in Polar Coordinates

Homework 8 Model Solution Section

ΚΩΔΙΚΕΣ LDPC Τεχνικές Κωδικοποίησης

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

4.6 Autoregressive Moving Average Model ARMA(1,1)

Every set of first-order formulas is equivalent to an independent set

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

ΠΑΡΑΔΕΙΓΜΑΤΑ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΜΕ ΤΗ ΧΡΗΣΗ Η/Υ (3 ο Φυλλάδιο)

Areas and Lengths in Polar Coordinates

Capacitors - Capacitance, Charge and Potential Difference

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

6. MAXIMUM LIKELIHOOD ESTIMATION

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Instruction Execution Times

Uniform Convergence of Fourier Series Michael Taylor

5. Choice under Uncertainty

Chap. 6 Pushdown Automata

A Note on Intuitionistic Fuzzy. Equivalence Relation

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Second Order RLC Filters

ΑΠΟΔΟΤΙΚΗ ΑΠΟΤΙΜΗΣΗ ΕΡΩΤΗΣΕΩΝ OLAP Η ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΞΕΙΔΙΚΕΥΣΗΣ. Υποβάλλεται στην

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Cyclic or elementary abelian Covers of K 4

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

EE512: Error Control Coding

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

w o = R 1 p. (1) R = p =. = 1

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Math 6 SL Probability Distributions Practice Test Mark Scheme

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.

"ΦΟΡΟΛΟΓΙΑ ΕΙΣΟΔΗΜΑΤΟΣ ΕΤΑΙΡΕΙΩΝ ΣΥΓΚΡΙΤΙΚΑ ΓΙΑ ΤΑ ΟΙΚΟΝΟΜΙΚΑ ΕΤΗ "

Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2)

Differential equations

6.3 Forecasting ARMA processes

The circle theorem and related theorems for Gauss-type quadrature rules

Αλγόριθμοι και πολυπλοκότητα Depth-First Search

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Minimum Spanning Tree: Prim's Algorithm

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

Section 9.2 Polar Equations and Graphs

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

Solutions to Exercise Sheet 5

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Tridiagonal matrices. Gérard MEURANT. October, 2008

Matrices and Determinants

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

ΕΦΑΡΜΟΓΗ ΕΥΤΕΡΟΒΑΘΜΙΑ ΕΠΕΞΕΡΓΑΣΜΕΝΩΝ ΥΓΡΩΝ ΑΠΟΒΛΗΤΩΝ ΣΕ ΦΥΣΙΚΑ ΣΥΣΤΗΜΑΤΑ ΚΛΙΝΗΣ ΚΑΛΑΜΙΩΝ

Exercises to Statistics of Material Fatigue No. 5

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

Lecture 2. Soundness and completeness of propositional logic

D Alembert s Solution to the Wave Equation

Lecture 21: Properties and robustness of LSE

Congruence Classes of Invertible Matrices of Order 3 over F 2

Mean-Variance Analysis

Concrete Mathematics Exercises from 30 September 2016

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER - Discrete Fourier Transform - DFT -

Transcript:

LP Decoding Achieves Capacity Jon Feldman Columbia University Cliff Stein Thank you: Alexander Barg, David Karger, Ralf Koetter, Tal Malkin, Rocco Servedio, Pascal Vontobel, Martin Wainwright, Gilles Zémor

Codes, Noisy Channels, Achieving Capacity Encoder Noise Decoder (?) Noise: probabilistic (Gaussian) Word Error Rate (WER) = Pr noise Channel capacity rate ( ) st decoder, with WER : highest code family, Shannon: characterized capacity for many channels Achieving capacity: code family, decoder, with WER for all J Feldman, C Stein, LP Decoding Achieves Capacity p1/18

Achieving Capacity with Poly-time Decoders Forney ( 66): ML/BD decoder Concatenated codes (OPT Reed-Solomon) Barg/Zémor ( 02): ML/message-passing decoder Expander codes [SS 96][BZ 01-04][GI 01-04] This paper: Linear Programming (LP) decoder Same expander codes as Barg/Zémor New feature: Maximum-Likelihood (ML) Certificate property: if codeword output, it maximizes Pr[correct] J Feldman, C Stein, LP Decoding Achieves Capacity p2/18

Application to Practical Codes Turbo [BGT 93], low-density parity-check (LDPC) [Gal 63] codes: Practical construction/encoding, moderate length Perform well (experimentally) under message-passing decoder Most successful theory: density evolution [RU, LMSS, RSU, BRU, CFDRU,, 99present] Non-constructive, assumes local tree structure LP decoding bounds: No tree assumption Bounds relevant for finite lengths Performance of message-passing is closely related [FKW 02, Fel02, KV02, KV04a, KV04b] J Feldman, C Stein, LP Decoding Achieves Capacity p3/18

Maximum-Likelihood (ML) Decoding Memoryless channel: each indpendently Example: Gaussian, where Cost function : log-likelihood ratio of is affected by noise If If more likely more likely Pr Pr ML DECODING: Given corrupt codeword, find such that is minimized J Feldman, C Stein, LP Decoding Achieves Capacity p4/18

LP Decoding [FK 02, Fel 03] cw cw min Polytope cw noise noise cw pseudocodeword Convex hull( ) LP variables Alg: Solve LP If ML certificate property for each code bit, relaxed integral, output, else error J Feldman, C Stein, LP Decoding Achieves Capacity p5/18

LP Decoding Success Conditions Objective function cases some other cw oise oise (a) (b) (c) (d) pseudocodeword (a) No noise (b) Both succeed (c) ML succeed, LP fail (d) Both fail ll( ) transmitted cw J Feldman, C Stein, LP Decoding Achieves Capacity p6/18

Using a Dual Witness to Prove Success [FMSSW 04] Assume is transmitted (polytope symmetry); assume unique LP optimum (no problem) success Point is LP optimum dual feasible point w/ value Take LP dual, set dual objective = 0: polytope success non-empty Buys analytical slack: With no noise is large Noise increases shrinks Trade off strength of result with ease of analysis Prove result for LDPC codes, adversarial channel [FMSSW 04] J Feldman, C Stein, LP Decoding Achieves Capacity p7/18

Tanner Graph Codes ts Bipartite Tanner graph : variable nodes check nodes Subcode for each check Overall codeword: setting of bits to var nodes st:, bits of in code LDPC codes: special case w/ const degree, = single parity check code Ex: is (3,6)-regular, = J Feldman, C Stein, LP Decoding Achieves Capacity p8/18

LP Relaxation for Tanner Codes [FWK 03] st LP: For all check nodes, ch = convex hull ch of local codewords ch J Feldman, C Stein, LP Decoding Achieves Capacity p9/18

LP Relaxation for Tanner Codes st LP:,, J Feldman, C Stein, LP Decoding Achieves Capacity p10/18

ents Dual Polytope: Tanner Codes Polytope for general Tanner codes: Edge weights For all code bits (left nodes), For all checks, codewords, sup J Feldman, C Stein, LP Decoding Achieves Capacity p11/18

ents Dual Polytope: Tanner Codes No noise in the binary symmetric channel +1 +1 Edge weights For all code bits (left nodes), +1 +1 For all checks, codewords, +1 sup J Feldman, C Stein, LP Decoding Achieves Capacity p12/18

Dual Polytope: Tanner Codes A bit of noise +1 +1-1 +1 - - - + + + + Edge weights For all code bits (left nodes), For all checks, codewords, -1 sup J Feldman, C Stein, LP Decoding Achieves Capacity p13/18

Using Expansion to Set Edge Weights G G G G Y Y strong codes GV codes (high rate) Code built from Ramanujan graph [SS 96, BZ 02] Top nodes: strong codes, rate Bottom nodes: GV-bound codes, rate Initial weighting: all top edges bottom edges, J Feldman, C Stein, LP Decoding Achieves Capacity p14/18

Using Expansion to Set Edge Weights G I J X Y Z [ \^] Error region N(err) \ X _ X \ Y _ Y \ Z _ Z \ [ _ [ ` Error region: checks w/ violated dual constraints Use expansion to spread out excess weight among neighbors details interesting but omitted Maintain a, check constraints J Feldman, C Stein, LP Decoding Achieves Capacity p15/18

Using Expansion to Set Edge Weights _ \ X J X X Y _ \ Y G Y Z _ \ Z Z I _ \ [ [ [ ` Error region \^] N(err) Thm: For any memoryless symmetric LLRbounded channel with capacity, and any rate, there exists a code family of rate for which the word error rate of LP decoding is J Feldman, C Stein, LP Decoding Achieves Capacity p16/18

Future work: LP Decoder Applications/Extensions Turbo codes: natural flow-like LP [FK 02][Fel 03] RA(1/2) codes: WER Can we get WER [FK 02][EH 03]? (eg, rate 1/3 RA) J Feldman, C Stein, LP Decoding Achieves Capacity p17/18

Future work: LP Decoder Applications/Extensions Turbo codes: natural flow-like LP [FK 02][Fel 03] RA(1/2) codes: WER Can we get WER Tighter relaxation (lift and project)? [FK 02][EH 03]? (eg, rate 1/3 RA) ML decoding using IP (branch and bound)? Deeper connections to message-passing? More efficient algorithm to solve LP? J Feldman, C Stein, LP Decoding Achieves Capacity p17/18

Major Open Questions Achieve capacity, decoding time poly All previous capacity results: Explicit ML decoding of poly This result: Representation of ch(poly -length codes -length codes) J Feldman, C Stein, LP Decoding Achieves Capacity p18/18

Major Open Questions Achieve capacity, decoding time poly All previous capacity results: Explicit ML decoding of poly This result: Representation of ch(poly -length codes -length codes) Achieve near-capacity rates for LDPC codes without the tree assumption Small cycles are bad : fact of fiction? Expansion: to limited? J Feldman, C Stein, LP Decoding Achieves Capacity p18/18