phase: synthesis of biaryls, terphenyls and polyaryls



Σχετικά έγγραφα
Bishwajit Saikia*, Preeti Rekha Boruah, Abdul Aziz Ali and Diganta Sarma. Contents

ESI for. A simple and efficient protocol for the palladium-catalyzed. ligand-free Suzuki reaction at room temperature in aqueous DMF.

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran

Electronic Supplementary Information

D-Glucosamine-derived copper catalyst for Ullmann-type C- N coupling reaction: theoretical and experimental study

Supporting Information

and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

Supporting Information

Novel and Selective Palladium-Catalyzed Annulation of 2-Alkynylphenols to Form 2-Substituted 3-Halobenzo[b]furans. Supporting Information

Iodine-catalyzed synthesis of sulfur-bridged enaminones and chromones via double C(sp 2 )-H thiolation

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

Protease-catalysed Direct Asymmetric Mannich Reaction in Organic Solvent

Supporting Information

Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2009

Synthesis of Imines from Amines in Aliphatic Alcohols on Pd/ZrO 2 Catalyst at Ambient Conditions

Supporting Information. for. A novel application of 2-silylated 1,3-dithiolanes for the. synthesis of aryl/hetaryl-substituted ethenes and

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

Supporting Information

College of Life Science, Dalian Nationalities University, Dalian , PR China.

Supporting Information

Copper-Catalyzed Oxidative Coupling of Acids with Alkanes Involving Dehydrogenation: Facile Access to Allylic Esters and Alkylalkenes

SUPPLEMENTARY DATA. Waste-to-useful: Biowaste-derived heterogeneous catalyst for a green and sustainable Henry reaction

Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%.

Eur. J. Inorg. Chem WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007 ISSN SUPPORTING INFORMATION

Available online at shd.org.rs/jscs/

Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone.

Efficient Synthesis of Ureas by Direct Palladium-Catalyzed. Oxidative Carbonylation of Amines

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

Supporting information

Supplementary material

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Supporting Information

Available online at

Rh(III)-Catalyzed C-H Amidation with N-hydroxycarbamates: A. new Entry to N-Carbamate Protected Arylamines

Comparison of carbon-sulfur and carbon-amine bond in therapeutic drug: -S-aromatic heterocyclic podophyllum derivatives display antitumor activity

Synthesis of novel 1,2,3-triazolyl derivatives of pregnane, androstane and D-homoandrostane. Tandem Click reaction/cu-catalyzed D-homo rearrangement

Electronic Supplementary Information

A straightforward metal-free synthesis of 2-substituted thiazolines in air

Supporting information

Supporting information. Palladium nanoparticles generated in situ used as catalysts in carbonylative cross-coupling in aqueous medium

SUPPLEMENTARY MATERIAL

Room Temperature Highly Diastereoselective Zn-Mediated. Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled

The Free Internet Journal for Organic Chemistry

Supporting Information

Supporting Information

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Copper-promoted hydration and annulation of 2-fluorophenylacetylene derivatives: from alkynes to benzo[b]furans and benzo[b]thiophenes

Chemical Constituents and Antioxidant Activity of Teucrium barbeyanum Aschers.

Fluorinative Ring-opening of Cyclopropanes by Hypervalent Iodine Reagents. An Efficient Method for 1,3- Oxyfluorination and 1,3-Difluorination

gem-dichloroalkenes for the Construction of 3-Arylchromones

Supporting Information for

Supporting Information

Heterobimetallic Pd-Sn Catalysis: Michael Addition. Reaction with C-, N-, O-, S- Nucleophiles and In-situ. Diagnostics

Divergent synthesis of various iminocyclitols from D-ribose

Supporting Information

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2008

Supporting Information

SUPPORTING INFORMATION

Supporting Information

Supporting Information

Fast copper-, ligand- and solvent-free Sonogashira coupling in a ball mill

Supporting Information

Tributylphosphine-Catalyzed Cycloaddition of Aziridines with Carbon Disulfide and Isothiocyanate

Electronic Supplementary Information

Supporting Information

Supporting Information

Vilsmeier Haack reagent-promoted formyloxylation of α-chloro-narylacetamides

Supporting Information

Supporting Information. Pd(0)-Catalyzed Decarboxylative Coupling and Tandem C H Arylation/Decarboxylation for the. Synthesis of Heteroaromatic Biaryls

Supplementary Data. Engineering, Nanjing University, Nanjing , P. R. China;

Supplementary Material

Sotto, 8; Perugia, Italia. Fax: ; Tel: ;

Supplementary Information. Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3

Selective mono reduction of bisphosphine

Asymmetric Allylic Alkylation of Ketone Enolates: An Asymmetric Claisen Surrogate.

Facile construction of the functionalized 4H-chromene via tandem. benzylation and cyclization. Jinmin Fan and Zhiyong Wang*

Available online at shd.org.rs/jscs/

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes

Rhodium-Catalyzed Oxidative Decarbonylative Heck-type Coupling of Aromatic Aldehydes with Terminal Alkenes

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

using metal-organic framework Cu-MOF-74 as an efficient heterogeneous catalyst Hanh T. H. Nguyen, Oanh T. K. Nguyen, Thanh Truong *, Nam T. S.

Direct Palladium-Catalyzed Arylations of Aryl Bromides. with 2/9-Substituted Pyrimido[5,4-b]indolizines

Supporting Information. Partial thioamide scan on the lipopeptaibiotic trichogin GA IV. Effects on

SUPPORTING INFORMATION

Supporting Information for

A novel 4-aminoantipyrine-Pd(II) complex catalyzes. Suzuki Miyaura cross-coupling reactions of aryl

Hiyama Cross-Coupling of Chloro-, Fluoroand Methoxy- pyridyl trimethylsilanes : Room-temperature Novel Access to Functional Bi(het)aryl

Supporting Information. Experimental section

The N,S-Bidentate Ligand Assisted Pd-Catalyzed C(sp 2 )-H. Carbonylation using Langlois Reagent as CO Source. Supporting Information.

Supporting Information

Phosphorus Oxychloride as an Efficient Coupling Reagent for the Synthesis of Ester, Amide and Peptide under Mild Conditions

Supporting Information. Synthesis and biological evaluation of nojirimycin- and

Supporting Information

Supporting information

Transcript:

Supporting Information for Studies on Pd/NiFe 2 O 4 catalyzed ligand-free Suzuki reaction in aqueous phase: synthesis of biaryls, terphenyls and polyaryls Sanjay R. Borhade and Suresh B. Waghmode* Address: Department of Chemistry, University of Pune, Ganeshkhind, Pune-411007, India Email: Suresh B. Waghmode - suresh@chem.unipune.ac.in Phone +91 20 2560 1225 (extension) 545 and 585; Fax +91 20 2569 1728 *Corresponding author Characterization data of the catalyst and of the products 1 29 Content Page No 1. Figure 1: Scanning electron microscope image for the Pd/NiFe 2 O 4... 2 2. Figure 2: The X-ray photoemission spectra of Pd/NiFe 2 O 4... 3 3. Figure 3: Effect of various concentrations on the Suzuki coupling reaction... 4 4. Figure 4: X-ray diffraction pattern for the fresh and spent Pd/NiFe 2 O 4 catalyst... 5 5. Table 1: Recycling of Pd/NiFe 2 O 4... 6 6. Characterization data of the products 1 29... 7 7. References... 16

1. Figure 1: Scanning electron microscope image for the Pd/NiFe 2 O 4.

2. Figure 2: The X-ray photoemission spectrum of Pd/NiFe 2 O 4. Intensity / Countes per second Pd 3d 5/2 335.3 ev Pd 3d 3/2 340.5 ev 330 332 334 336 338 340 342 344 Binding Energy (ev)

3. Figure 3: Effect of various concentrations on the Suzuki coupling reaction [a]. 100 Concentration % 80 60 40 20 conc 0.500 conc 0.250 conc 0.100 conc 0.075 conc 0.050 conc 0.025 conc 0.010 conc 0.005 0 0 10 20 30 40 50 60 Time (min) [a] Reaction conditions: iodobenzene (1 mmol), phenylboronic acid (1.2 mmol), base (2 mmol), 4 ml of 1:1 H 2 O/DMF, at 90 C and at different Pd concentrations.

4. Figure 4: X-ray diffraction pattern for the fresh and spent Pd/NiFe 2 O 4 catalyst. Spent Pd/NiFe 2 O 4 Intensity (a.u.) Fresh Pd/NiFe 2 O 4 (311) (511) (400) (440) (220) 10 20 30 40 50 60 70 2 theta (degs.)

5. Table 1: Recycling of Pd/NiFe 2 O 4 for the Suzuki reaction of iodobenzene with phenylboronic acid a Entry Catalyst Time (min) % Conversion b 1 first cycle 10 100 2 second cycle 20 100 3 third cycle 20 98 4 fourth cycle 20 91 5 fifth cycle 30 95 a Reaction conditions: iodobenzene (1 mmol), phenylboronic acid (1.2 mmol), Na 2 CO 3 (2 mmol), 4 ml of 1:1 H 2 O/DMF and Pd/NiFe 2 O 4 (0.1 mol %) at 90 C. b Conversions were determined by GC ( rel = ±5 %).

6. Characterization data for the products Biphenyl [1, 92-52-4, Ref. 1] 1 H NMR (300 MHz, CDCl 3, TMS): δ 7.27 7.31 (m, 2H), 7.40 (t, 4H, J = 7.1 Hz), 7.54 (d, 4H, J = 7.1 Hz), 13 C NMR (75 MHz, CDCl 3, TMS): δ 127.0, 127.1, 128.6, 141.0. FTIR (KBr, cm 1 ): 1429, 1479, 3036. MS (EI): m/z 154 (M + ). 3-(Hydroxymethyl)biphenyl [2, 69605-90-6, Ref. 2] 1 H NMR (300 MHz, CDCl 3, TMS): δ 2.29 (s, 1H), 4.66 (s, 2H), 7.25 7.55 (m, 9H). 13 C NMR (75 MHz, CDCl 3, TMS): δ 65.1, 125.6, 125.7, 126.2, 127.0, 127.2, 128.6, 128.8, 140.7, 141.1, 141.3. FTIR (KBr, cm 1 ): 1186, 1454, 1477, 3313-3381. MS (EI): m/z 184 (M + ). 3-Carbethoxybiphenyl [3, 19926-50-2, Ref. 3] COOEt 1 H NMR (300 MHz, CDCl 3, TMS): δ 1.43 (t, 3H, J = 7.1 Hz), 4.41 (q, 2H, J = 7.1 Hz), 7.38 7.47 (m, 4H), 7.61 (d, 2H, 7.7 Hz), 7.77 (d, 1H, J = 7.7 Hz), 8.01 (d, 1H, J = 7.7 Hz) 8.27 (s, 1H). 13 C NMR (75 MHz, CDCl 3, TMS): δ 14.4, 61.0, 127.0, 127.6, 128.1, 128.2, 128.7, 128.7, 130.9, 131.3, 140.0, 141.2, 166.3. FTIR (KBr, cm 1 ): 2982, 1718, 1593, 1301, 1242. MS (EI): m/z 226 (M + ). 3-Aminobiphenyl [4, 2243-47-2, Ref. 4] NH 2 1 H NMR (300 MHz, CDCl 3 +2 drops of DMSO-d 6, TMS): δ 3.78 (bs, 2H), 6.67 (d, 1H, J = 7.1 Hz), 6.92 (d, 1H, J = 6.6 Hz), 6.93 (s, 1H), 7.17 (t, 1H, J = 7.9 Hz), 7.29 (d, 1H, J = 7.1 Hz) 7.38 (t, 2H, J = 7.7 Hz), 7.52 (d, 2H, J = 7.1 Hz). 13 C NMR

(75 MHz, CDCl 3 +2 drops of DMSO-d 6, TMS): δ 113.0, 113.6, 116.2, 125.8, 126.2, 127.6, 128.6, 140.1, 140.9, 145.4. FTIR (neat, cm 1 ): 3446, 3369, 3054, 1618, 1575, 1481, 1317, 1226. MS (EI): m/z 169 (M + ). 2-Amino-5-phenylpyrimidine [5, 31408-23-8, Ref. 5] N N NH 2 1 H NMR (300 MHz, CDCl 3, TMS): δ 5.60 (bs, 2H), 7.36 7.47 (m, 5H), 8.52 (s, 2H). 13 C NMR (75 MHz, CDCl 3, TMS): δ 124.6, 125.8, 127.41, 129.0, 135.0, 156.2, 162.0. FTIR (KBr, cm 1 ): 3178, 3323, 1600, 1518, 1136. MS (EI): m/z 171 (M + ). 3-Methoxy-5-phenylpyridine [6, 53698-52-5, Ref. 6] N OMe 1 H NMR (300 MHz, CDCl 3, TMS): δ 3.90 (s, 3H), 7.35 7.56 (m, 6H), 8.27 (s, 1H), 8.44 (s, 1H). 13 C NMR (75 MHz, CDCl 3, TMS): δ 55.6, 119.1, 127.1, 128.1, 128.9, 135.6, 137.4, 140.3, 155.5. FTIR (KBr, cm 1 ): 1413, 1498, 1587, 2929, 3057. MS (EI): m/z 185 (M + ). 4-Hydroxybiphenyl [7, 92-69-3, Ref. 7] 1 H NMR (300 MHz, CDCl 3, TMS): δ 4.51 (br s, 1H), 6.89 (d, 2H, J = HO 8.5 Hz), 7.24 7.55 (m, 7H). 13 C NMR (75 MHz, CDCl 3, TMS): δ 115.5, 126.6, 128.2, 128.6, 133.7, 140.6, 155.0. FTIR (KBr, cm 1 ): 1487, 1597, 3037, 3416. MS (EI): m/z 170 (M + ).

2-(Trifluromethyl)biphenyl [8, 362-59-4, Ref. 8] CF 3 1 H NMR (300 MHz, CDCl 3, TMS): δ 7.27 7.49 (m, 8H), 7.70 (d, 1H, J = 7.7 Hz). 13 C NMR (75 MHz, CDCl 3, TMS): δ 122.7, 126.3 (q), 126.4, 127.5, 127.6, 127.9, 128.0, 128.6, 129.3, 131.6, 132.4, 140.2, 141.7. FTIR (KBr, cm 1 ): 1315, 1483, 1600, 2926. MS (EI): m/z 222 (M + ). 2-Hydroxybiphenyl [9, 90-43-7, Ref. 9] 1 H NMR (300 MHz, CDCl 3, TMS): δ 5.23 (bs, 1H), 6.94 (t, 2H), 7.20 (t, 2H), 7.33 7.41 (m, 5H). 13 C NMR (75 MHz, CDCl 3, TMS): δ 115.7, 120.7, 127.71, 128.0, 129.0, 129.1, 130.1, 136.9, 152.8. FTIR (KBr, cm 1 ): 1101, 1327, 1481, 1585, 3028, 3535 3558. MS (EI): m/z 170 (M + ). 2-Aminobiphenyl [10, 90-41-5, Ref. 10] NH 2 1 H NMR (300 MHz, CDCl 3, TMS): δ 3.74 (bs, 2H), 6.81(d, 1H, J = 7.7 Hz), 6.88 (t, 1H), 7.21(m, 2H), 7.41 (m, 1H), 7.49 (m, 4H), 13 C NMR (75 MHz, CDCl 3, TMS): δ 115.5, 118.5, 127.0, 127.5, 128.3, 128.6, 128.9, 130.3, 139.3, 143.2. FTIR (KBr, cm 1 ): 1292, 1481, 1612, 3022, 3387, 3479. MS (EI): m/z 169 (M + ). 2-Methoxybiphenyl [11, 86-26-0, Ref. 11] OMe 1 H NMR (300 MHz, CDCl 3, TMS): δ 3.77 (s, 3H), 6.92 6.98 (m, 2H), 7.25 7.30 (m, 3H), 7.34 (t, 2H), 7.51 (d, 2H, J = 6.8 Hz). 13 C NMR (75 MHz, CDCl 3, TMS): δ 55.5, 111.0, 120.7, 126.8, 127.8, 128.5, 129.4, 130.5, 130.7, 138.3, 156.2. FTIR (KBr, cm 1 ): 1247, 1467, 1599. MS (EI): m/z 184 (M + ).

4-Methoxy-[3-(hydroxymethyl)phenyl]benzene [12, 20854-56-2, Ref. 12] 1 H NMR (300 MHz, CDCl 3, TMS): δ 1.79 (s, 1H), 3.83 (s, 3H), MeO 4.72 (s, 2H), 6.93 (d, 2H, 8.8 Hz), 7.26 (d, 1H, J = 7.4 Hz), 7.38 (t, 1H, J = 7.7 Hz), 7.44 7.54 (m, 4H). 13 C NMR (75 MHz, CDCl 3, TMS): δ 55.3, 65.4, 114.1, 125.2, 125.2, 125.9, 128.0, 128.8, 133.3, 141.0, 141.2, 159.0. FTIR (KBr, cm 1 ): 3254, 1604, 1516, 1251, 1031. MS (EI): m/z 214 (M + ). 4-Methoxybiphenyl [13, 613-37-6, Ref. 13] MeO 1 H NMR (300 MHz, CDCl 3, TMS): δ 3.82 (s, 3H), 6.93 (d, 2H, J = 8.5 Hz), 7.27 (t, 1H), 7.38 (t, 2H), 7.51 (t, 4H). 13 C NMR (75 MHz, CDCl 3, TMS): δ 55.3, 114.1, 126.6, 128.0, 128.6, 133.6, 140.6, 158.9. FTIR (KBr, cm 1 ): 1037, 1247, 1485, 1604. MS (EI): m/z 184 (M + ). 4-Methylbiphenyl [14, 644-08-06, Ref. 13] 1 H NMR (300 MHz, CDCl 3, TMS): δ 2.37 (s, 3H), 7.20 (d, 2H, J = Me 7.7 Hz), 7.28 (t, 1H), 7.38 (t, 2H), 7.45 (d, 2H, J = 7.9 Hz), 7.54 (d, 2H, J = 7.4 Hz). 13 C NMR (75 MHz, CDCl 3, TMS): δ 21.2, 126.9, 128.6, 129.3, 136.8, 138.2, 141.0. FTIR (KBr, cm 1 ): 1485, 3030. MS (EI): m/z 168 (M + ). 4-Methyl-[3-(hydroxymethyl)phenyl]benzene [15, 89951-79-1, Ref. 14] Me 1 H NMR (300 MHz, CDCl 3, TMS): δ 1.95 (s, 1H), 2.37 (s, 3H), 4.70 (s, 2H), 7.20 (d, 2H, 7.7 Hz), 7.27 (d, 1H, J = 7.7 Hz), 7.37 (t, 1H, J = 7.4 Hz), 7.45 (d, 3H, J = 7.7 Hz) 7.54 (s, 1H). 13 C NMR (75 MHz, CDCl 3, TMS): δ 21.2,

65.3, 125.5, 126.1, 126.8, 128.8, 129.4, 137.0, 137.9, 141.1, 141.3. FTIR (KBr, cm 1 ): 3375, 3302, 2916, 1608, 1485, 1342, 1190. MS (EI): m/z 198 (M + ). 4-Nitro-[3-(hydroxymethyl)phenyl]benzene [16, 62038-00-0, Ref. 6] 1 H NMR (300 MHz, CDCl 3, TMS): δ 2.05 (s, 1H), 4.78 (s, 2H), O 2 N 7.42 7.51 (m, 4H), 7.61 (s, 1H), 7.70 (d, 2H, J = 8.5 Hz), 8.25 (d, 2H, J = 8.5 Hz). 13 C NMR (75 MHz, CDCl 3, TMS): δ 64.9, 123.9, 125.7, 126.4, 127.2, 127.7, 129.2, 138.8, 141.7, 146.8, 147.2. FTIR (KBr, cm 1 ): 1035, 1346, 1516, 1597, 2929, 3282 3373. MS (EI): m/z 229 (M + ). 4-Nitrobiphenyl [17, 92-93-3, Ref. 13] O 2 N 1 H NMR (300 MHz, CDCl 3, TMS): δ 7.42-7.50 (m, 3H), 7.60 (d, 2H, J = 6.8 Hz), 7.71 (d, 2H, J = 8.8 Hz), 8.27 (d, 2H, 8.8 Hz). 13 C NMR (75 MHz, CDCl 3, TMS): δ 124.0, 127.2, 127.7, 128.8, 129.0, 138.6, 146.9, 147.4. FTIR (KBr, cm 1 ): 1109, 1348, 1512, 1595, 3076. MS (EI): m/z 199 (M + ). 4-Chloro-[3-(hydroxymethyl)phenyl]benzene [18, 773872-39-2, Ref. 6] Cl 1 H NMR (300 MHz, CDCl 3, TMS): δ 1.93 (s, 1H), 4.72 (s, 2H), 7.35 (m, 4H), 7.47 (m, 4H). 13 C NMR (75 MHz, CDCl 3, TMS): δ 65.2, 125.4, 126.0, 126.1, 128.2, 128.8, 129.0, 133.3, 139.2, 140.1, 141.3. FTIR (KBr, cm 1 ): 3348, 1475, 1433, 1338, 1188. MS (EI): m/z 218 (M + ).

4-Chlorobiphenyl [19, 2051-62-9, Ref. 15] Cl 1 H NMR (300 MHz, CDCl 3, TMS): δ 7.28 7.51 (m, 9H), 13 C NMR (75 MHz, CDCl 3, TMS): δ 126.8, 127.4, 128.2, 128.7, 133.2, 139.4, 139.8. FTIR (KBr, cm 1 ): 1099, 1479, 1591, 3063. MS (EI): m/z 188 (M + ). 4-Phenylbenzaldehyde [20, 3218-36-8, Ref. 1] 1 H NMR (300 MHz, CDCl 3, TMS): δ 7.36 7.47 (m, 3H), 7.59 (d, 2H, C J = 7.7 Hz), 7.71 (d, 2H, J = 7.9 Hz), 7.91 (d, 2H, 8.2 Hz), 10.01 (s, 1H), 13 C NMR (75 MHz, CDCl 3, TMS): δ 127.2, 127.5, 128.3, 128.8, 130.1, 135.0, 139.5, 147.0, 191.7. FTIR (KBr, cm -1 ): 1217, 1481, 1602, 1689, 2746, 2835, 3026. MS (EI): m/z 182 (M + ). 4-Acetylbiphenyl [21, 92-91-1, Ref. 15] Ac 1 H NMR (300 MHz, CDCl 3, TMS): δ 2.63 (s, 3H), 7.37 7.47 (m, 3H), 7.59 (d, 2H, J = 7.1 Hz), 7.66 (d, 2H, J = 7.9 Hz), 8.01 (d, 2H, J = 8.25 Hz). 13 C NMR (75 MHz, CDCl 3, TMS): δ 26.8, 127.1, 128.1, 128.8, 135.7, 139.7, 145.6, 198.8. FTIR (KBr, cm 1 ): 2999, 1678, 1600, 1558, 1263. MS (EI): m/z 196 (M + ). 1,2-Diphenylbenzene [22, 84-15-1, Ref. 16] 1 H NMR (300 MHz, CDCl 3, TMS): δ 7.21 7.38 (m, 10H), 7.46 (s, 4H). 13 C NMR (75 MHz, CDCl 3, TMS): δ 126.3, 127.0, 127.14, 127.3, 127.7, MS (EI): m/z 230 (M + ). 128.6, 129.8, 130.5, 140.4, 141.4. FTIR (KBr, cm 1 ): 1265, 1421, 1618, 2924.

1,2-bis[(3-hydroxymethyl)phenyl]benzene [23, New compound] 1 H NMR (300 MHz, CDCl 3, TMS): δ 3.24 (s, 2H), 4.40 (s, 4H), 7.01 7.18 (m, 8H), 7.39 7.43 (m, 4H), 13 C NMR (75 MHz, CDCl 3, TMS): δ 64.7, 125.2, 127.4, 127.9, 128.8, 130.1, 140.1, 141.3. FTIR (KBr, cm 1 ): 1045, 1406, 1460, 1624, 3416. MS (EI): m/z 290 (M + ). Anal. Calcd for C 20 H 18 O 2 : C, 82.73; H, 6.25; O, 11.02. Found: C, 82.71; H, 6.28. 1,4-Diphenylbenzene [24, 92-94-4, Ref. 17] 1 H NMR (300 MHz, CDCl 3, TMS): δ 7.36 (t, 2H, J = 7.1 Hz), 7.45 (t, 4H, J = 7.5 Hz), 7.62 (d, 4H, J = 7.1 Hz), 7.65 (s, 4H). 13 C NMR (75 MHz, CDCl 3, TMS): δ 126.9, 127.2, 127.4, 128.7, 140.0, 140.5. FTIR (KBr, cm 1 ): 3034, 1604, 1479. MS (EI): m/z 230 (M + ). 1,4-Bis[3-(hydroxymethyl)phenyl]benzene [25, New compound] HO 1 H NMR (300 MHz, CDCl 3, TMS): δ 4.57 (d, 4H), 5.28 (t, 2H), 7.32 (d, J = 7.42 Hz, 2H), 7.43 (t, J = 7.70 Hz, 2H), 7.58 (d, J = 7.70 Hz, 2H), 7.67 (s, 2H), 7.76 (s, 4H). 13 C NMR (75 MHz, CDCl 3, TMS): δ 62.9, 124.6, 125.6, 127.1, 128.7, 139.2, 139.3, 143.3. FTIR (KBr, cm 1 ): 1008, 1201, 1433, 1481, 1604, 2929, 3417-3444. MS (DI): m/z 290 (M + ). Anal. Calcd for C 20 H 18 O 2 : C, 82.73; H, 6.25; O, 11.02. Found: C, 82.52; H, 6.10.

1,3-Diphenylbenzene [26, 92-06-8, Ref. 17] 1 H NMR (300 MHz, CDCl 3, TMS): δ 7.33 7.63 (m, 13H), 7.79 (s, 3H), 13 C NMR (75 MHz, CDCl 3, TMS): δ 126.0, 127.1, 127.3, 128.7, 129.0, (EI): m/z 230 (M + ). 141.02, 141.6. FTIR (KBr, cm 1 ):3057, 3032, 1597, 1568, 1496, 1402. MS 1,3-Bis[3-(hydroxymethyl)phenyl]benzene [27, New compound] 1 H NMR (300 MHz, CDCl 3, TMS): δ 3.21 (s, 2H), 4.58 (s, 4H), HO 7.19 (d, J = 7.1 Hz, 2H), 7.26 7.43 (m, 7H), 7.50 (s, 2H), 7.67 (s, 1H). 13 C NMR (75 MHz, CDCl 3, TMS): δ 64.8, 125.4, 125.5, 125.7, 125.8, 125.9, 126.0, 126.1, 128.7, 129.0, 141.0, 141.2, 141.2. FTIR (KBr, cm 1 ): 1028, 1265, 1417, 1602, 2926, 3412. MS (DI): m/z 290 (M + ). Anal. Calcd for C 20 H 18 O 2 : C, 82.73; H, 6.25; O, 11.02. Found: C, 82.64; H, 6.24. 1,3,5-Triphenylbenzene [28, 612-71-5, Ref. 16] 1 H NMR (300 MHz, CDCl 3, TMS): δ 7.37 (t, 3H, J = 7.1 Hz), 7.46 (t, 5H, J = 7.7 Hz), 7.68 (d, 5H, J = 7.45 Hz), 7.77 (s, 3H). 13 C NMR (75 MHz, CDCl 3, TMS): δ 125.1, 127.2, 127.4, 128.4, 141.0, 142.2. FTIR (KBr, cm 1 ): 3057, 3033, 1593, 1494, 1410. MS (EI): m/z 306 (M + ).

1,3,5-Tris[3-(hydroxymethyl)phenyl]benzene [29, New compound] HO 1 H NMR (300 MHz, DMSO-d 6, TMS): δ 4.61 (d, 6H, J = 5.7 Hz), 5.30 (t, 3H, J = 5.7 Hz), 7.36 (d, 3H, J = 7.4 Hz), 7.46 (t, 3H, J = 7.4 Hz), 7.70 (d, 3H, J = 7.4 Hz) 7.76 (s, 3H), 7.85 (s, 3H). 13 C NMR (75 MHz, DMSO-d 6, TMS): δ 62.9, 124.1, 125.0, 125.3, 125.8, 128.6, 139.7, 141.6, 143.1. FTIR (KBr, cm 1 ): 3281, 2870, 1595, 1585, 1400. MS (DI): m/z 396 (M + ). Anal. Calcd for C 27 H 24 O 3 : C, 81.79; H, 6.10; O, 12.11. Found: C, 81.77; H, 6.18.

7. References [1] J. Mao, J. Guo, F. Fang, S. J. Ji, Tetrahedron 2008, 64, 3905-3911. [2] G. S. Hammond, C. E. Reeder, J. Am. Chem. Soc. 1958, 80, 573-575. [3] D. P. Curran, A. I. Keller, J. Am. Chem. Soc. 2006, 128, 13706-13707. [4] B. Tao, D. W. Boykin, J. Org. Chem. 2004, 69, 4330-4335. [5] S. Zhu, S. Shi, S. W. Gerritz, M. J. Sofia, J. Comb. Chem. 2003, 5, 205-207. [6] S. B. Waghmode, S. R. Borhade, Ind. J. Chem. 2010, 49B, 565-572. [7] Y. Endo, K. Shudo, T. Okamoto, J. Am. Chem. Soc., 1982, 104, 6393-6397. [8] D. Badone, M. Baroni, R. Cardamone, A. Ielmini, U. Guzzi, J. Org. Chem. 1997, 62, 7170-7173. [9] Q. J. Zhou, K. Worm, R. E. Dolle, J. Org. Chem. 2004, 69, 5147-5149. [10] L. Liu, Y. Zhang, Y. Wang, J. Org. Chem. 2005, 70, 6122-6125. [11] M. E. Mowery, P. DeShong, J. Org. Chem. 1999, 64, 3266-3270. [12] U. Grether, H. Waldmann, Chem. Eur. J. 2001, 7, 959-971. [13] B. Tao, D. W. Boykin, J. Org. Chem. 2004, 69, 4330-4335. [14] Y. Hatanaka, K. Goda, Y. Okahara, T. Hiyama, Tetrahedron 1994, 50, 8301-8319. [15] Y. M. A. Yamada, K. Takeda, H. Takahashi, S. Ikegami, Org. Lett. 2002, 4, 3371-3374. [16] S. Paul, J. H. Clark, Green Chem. 2003, 5, 635-638. [17] D. J. Sinclair, M. S. Sherburn, J. Org. Chem. 2005, 70, 3730-3733.