( ) 2 and compare to M.

Σχετικά έγγραφα
Homework 3 Solutions

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Matrices and Determinants

2 Composition. Invertible Mappings

w o = R 1 p. (1) R = p =. = 1

Section 8.3 Trigonometric Equations

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Example Sheet 3 Solutions

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

EE512: Error Control Coding

Finite Field Problems: Solutions

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Areas and Lengths in Polar Coordinates

Section 7.6 Double and Half Angle Formulas

Areas and Lengths in Polar Coordinates

Numerical Analysis FMN011

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

6.3 Forecasting ARMA processes

Partial Differential Equations in Biology The boundary element method. March 26, 2013

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Inverse trigonometric functions & General Solution of Trigonometric Equations

Quadratic Expressions

Section 9.2 Polar Equations and Graphs

Srednicki Chapter 55

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Concrete Mathematics Exercises from 30 September 2016

C.S. 430 Assignment 6, Sample Solutions

Homework 8 Model Solution Section

4.6 Autoregressive Moving Average Model ARMA(1,1)

The Simply Typed Lambda Calculus

Tridiagonal matrices. Gérard MEURANT. October, 2008

Solutions to Exercise Sheet 5

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Reminders: linear functions

derivation of the Laplacian from rectangular to spherical coordinates

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y

PARTIAL NOTES for 6.1 Trigonometric Identities

Approximation of distance between locations on earth given by latitude and longitude

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Problem Set 3: Solutions

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Variational Wavefunction for the Helium Atom

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

ECON 381 SC ASSIGNMENT 2

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Higher Derivative Gravity Theories

[1] P Q. Fig. 3.1

Congruence Classes of Invertible Matrices of Order 3 over F 2

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Trigonometry 1.TRIGONOMETRIC RATIOS

Section 8.2 Graphs of Polar Equations

Second Order RLC Filters

Tutorial problem set 6,

Parametrized Surfaces

Math221: HW# 1 solutions

If we restrict the domain of y = sin x to [ π 2, π 2

New bounds for spherical two-distance sets and equiangular lines

Other Test Constructions: Likelihood Ratio & Bayes Tests

Second Order Partial Differential Equations

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

TMA4115 Matematikk 3

Testing for Indeterminacy: An Application to U.S. Monetary Policy. Technical Appendix

1 String with massive end-points

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Lecture 26: Circular domains

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Strain gauge and rosettes

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Math 6 SL Probability Distributions Practice Test Mark Scheme

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Space-Time Symmetries

On a four-dimensional hyperbolic manifold with finite volume

ST5224: Advanced Statistical Theory II

CRASH COURSE IN PRECALCULUS

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices

Statistical Inference I Locally most powerful tests

Μηχανική Μάθηση Hypothesis Testing

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

A Note on Intuitionistic Fuzzy. Equivalence Relation

Derivation of Optical-Bloch Equations

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Transcript:

Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8 If M / 2 a!b!b c, then M M / 2 M / 2 a!b a!b a2 + b 2!ab! bc 3!0!b c!b c!ab! bc b 2 + c 2!0 8 This yields the 3 nonlinear algebraic equations: a 2 + b 2 3 ab + bc 0 b 2 + c 2 8 There are several possible solutions but only one that makes M /2 positive definite which is a 3, b c 2 as determined below in Mathcad. Choosing these values results in M / 2 3!2!2 2

4.20 Normalize the vectors 0,!2 5!0., 0. first with respect to unity i.e., x T x ) and then again with respect to the matrix M i.e., x T Mx ), where Solution: a) Normalize the vectors 3!0. M!0. 2 x!2 x T x 5 Normalized: Normalized: x 0.4472 5!2!0.8944! x 2 0 5 2 x T x 5! x 2 0 x 3!0. 0. 3 x T x 0.02 Normalized:

x 3 50!0.!!0.707 0. 2 0.707 b) Mass normalize the vectors x!2 x T Mx.4 Mass normalized: x 0.2962.4!2!.5923! x 2 0 5! 2 x T Mx 50 x 2! 0 50 5! 0 2! 0 0.707 x 3!0. 0. 3 x T Mx 0.052 Mass normalized: x 3!0.!0.4385 0.052 0. 0.4385

4.2 For the example illustrated in Figure P4. with c c 2 c 3 0, calculate the matrix K!. Solution: From Figure 4.,! m 0!!!x + k + k k 2 2 0 m 2 k 2 k 2 + k 3 x 0!K M!/ 2 KM!/ 2 m!/ 2 0 k + k 2!k 2!/ 2 0 m 2!k 2 k 2 + k 3!K m!!/ k + k 2 )!m 2!/ m 2 2 k 2!/!m 2!/ m 2 2 k 2 m! k 2 + k 3 ) Since K! T K,! K! is symmetric. Using the numbers given in problem 4.2 yields!k 3!! 6 This is obviously symmetric. 0!/ 2 0 m 2 m!/ 2

4.22 Repeat Example 4.2.5 using eight decimal places. Does P T P, and does P T!KP! diag 2 2 2 exactly? Solution: From Example 4.2.5, 2!!K det!k! )I! 3 ) 2.89022777, and ) 2 2.0977223 Calculate eigenvectors and normalize them:! 2.89022777 9.0977223 0.0977223 v v 2 2 + v 2 ) ) 2! 5) + 35 0 v v 2 v 2 + 9.0977223) 2 v 2 )v 0.09677 and v 2 0.99402894 T v 0.09677 0.99402894! 2 2.0977223 0.0977223 ) 9.0977223 v 2 9.0977223v 22 v 2 v 2 2 2 + v 22 0 0 )9.0977223v v 2 v 2 v 22 ) ) 0 0 ) 9.0977223) 2 v 2 2 22 + v 22 v 2 9.09677, and v 22 0.99402894 T v 2 0.99402894 0.09677! 0.09677 0.99402894 Now, P! v v 2 0.99402894 0.09677 Check P T PI! P T P.00000000 0 I to 8 decimal places) 0.00000000 ) Check P T!KP! diag, 2

2.89022778 0.00000002! P T!KP 0.00000002 2.0977227 diag, 2 ) 2.89022777 0 0 2.0977223 This is accurate to 7 decimal places.

4.23 Discuss the relationship or difference between a mode shape of equation 4.54) and an eigenvector of! K. Solution: The relationship between a mode shape, u, of M!!x + Kx 0 and an eigenvector, v, of!k M!/ 2 KM!/ 2 is given by v i M / 2 u i or u i M!/ 2 v i If v is normalized, then u is mass normalized. This is shown by the relation v i T v i u i T Mu i 4.24 Calculate the units of the elements of matrix! K. Solution:!K M!/ 2 KM!/ 2 M -/2 has units kg -/2 K has units N/m kg/s 2 So, K! has units kg ) -/2 kg/s ) 2 kg )!/ 2 s!2

4.25 Calculate the spectral matrix Λ and the modal matrix P for the vehicle model of Problem 4.4, Figure P4.4. Solution: From Problem 4.4:! M!!x + Kx 2000 0! 000 000!!x + x 0 0 50 000,000 Calculate eigenvalues: det!k! I ) 0 The spectral matrix is 0.5!3.62!K M!/ 2 KM!/ 2!3.62 220 0.5!!3.62!3.62 220! 2! 220.5 + 00 0,2 0.454,220.05! diag 0 220.05 ) 0.454 0 Calculate eigenvectors and normalize them:! 0.454 0.0455 3.62 3.62 29.55 v v 2 2 + v 22 v v 2 0 ) v 69.426v 2 69.426) 2 v 2 2 2 + v 2 ) v 2 0.044, and v 0.9999! 2 220.05 The modal matrix is 29.55 3.62 3.62 0.0455 v 2 0.044v 22 v 2 v 2 2 2 + v 22 ) v 0.9999 0.044 v 2 v 22 0 0.044) 2 v 2 2 22 + v 22 ) v 22 0.9999, and v 2 0.044 ) v 2 0.044 0.9999 69.434v 2.000v 22

P! v v 2! 0.9999 0.044 0.044 0.9999

4.26 Calculate the spectral matrix Λ and the modal matrix P for the subway car system of Problem 4.2, Figure P4.2. Solution: From problem 4.2 and Figure P4.2,! M!!x + Kx 2000 0! 280,000 280,000!!x + x 0 0 2000 280,000 280,000 Calculate eigenvalues: The spectral matrix is det!k! I ) 0 40!40!K M!/ 2 KM!/ 2!40 40 40!!40!40 40! 2! 280 0,2 0,280! diag i Calculate eigenvectors and normalize them:! 0 40 40 40 40 v v 2 v v 2 2 + v 2 v 2 0.707 v 0.707 v 0.707 0.707 0 280 ) 0 0 v v 2 0 v 2 2 2 + v 2.44v 2! 2 280 40 40 40 40 ) v 2 v 2 2 2 + v 22 ) v 2 0.707 0.707 v 2 v 22 0 ) v v 2 22 v 2 2 22 + v 22 4.4v 2 ) v 22 0.707,v 2 0.707

The modal matrix is P! v v 2! 0.707 0.707 0.707 0.707

4.27 Calculate! K for the torsional vibration example of Problem 4.. What are the units of! K? Solution: From Problem 4., The units of! K are J!! 3 0! + K! J 2!!! + k 2! 0 0 K J / 2 KJ / 2 J / 2 / 2 0.5774 0 J 2 0 / 2 0.5774 0 K J 2 k 2 / 2 0.5774 0 J 0 2 0 K k 0.6667 0.5774 J 2 0.5774 kg! m 2 rad / 2 N! m rad kg! m 2 rad / 2 s 2

4.28 Consider the system in the Figure P4.28 for the case where m kg, m 2 4 kg, k 240 N/m and k 2 300 N/m. Write the equations of motion in vector form and compute each of the following a) the natural frequencies b) the mode shapes c) the eigenvalues d) the eigenvectors e) show that the mode shapes are not orthogonal f) show that the eigenvectors are orthogonal g) show that the mode shapes and eigenvectors are related by M! 2 h) write the equations of motion in modal coordinates Note the purpose of this problem is to help you see the difference between these various quantities. Figure P.28 A two-degree of freedom system Solution From a free body diagram, the equations of motion in vector form are! 0! 540 300 0 4!!x + 300 300 x! 0 0 The natural frequencies can be calculated in two ways. The first is using the determinant following example 4..5: a) det! 2 M + K) 0 5.5509, 2 24.700 rad/s The second approach is to compute the eigenvalues of the matrix K! M! 2 KM! 2 following example 4.4.4, which yields the same answers. The mode shapes are calculate following the procedures of example 4..6 or numerically using eigk,m) in Matlab! b) u 0.5076 0.866, u! 0.9893 2 0.457 The eigenvectors are vectors that satisfy Kv!!v, where λ are the eigenvalues. These can be computed following example 4.2.2, or using [V,Dv]eigKt) in Matlab. The eigenvalues and eigenvectors are c)! 30.820,! 2 584.880,! d) v 0.2826 0.9592, v! 0.9592 2 0.2826

To show that the mode shapes are not orthogonal, show that u T u 2! 0 : e) u T u 2 0.5076)0.9893) + 0.866)!0.457) 0.3767 0 To show that the eigenvectors are orthogonal, compute the inner product to show that v T v 2 0 : f) v T v 2 0.2826)!0.9592) + 0.9592)0.2826) 0 To solve the next part merely compute M! 2 v and show that it is equal to u 2 2 see the discussion at the top of page 262. g) M! 2 v 0.9592 2!0.43, normalize to get -0.9893 0.457!u 2 Likewise, M! 2 v u. Note that if you use Matlab you ll automatically get normalized vectors. But the product M! 2 v 2 will not be normalized, so it must be normalized before comparing it to u 2. h) We can write down the modal equations, just as soon as we know the eigenvalues squares of the frequencies). They are:!! r t) + 30.82r t) 0!! r 2 t) + 583.89r 2 t) 0 4.29 Consider the following system:! 0!!!x + 3 x 0 0 4 where M is in kg and K is in N/m. a) Calculate the eigenvalues of the system. b) Calculate the eigenvectors and normalize them. Solution: Given: Calculate eigenvalues: det!k! I ) 0! M!!x + Kx 0!!!x + 3 x 0 0 4 3!0.5!K M!/ 2 KM!/ 2!0.5 0.25 3!!0.5!0.5 0.25! 2! 3.25 + 0.5 0,2 0.62,3.088

The spectral matrix is! diag i ) 0.62 0 0 3.088 Calculate eigenvectors and normalize them:! 0.62 2.838 0.5 0.5 0.088 v v 2 0 ) v.762v 2 v v 2 2 + v 2 0.762) 2 v 2 2 2 + v 2.05v 2 v 2 0.9848 and v 0.735 ) v 0.735 0.9848! 2 3.088 0.088 0.5 0.5 2.838 v 2 v 2 2 2 + v 22 v 2 v 22 0 ) v.762v 2 22 5.676) 2 v 2 2 22 + v 22 5.764v 22 ) v 22 0.735 and v 2 0.9848 ) v 2 0.9848 0.735

4.30 The torsional vibration of the wing of an airplane is modeled in Figure P4.30. Write the equation of motion in matrix form and calculate the natural frequencies in terms of the rotational inertia and stiffness of the wing See Figure.22). Solution: From Figure.22, k GJ p and k l 2 GJ p l 2 Equation of motion:! J 0!!! + k + k k 2 2 0 J 2 k 2 k 2 0! ) GJ! J 0 p +, GJ p + l!! l. * 2 - l 2 + 0 J 2 GJ p GJ 0 p l 2 l 2 Natural frequencies: GJ p +!GJ p + * J l l - * 2 l!k M!/ 2 KM!/ 2 2 J J 2 - * - *!GJ p GJ p - * l 2 J J J 2 2 l - )* 2,- Solving for λ yields det K!!.I ) GJ p + * J l l 2!. * * * * )*!GJ p l 2 J J 2 + - - -!GJ p GJ p -!. l 2 J J J 2 2 l - 2,-!,2 GJ p 2 + J l l 2 + + * - )* J 2 l 2,- The natural frequencies are ± GJ p 2 + J l l 2 + + * - )* J 2 l 2,- 2. 4 J J 2 l l 2

! and! 2 2

4.3 Calculate the value of the scalar a such that x [a - ] T and x 2 [ 0 ] T are orthogonal. Solution: To be orthogonal, x T x 2 0 So, x T x 2 a! 0 a + 0. Therefore, a -. 4.32 Normalize the vectors of Problem 4.3. Are they still orthogonal? Solution: From Problem 4.3, with a -,! x! and x 2 0 Normalize x :! So, x 0.5774! Normalize x 2 :! So, x 2 0.707 0 Check orthogonality:!x 2 ) T!x 2 ) a 2 0 0 2! 2! 0.707 x T x 2 0.5774) 0.707)!!!x ) T!x ) 0 0 Still orthogonal a 2 3! 2! 0.5774

4.33 Which of the following vectors are normal? Orthogonal? x! 2 0 2! 0. x 2 0.2 0.3! 0.3 x 3 0.4 0.3 Solution: Check vectors to see if they are normal: x / 2 + 0 + / 2 Normal x 2. 2 +.2 2 +.3 2.4 0.3742 Not normal x 3.3 2 +.4 2 +.3 2.34 0.583 Not normal Check vectors to see if they are orthogonal:!. x T x 2! / 2 0 / 2.2.2828 Not orthogonal.3!.3 x T 2 x 3!..2.3.4 0.2 Not orthogonal.3! / 2 x T 3 x!.3.4.3 0 0.4243 Not orthogonal / 2 Only x is normal, and none are orthogonal.