Lossy Medium EE142. Dr. Ray Kwok

Σχετικά έγγραφα
Chapter 4 : Linear Wire Antenna

Transmission Line Theory

Reflection & Transmission


ECE 222b Applied Electromagnetics Notes Set 3a

Homework #6. A circular cylinder of radius R rotates about the long axis with angular velocity

ITU-R P ITU-R P (ITU-R 204/3 ( )

ITU-R SM (2011/01)


Lecture 31. Wire Antennas. Generation of radiation by real wire antennas

Calculus and Differential Equations page 1 of 17 CALCULUS and DIFFERENTIAL EQUATIONS

Matrices and Determinants

ITU-R P (2012/02) &' (

5. Γραμμές μεταφοράς, κυματοδηγοί και κεραίες (Transmission lines, waveguides and antennas)

Homework 8 Model Solution Section

Areas and Lengths in Polar Coordinates

Second Order RLC Filters

The ε-pseudospectrum of a Matrix

α A G C T 國立交通大學生物資訊及系統生物研究所林勇欣老師

Laplace s Equation in Spherical Polar Coördinates

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

Chapter 5. Exercise Solutions. Microelectronics: Circuit Analysis and Design, 4 th edition Chapter 5 EX5.1 = 1 I. = βi EX EX5.3 = = I V EX5.

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Class 03 Systems modelling

Answers to practice exercises

Example 1: THE ELECTRIC DIPOLE

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

SOLUTIONS & ANSWERS FOR KERALA ENGINEERING ENTRANCE EXAMINATION-2018 PAPER II VERSION B1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

ΠΑΡΑΡΤΗΜΑ Ι AΠΑΝΤΗΣΕΙΣ ΚΕΦΑΛΑΙΟ 6. I z. nia 2 2 3/2. ni a 3/2 3/2. I,min. I,max. = 511 A/m, ( HII,max HII,min)/ HII,max. II,min.

Durbin-Levinson recursive method

Finite Field Problems: Solutions

Numerical Analysis FMN011

ITU-R SF ITU-R SF ( ) GHz 14,5-14,0 1,2.902 (WRC-03) 4.4. MHz GHz 14,5-14 ITU-R SF.1585 ( " " .ITU-R SF.

Section 8.3 Trigonometric Equations

F19MC2 Solutions 9 Complex Analysis

16 Electromagnetic induction

Areas and Lengths in Polar Coordinates

the total number of electrons passing through the lamp.

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1


! "#" "" $ "%& ' %$(%& % &'(!!")!*!&+ ,! %$( - .$'!"

General theorems of Optical Imaging systems

PP #6 Μηχανικές αρχές και η εφαρµογή τους στην Ενόργανη Γυµναστική

CRASH COURSE IN PRECALCULUS

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:

Lecture 30. An Array of Two Hertzian Dipole Antennas

Pairs of Random Variables

MathCity.org Merging man and maths

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

Section 7.6 Double and Half Angle Formulas

19. ATOMS, MOLECULES AND NUCLEI HOMEWORK SOLUTIONS

-! " #!$ %& ' %( #! )! ' 2003

Electrical Specifications at T AMB =25 C DC VOLTS (V) MAXIMUM POWER (dbm) DYNAMIC RANGE IP3 (dbm) (db) Output (1 db Comp.) at 2 f U. Typ.

Lifting Entry (continued)

Solar Neutrinos: Fluxes

CHAPTER 10. Hence, the circuit in the frequency domain is as shown below. 4 Ω V 1 V 2. 3Vx 10 = + 2 Ω. j4 Ω. V x. At node 1, (1) At node 2, where V

The Simply Typed Lambda Calculus

Κεραίες & Ασύρματες Ζεύξεις

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1


CORDIC Background (2A)

From the finite to the transfinite: Λµ-terms and streams

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems

= 0.927rad, t = 1.16ms

10.7 Performance of Second-Order System (Unit Step Response)

Trigonometry 1.TRIGONOMETRIC RATIOS

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

.. ntsets ofa.. d ffeom.. orp ism.. na s.. m ooth.. man iod period I n open square. n t s e t s ofa \quad d ffeom \quad orp ism \quad na s \quad m o

ITU-R P (2012/02)

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Το άτομο του Υδρογόνου

! : ;, - "9 <5 =*<

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Διδακτικές Σημειώσεις

TeSys contactors a.c. coils for 3-pole contactors LC1-D

ITU-R BT ITU-R BT ( ) ITU-T J.61 (

ΑΣΥΡΜΑΤΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Graded Refractive-Index

Original Lambda Lube-Free Roller Chain

Faculdade de Engenharia. Transmission Lines ELECTROMAGNETIC ENGINEERING MAP TELE 2008/2009

On the Galois Group of Linear Difference-Differential Equations

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.

Math221: HW# 1 solutions

ECE 222b Applied Electromagnetics Notes Set 3b

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

The Finite Element Method

If we restrict the domain of y = sin x to [ π 2, π 2

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

For a wave characterized by the electric field

ΘΕΩΡΙΑ ΤΩΝ ΗΜΙΑΓΩΓΩΝ ΔΕΥΤΕΡΗ ΕΝΟΤΗΤΑ ΟΜΟΓΕΝΕΙΣ ΗΜΙΑΓΩΓΟΙ ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ

Ερώτηση και Αίτηση Κατάθεσης Εγγράφων Προς τον κ. Υπουργό Ανάπτυξης και Ανταγωνιστικότητας

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

ΤΙΜΟΚΑΤΑΛΟΓΟΣ. ΤΙΜΗ ΡΟΛΟΥ /m2 LZ ΔΙΑΣΤΑΣΕΙΣ ΡΟΛΟΥ. PG 10 SE 5 ΠΛΑΤΟΣ : 1,22 m. ΜΗΚΟΣ : 50m PX 6 TX 1

Transcript:

Lssy Mdium EE4 D. Ray Kwk fn: Fundamntals f Engining Eltmagntis, David K. Chng (Addisn-Wsly) Eltmagntis f Engins, Fawwaz T. Ulaby (Pnti Hall)

Lssy Mdium - D. Ray Kwk Ohm s Law A E V V El IR ( JA) E Jρ J E ρ J E ρ l A sisitivity ndutivity Lw sistivity > ndut ~<0-5 Ω- m ( T ) High sistivity > insulat ~>0 0 Ω- m Intmdiat sistivity > smindut typial ~0-3 t 0 5 Ω- m ( Eg/kT ) unit f ndutivity S/m Simns/mt mh/m (Ω- m) -

Lssy Mdium - D. Ray Kwk EM Wav thugh mdium E ρf H E t H 0 E H Jf t (hmgnus, lina, istpi) ρ 0, J 0 E 0 E H H 0 H J E f H ( ) E ' " E E finit mans mpl

Lssy Mdium - D. Ray Kwk Lss Tangnt tan δ " ' gd ndut >> gd insulat << Lw tanδ lw dilti lss th small, th btt!!!

Lssy Mdium - D. Ray Kwk Eampl A sinusidal E-fild with amplitud f 50 V/m and fquny GHz ists in a lssy dilti mdium that has a.5 and lss tangnt f 0.00. Find th avag pw dissipatd in th mdium p ubi mt. tan δ 0.00.39 0 4 S/m 9 0 36 π ( 9 π 0 ) (.5) Th avag pw dissipatd p unit vlum is P V P V av av J E 4.34 E W/m 4 (.39 0 )( 50) Nt: P av V R ( El) ρl / A E ( la)

Lssy Mdium - D. Ray Kwk Wav Equatin H E t E H t E E t ( E(, t) E γ k tk plan wav quatin still hlds with mdifiatin f ) E t β γ attnuatin nstant ppagatin nstant allw k b mpl sin is phas nstant

Lssy Mdium - D. Ray Kwk Cmpl Ppagatin Cnstant γ " ' ( tan δ) β Th phas E() E γ E β attnuatin -

Lssy Mdium - D. Ray Kwk db sal pw intnsity ati in lg sal, nt a unit!! (db) 0lg I I 0lg P P V 0lg V > 0 gain < 0 lss sund intnsity pw vltag 0 lg() 3, 3 db dubl 0 lg(/) -3, -3 db half 0 lg(0) 0, 0 db 0 0 lg(00) 0, 0 db 00 0 lg(0.) -0, -0 db /0 What is 6 db? 9 db? 7 db? 44 db? 4 /8 5 4 0-5

Lssy Mdium - D. Ray Kwk dbm & dbw dbw 0lg dbm 0lg P W P mw bm al units 0 dbm mw 30 dbw kw -30 dbm W What is 40 dbw? -7 dbm? -6 dbm? dbm? 0 kw 0. mw.5 W /8 W

Lssy Mdium - D. Ray Kwk Eampl Istpi 00 W Hw muh ltiity gnatd by th sla ll? What if a 40 W bulb is usd? 00 W bulb? Intnsity pw/aa 00 4πR 00 4π 7.96 W m ( ) 00 W bulb? m sla ll 0 0 m 40% ffiiny 35 0lg Pw f ltiity gnatd 63. mw Pw gnatd in sla ll W 7.96 ( 00m )( 40% ) 3.8mW m 0.038W In tms f db 0lg 35dB 00W P 00 40 W bulb? P 35 0lg 40 Pw f ltiity gnatd.6 mw systm gain

Lssy Mdium - D. Ray Kwk Attnuatin E() A()[dB] lg a E (b) γ E E() 0lg E(0) lg lg (b) (a) β 0lg 0 A()[dB] 8.686 ln(0) F ampl, if th lti fild intnsity ging thugh a mdium attnuats at a at f 0.4 db/m, what is? -0.4 db -8.686 ( m) 0.4/8.686 0.046 nps/m Nt: nps (np) is nt a al unit. simila t adians!!! Nt als is a psitiv numb f attnuatin. [db/m] 8.686 [np/m]

Attnuatin tm y ) y s ( sin y y y y y ys sin ŷs sin ˆ kˆ θ θ θ θ θ θ k y θ Sam? Ys, Q.E.D. Hw t pss - tm?? Can think f : ( ) ) s sin ( s sin ˆ y y y k θ θ θ θ

Lssy Mdium - D. Ray Kwk Lw-lss dilti ( << ) (<<) ( ) η β β γ δ γ ' " ' " ) ' "/ ( v / ' " ' " ' " n ) (... ) n(n n k)! k!(n n! ) ( tan ' " / / n k n n 0 k n f small small

Lssy Mdium - D. Ray Kwk Gd Cndut (>>) ( ) ( ) η β β γ γ π π ) / ( ) ( 4 / /

Lssy Mdium - D. Ray Kwk Skin Dpth δ δ δ β E At δ, E dass t / ( 63% dp). E() s (NOT lss tangnt δ!!!!!) A()[dB] 0lg E() E(0) 0lg 8.686 At δ, E dass by -8.7 db. At δ, E dass by -7.3 db.

Lssy Mdium - D. Ray Kwk 4 Gnal Matial γ γ ' " β β 4 4 " ' 4 ' ± ' ' ( ' ") β ( ' ") β ' ( ") 0 ( 4 ' ) 6( " ) 8 ( ) ± tan δ ( ) tan δ β al imaginay β ' β β β β η η " ( ) tan δ ( ) ( tan ( ) ) ' tan δ δ tan δ tan δ ( ) ' tan δ tan δ ' ' ( tan δ ) ' tan ( ) tan δ ' ( tan δ) / ( tan δ) δ

Lssy Mdium - D. Ray Kwk Summay

Lssy Mdium - D. Ray Kwk Eampl - Th skin dpth f a tain nnmagnti nduting matial is m at 5 GHz. Dtmin th phas vlity in th matial. What is th attnuatin (in db) whn th wav pntats 0 m int th matial? phas vlity v /β f ndut, β /δ v δ (π)(5 0 9 ) ( 0-6 ) 6.8 0 4 m/s E() A()[dB] 0lg E(0) 0lg 8.686 A()[dB] 8.686 / δ 8.686(0 / ) 43.4dB in ust 5 skin dpth. ( 43 db / 0,000!!!) Only sufa unt n nduts.

Lssy Mdium - D. Ray Kwk Eampl (a) Calulat th dilti lss (in db) f an EM wav ppagating thugh 00 m f tfln at MHz. (b) at 0 GHz? Tfln:.08, tanδ 0.0004 at 5 C assuming fquny indpndn. (a) tan δ tan δ η 9 6 0 ( π 0 ) (.08)( 0.0004) 8 ( 4.6 0 )( 377).08 A(dB) 8.686 8.686 6.04 (b) 36 π 6.04 0 4.6 0 6 6 ( 0 )( 00) 0. 005 tan δ η np/m Caial abl wks wll at lw fq (TV t antnna) but nt s wll at high fq.!! 8 db S/m 9 0 0 ( π 0 ) (.08)( 0.0004) 4 ( 4.6 0 )( 377).08 A(dB) 8.686 8.686 6.04 36 π 6.04 0 ( 0 )( 00) 50 4.6 0 np/m db 4 S/m

Lssy Mdium - D. Ray Kwk Eampl In a nnmagnti, lssy, dilti mdium, a 300-MHz plan wav is haatizd by th magnti fild phas Obtain tim-dmain pssins f th lti and magnti fild vts. What is th plaizatin stat f this wav? H H, β 9 { } " ' η η ' ' " β β β ' β β H y ( t9y) (, t) R ( ˆ 4ẑ) y y (, t) ˆ s( t 9y) ẑ4 sin( t 9y) E ẑη E ẑ57 y y 9y ( ˆ 4ẑ) A/m. ( ) / tan δ ( tan δ) / ( 0.468) 57.5 s( t 9y) ˆ 4η y ()(9) 9 77 57 s( t 9y 0.) ˆ08 y 0.468 tan δ 0. 8 77(3 0 ) (π 300 0 η sin( t 9y) y sin( t 9y 0.) 6 ) t 0 y, k t 0 LHEP.95 377.95 z /

Lssy Mdium - D. Ray Kwk Eis (hw t wit th attnuatin?) Givn E at th igin has a amplitud f V/m alng th y-ais in a nn-magnti mdium, with th ppagatin givn by: ~ sin( t 30 5z) (4 0.0) Wit H (, t)?

Lssy Mdium - D. Ray Kwk Sufa sistan f nduts δ δ Z w L Z w L I V Z L J L E V s s J L w J δ/ w ( ) 4 / 0 )z / ( )z / ( z z w J w J dz w J da J I J J E J π δ δ β δ δ n sufa sufa impdan (Ω) simila t R & ρ

Lssy Mdium - D. Ray Kwk Hmwk. Dtmin th fquny at whih a tim-hamni lti fild intnsity auss a ndutin unt dnsity and a displamnt unt dnsity f qual magnitud in (a) sawat with 7 and 4 S/m, and (b) mist sil with.5 and 0-3 S/m.. Calulatins nning th ltmagnti fft f unts in a gd ndut usually nglt th displamnt unt vn at miwav fqunis. (a) Assuming and 5.7 0 7 S/m f pp, mpa th magnitud f th displamnt unt dnsity with that f th ndutin unt dnsity at 00 GHz. (b) Wit th diffntial quatin in phas fm f magnti fild intnsity H in a su-f gd ndut.