DIRM : DIRM :A Model for Data Query Based on Dynamic Information Route Approach

Σχετικά έγγραφα
Quick algorithm f or computing core attribute


MIDI [8] MIDI. [9] Hsu [1], [2] [10] Salamon [11] [5] Song [6] Sony, Minato, Tokyo , Japan a) b)

ER-Tree (Extended R*-Tree)

A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks

Re-Pair n. Re-Pair. Re-Pair. Re-Pair. Re-Pair. (Re-Merge) Re-Merge. Sekine [4, 5, 8] (highly repetitive text) [2] Re-Pair. Blocked-Repair-VF [7]

2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems


GPU. CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA. Parallelizing the Number Partitioning Problem for GPUs

Kenta OKU and Fumio HATTORI

HOSVD. Higher Order Data Classification Method with Autocorrelation Matrix Correcting on HOSVD. Junichi MORIGAKI and Kaoru KATAYAMA

Web. Web p OutDegree(p) log 7 1/OutDegree(p) A New Difinition of Subjective Distance between Web Pages

Toward a SPARQL Query Execution Mechanism using Dynamic Mapping Adaptation -A Preliminary Report- Takuya Adachi 1 Naoki Fukuta 2.

Ανάκτηση Πληροφορίας. Διδάσκων: Φοίβος Μυλωνάς. Διάλεξη #03

Newman Modularity Newman [4], [5] Newman Q Q Q greedy algorithm[6] Newman Newman Q 1 Tabu Search[7] Newman Newman Newman Q Newman 1 2 Newman 3

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

Reading Order Detection for Text Layout Excluded by Image

Gro wth Properties of Typical Water Bloom Algae in Reclaimed Water

Buried Markov Model Pairwise

Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation and Peak Detection

Research on vehicle routing problem with stochastic demand and PSO2DP algorithm with Inver2over operator

A research on the influence of dummy activity on float in an AOA network and its amendments

Πανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής Πρόγραμμα Μεταπτυχιακών Σπουδών «Πληροφορική»

Δίκτυα Επικοινωνιών ΙΙ: OSPF Configuration


Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn


2. N-gram IDF. DEIM Forum 2016 A1-1. N-gram IDF IDF. 5 N-gram. N-gram. N-gram. N-gram IDF.

CorV CVAC. CorV TU317. 1

Research of Han Character Internal Codes Recognition Algorithm in the Multi2lingual Environment

Ανάκτηση Πληροφορίας

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems

2002 Journal of Software

User Behavior Analysis for a Large2scale Search Engine

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016

Δυσκολίες που συναντούν οι μαθητές της Στ Δημοτικού στην κατανόηση της λειτουργίας του Συγκεντρωτικού Φακού

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

(1 ο μάθημα)

ιαδικτυακές Εφαρµογές

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ. του Γεράσιμου Τουλιάτου ΑΜ: 697

2 ~ 8 Hz Hz. Blondet 1 Trombetti 2-4 Symans 5. = - M p. M p. s 2 x p. s 2 x t x t. + C p. sx p. + K p. x p. C p. s 2. x tp x t.

Ανάκτηση Δεδομένων (Information Retrieval)

,,, (, ) , ;,,, ; -

Ημερίδα διάχυσης αποτελεσμάτων έργου Ιωάννινα, 14/10/2015

Ανάκτηση Πληροφορίας Εισαγωγή

Test Data Management in Practice

Arbitrage Analysis of Futures Market with Frictions

Congruence Classes of Invertible Matrices of Order 3 over F 2

Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by Using Existing Devices

Δίκτυα Υπολογιστών Ενότητα 3: Domain Name System - DNS

Zigbee. Zigbee. Zigbee Zigbee ZigBee. ZigBee. ZigBee

ΓΕΩΜΕΣΡΙΚΗ ΣΕΚΜΗΡΙΩΗ ΣΟΤ ΙΕΡΟΤ ΝΑΟΤ ΣΟΤ ΣΙΜΙΟΤ ΣΑΤΡΟΤ ΣΟ ΠΕΛΕΝΔΡΙ ΣΗ ΚΤΠΡΟΤ ΜΕ ΕΦΑΡΜΟΓΗ ΑΤΣΟΜΑΣΟΠΟΙΗΜΕΝΟΤ ΤΣΗΜΑΣΟ ΨΗΦΙΑΚΗ ΦΩΣΟΓΡΑΜΜΕΣΡΙΑ

Maxima SCORM. Algebraic Manipulations and Visualizing Graphs in SCORM contents by Maxima and Mashup Approach. Jia Yunpeng, 1 Takayuki Nagai, 2, 1

Anomaly Detection with Neighborhood Preservation Principle

n 1 n 3 choice node (shelf) choice node (rough group) choice node (representative candidate)

(C) 2010 Pearson Education, Inc. All rights reserved.

Απόστολος Παπαδόπουλος Αριστοτέλειο Πανεπιστήµιο Θεσσαλονίκης Σχολή Θετικών Επιστηµών Τµήµα Πληροφορικής. Ακαδηµαϊκό Έτος

ΣΤΥΛΙΑΝΟΥ ΣΟΦΙΑ

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

Research on Economics and Management

, Evaluation of a library against injection attacks

th International Conference on Machine Learning and Applications. E d. h. U h h b w k. b b f d h b f. h w k by v y

Indexing Methods for Encrypted Vector Databases

ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΣΤΟ ΟΡΟΣ ΠΗΛΙΟ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙO ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΞΙΟΠΟΙΗΣΗΣ ΦΥΣΙΚΩΝ ΠΟΡΩΝ & ΓΕΩΡΓΙΚΗΣ ΜΗΧΑΝΙΚΗΣ

Προγραμματισμός ΙΙ (Java) 6. Διαχείριση δεδομένων

Πρόγραμμα Σεμιναρίων Φεβρουαρίου - Ιουλίου

ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ

[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1

From Secure e-computing to Trusted u-computing. Dimitris Gritzalis

Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ. Χρήστος Αθ. Χριστοδούλου. Επιβλέπων: Καθηγητής Ιωάννης Αθ. Σταθόπουλος

{takasu, Conditional Random Field

GridFTP-APT: Automatic Parallelism Tuning Mechanism for Data Transfer Protocol GridFTP

Προσομοίωση BP με το Bizagi Modeler

M in ing Recursive Function s Ba sed on Gene Expression Programm ing

Ανάκτηση πληροφορίας

Probabilistic Approach to Robust Optimization

Αποθηκευμένες Διαδικασίες Stored Routines (Procedures & Functions)

Legal use of personal data to fight telecom fraud

1) Abstract (To be organized as: background, aim, workpackages, expected results) (300 words max) Το όριο λέξεων θα είναι ελαστικό.

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

Πρόγραμμα Σεμιναρίων Σεπτεμβρίου - Δεκεμβρίου

Πρόγραμμα Σεμιναρίων Σεπτεμβρίου Δεκεμβρίου

Bizagi Modeler: Συνοπτικός Οδηγός

Εισαγωγή στις Βάσεις Δεδομένων

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΠΑΤΗΣΙΩΝ ΑΘΗΝΑ Ε - ΜΑΙL : mkap@aueb.gr ΤΗΛ: , ΚΑΠΕΤΗΣ ΧΡΥΣΟΣΤΟΜΟΣ. Βιογραφικό Σημείωμα

þÿ ³¹µ¹½ º±¹ ±ÃÆ»µ¹± ÃÄ ÇÎÁ

ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ ΠΜΣ «ΠΛΗΡΟΦΟΡΙΚΗ & ΕΠΙΚΟΙΝΩΝΙΕς» OSWINDS RESEARCH GROUP

Μιχαήλ Νικητάκης 1, Ανέστης Σίτας 2, Γιώργος Παπαδουράκης Ph.D 1, Θοδωρής Πιτηκάρης 3

[11].,, , 316 6, ,., 15.5%, 9.8%, 2006., IDF,, ,500, 2,830.,, ,200.,,, β, [12]. 90% 2,,,,, [13-15].,, [13,

[10] Υπολογιστικά συστήματα: Στρώματα. Εφαρμογές στη Βιομηχανία. Εφαρμογές στη Βιομηχανία. επικοινωνία εφαρμογές λειτουργικό σύστημα προγράμματα υλικό

11/28/2016 Απόδοση Συστημάτων, Remote Jmeter και Dacappo

Ανάκτηση Πληροφορίας (Information Retrieval IR) ιδακτικό βοήθηµα 2. Πανεπιστήµιο Θεσσαλίας Πολυτεχνική Σχολή Τµήµα Μηχ. Η/Υ, Τηλ/νιών & ικτύων

Ανάκτηση Πληροφορίας (Information Retrieval IR)

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Stabilization of stock price prediction by cross entropy optimization

Yoshifumi Moriyama 1,a) Ichiro Iimura 2,b) Tomotsugu Ohno 1,c) Shigeru Nakayama 3,d)

Transcript:

37 1 ( ) Vol. 37 No. 1 2005 1 JOURNAL OF SICHUAN UNIVERSITY ( ENGINEERING SCIENCE EDITION) Jan. 2005 100923087 (2005) 0120108208 DIRM 1,2, 1, 1, 1 1 (1., 610065 2., 610017), DIRM,,, DI2 RA IRH,, DIRA TP311 A DIRM A Model for Data Query Based on Dynamic Information Route Approach PENG Jing 1,2, TANG Chang2jie 1, HU Jian2jun 1, CHEN An2long 1, LI Chuan 1 (1. School of Computer,Sichuan Univ.,Chengdu 610065,China 2. Dept. of Sci. and Tech.,Chengdu Public Security Bureau,Chengdu 610017,China) Abstract A new model of DIRM (Dynamic Information Route Model) was proposed. The concept of information dynamic route based on information organization model was put forward,and the structural or the semi2structural data query was completed using the information route from host. Three algorithms Information Query Algorithm, DIRA( Dynamic Infor2 mation Route Algorithm), IRH Route Exchange Algorithm of the Boundary Area were proposed. The lemma of query e2 quivalent and lemma of limited steps was proved and the complexity of information query algorithm in different conditions was discussed. Key words dynamic information route model information retrieval DIRA structural data Internet Web,, 99 % 1), Yahoo Google Sohu,? HITS [1 2 ], 2), 2004207227 (60473071) (04SG1640) (19732),,.. 3),

1, DIRM 109,, 3 Webservice SOAP XML, DIRA ( Dynamic, Information Route Algorithm) IRH, 1), [3 ], 3 2) [4 6 1) ], 3) [7 9 2) ], [8,10 11 3) ] 1. 1 3, DIRM 1, 4 1) 2) 3) IRH 4), WEB 1),,,, (Dynamic Information Route Mod2 el,dirm), 2) DIRM, ( Information Route Host IRH ) 1 DIRM, IRH, IRH IRH 1 Fig. 1 Structure of information model

110 ( ) 37 g IRH IRH IRH g IRH (mirh) g, IRH 2) g IRH ( 1. 2 IRH 1 DIRM IRH,, IRH IRH 1) 4),, 2),, IRH g IRH, IRH 3,, (DIRA) g IRH, IRH IRH,, IRH IRH, IRH,, IRH,,, IRH 1. 3 1) internet intranet ) 3), 2 IRH 1 ( ) Q 4, Q = ( E, A, C, T),, E - Expression DIRM ( 2) A - Areas, C - Classes, T - Time 1, 1 E = ( X = a ) ( Y) ( Z LIKE k % ), A = {.,., C = {.,., T = (20012121,200321129) 2 ( ) IRH IRTR 6, IRTR = ( a, c, t, IP, Port, Cost), a - area 2 IRH IRH, c - class Fig. 2 Dynamic joining and leaving of the IRH or IRH area, t - time

1, DIRM 111 IP IRH IP, Port IRH Cost 2. 1 Q 2. 2 (DIRA), DIRA IRH, IRH,IRH IRH IRH IRTR IRH IRH IRH, IRTR, IRH, IRTR IP IRH, IRH IRH, IRH( ),, SearchOf2 Query, SearchOfIRT,DBQuery 1 Ip, Port, Q(e i, a i, c i, t i ) QueryResult SearchOfQuery( Ip,Port,Q(e i, a i,c i, t i ) ) { 1. IRTRs = SearchOfIRT(Q (e i, a i,c i, t i ) ) {, 2. For Each of IRTRs do 3. If Remote ( IRTRs[i ]. IP) Then 4. QueryResult = QueryResult + 5. RemoteCall SearchOfQuery ( IRTRs [ i ]. IP, IRTRs[i ]. Port, Q(e i, a i, c i, t i ) ) { IRH 6. Else 9. end For 10. Return QueryResult { 1) ReportStatus(mIRH,t,message) SearchOfIRT(Q(e i, a i, c i, t i ) ) { 1. CheckIsValid(Q(e i, a i, c i, t i ) ) {, 2. For each (a i, c i ) do, { a i, c i IRH( IRH) 3. Analyse (Q(e i ),Q(t i ) ) {, SQL 4. Execute (SqlQuery) {, 5. End For 6. MergeQueryResult { sql 7. Return Result { DBQuery R SQL XQL IRH, 3 3 (DIRA) 7. QueryResult = QueryResult + DBQuery(Q Fig. 3 An instance of DIRA (e i, a i, c i, t i ) ) {, 8. End If IRH 3 t, IRH 2) TriggerReportStatus(mIRH,message), message XML, < message type = change > < information > < type > < / type > < area > < / area > < begintime > 2003. 01. 01 < / begintime >

112 ( ) 37 < endtime > 2003. 11. 11 < / endtime > < / information > < / message > < message status = online/ > 3) Listener (message) Listener IRH,, IRH 2 IRH 2 IRH 2), t void 1. Repeat Listen(Message) { IRH, ( 3 3 t IRH, IRH ) 2. If Message. Type = CHANGE Then {,, IRH 3. ChangeLocalIRT(Message) { ) 4. For each LocalIRHs { IRH 5. BroardMessage ( IRHs[i ], Message) 6. Else If Message. Type = OFFline Then { 7. DeleteIRHs(Message) { IRH 8. DeleteIRTs(Message) { 9. For each LocalIRHs { IRH 10. BroardMessage ( IRHs[i ], Message) / / IRH 11. Else if (Message. Type = Online) AND not (Message. Host IN IRHs ) Then 12. ChangeLocalIRT(Message) { 13. AddIRHs(Message. Host) { IRH 14. For each LocalIRHs { IRH 9. BroardMessage (mirhs[ i ], Message) 15. BroardMessage ( IRHs[i ], Message) 16. SendMessage (Message. Host,AllIRT) { IRH 17. End If 18. Until Break 2. 3 1) IRH, IRH mirh, IRH IRH, IRH mirh 3) 4) IRH IRH ( mirh 3 IRH, t void 1. Repeat Listen(Message) { IRH, ( 3 3 t IRH, ) 2. If Message. Type = CHANGE Then {, 3. For each mirhs { IRH 4. BroardMessage (mirhs[ i ], Message) 5. Else If Message. Type = OFFline Then { 6. DeletemIRHs(Message) { IRH 7. DeletemIRTs(Message) { 8. For each mirhs { IRH { mirh

1, DIRM 113 10. Else If (Message. Type = Online) AND not (Message. Host IN mirhs ) Then 11. ChangemIRT(Message) {,, q 12. AddmIRHs(Message. Host) { mirh 13. For each mirhs { mirh n, 14. BroardMessage (mirhs[ i ], Message) 15. SendMessage (Message. Host,AllIRT) { mirh O (log( n) ) 16. End If Π q ( e, a, c, t) Q 17. Until Break q ( c) IRH K, = K, T q q 3 1) IRH,, T q = T a + T b + T c =,, 6 q i + 6 t i + T c (1) i = 1 i =1 2), T a, T b,, T c q i ( i IRH = 1,, ) IRH t i ( i = 1,, ) 3, Π h Π k K, IRH i ( i = 1,2,, n) q, m i ( i = 1,, K ),, m i 2 3 d, d d q ( c) IRH K, log y ( n),, y Π k K, IRH m i O (log( n) ) (2) h k, T b q ( c) k, Π h IRH i ( T i = 1,2,, n) b = 6 t i = 6 ( 1 i + 2 i) (3) q K IRH, 1 i, 2 i 2 ( ) IRH i ( i = 1,2,, n), h 1 i O (log( x) ) (4) IRH i ( i = 1,2,, n) q, x, x IRH IRH, IRH, IRH, q 1 ( ) O ( n 3 log( n) ) IRH 1, IRH, q i IRH 1 ( ),, T a = IRH i ( i = 1,2,, n), q ( e, a, c, t) 6 q i K T c i = 1 Q, R i ( i = 1,2,, n), t i R i = R j ( i, j = 1,2,, n, i < > j),,, T b = 6 t i i =1 i = 1 B +, i = 1,

114 ( ) 37 IRH, IRH n, m i x < a 3 n + b,, a, b (4) 1 i O (log( n) ) (5) 2 i m i = n - 1, m i, O ( n) (3) (6) T b 2 i = c 3 m i + d (6) (1) O (log( n) ) 2 ( ) 2) IRH, IRH,, O ( n 2 ) ),, n IRH (2), m i ( i = 1,, K ), O (log( n) ),, 4 m i O ( n) IRH,, IRH 1 1 O ( K 3 n), K = n,, m i, c, d T b O ( n 2 ), (1) (2) m i O (log( n) ), 2 i O ( n 2 ) O (log( n) ), (3) T b 1, O ( K 3 log( n) ) K = n,, T b, O ( n 3 log( n) ), (1) 2, IRH O ( n 3 log( n) ),, IRH 1, IRH,, K = 1, T b O ( K 3 log( n) ), T b O (log( n) ),, 1) 4 4 Structure of experiment network Fig. 4 Mo2 8 dem P3, 8 IRH Windows 2000, 50 300 Oracle 8i 1

1, DIRM 115,,, ( > 10 T) ( > 1000), 2, DIRM, P3/ 256 M,, C + + Builder 6. 0, Borland Client dataset, 2 10 2 17, 20 160, ( 20, ), 5 6,, x [1 ]Brin S, Page L. The anatomy of a large2scale hypertextual web search engine[a]. Proc. 7th World Wide Web Conf. (WWW 1995,31(3) 327 343. 5 Fig. 5 Comparing of route table number and elapsed time [5 ] Gravano L,Chang C, Garcia2Molina H,et al. STARTS Stanford Proposal for Internet Meta2Searching [ A ]. Proc. of the ACM2 6 Fig. 6 Comparing of query hop times and elapsed time 5, 98) [ C]. Brisbane, Australia, 1998. [2 ] Kleinberg J M. Authoritative sources in a hyperlinked environ2 ment[j ].Journal of ACM,1999,46 604 632. [3 ]Callan J. Distributed information retrieval. Croft W B. Advances in information retrieval[m]. Kluwer Academic Publishers,2000. 127 150. [4 ]Callan J,Croft W B,Broglio J. TREC and TIPSTER experiments with INQUERY[J ]. Information Processing and Management, SIGMOD Int l Conference on Management of Data[ C]. 1997. [6 ]Callan J,Connell M. Query2based sampling of text databases[j ]. ACM Transactions on Information Systems,2001,19 (2) 97, [9 ]Craswell N,Bailey P,Hawking D. Server selection on the World log( n), n Wide Web[A ]. Proc. of the Fifth ACM Conference on Digital Libraries[ C]. ACM,2000. 37 46., [10 ] Kirsch S T. Document retrieval over networks wherein ranking, and relevance scores are computed at the client for multiple, database documents[ P]. U. S. Patent 5,659,732., [11 ] Craswell N, Hawking D, Thistlewaite P. Merging Results from Isolated Search Engines [ A ]. Proc. of the Tenth Australasian, IRH Database Conf. [ C]. 1999. 189 200. ( ) 130. [7 ] Fuhr N. A decision2theoretic approach to database selection in networked IR [J ]. ACM Transactions on Information Systems, 1999,17(3) 229 249. [8 ] Yuwono B,Lee D. Server ranking for distributed text retrieval systems on Internet[A ]. Proc of the Int Conf On Database Sys2 tems for Adv Applications[ C]. 1997. 41 49.