MIDI [8] MIDI. [9] Hsu [1], [2] [10] Salamon [11] [5] Song [6] Sony, Minato, Tokyo , Japan a) b)
|
|
- ÊΦάνης Ζάρκος
- 6 χρόνια πριν
- Προβολές:
Transcript
1 1,a) 1,b) 1,c) 1. MIDI [1], [2] U/D/S 3 [3], [4] 1 [5] Song [6] 1 Sony, Minato, Tokyo , Japan a) Emiru.Tsunoo@jp.sony.com b) AkiraB.Inoue@jp.sony.com c) Masayuki.Nishiguchi@jp.sony.com MIDI [7] Li HMM Viterbi [8] [9] Hsu [10] Salamon [11] c 2013 Information Processing Society of Japan 1
2 [9] (a) 2-(a) 2-(b) 0 1 x y Y (x, y) 1 x X 1 y Y {a 0, a 1,..., a K 1 } l(x, y) = K 1 k=0 a k log Y (x, y) (1) v(x, y) = 1 (µ(x)<u Y (x,y)<l(x,y)) 0 (U Y (x,y) µ(x)) l(x, y) µ(x) U Y (x, y) µ(x) (otherwise) (2) µ(x) x log Y (x, y) U Y (x, y) y p (y) p + (y) P (x, y) = log Y (x, p (y)) P + (x, y) = log Y (x, p + (y)) U Y (x, y) = (p +(y) y)p (x, y) + (y p (y))p + (x, y) p + (y) p (y) (3) p Y (x, p) = max Y (x, j) (4) p H j p+h c 2013 Information Processing Society of Japan 2
3 2 : (a) (b) (a) (c) U(x, y) (d) v(x, y) (e) S(x, y) H U Y (x, y) 2-(c) v(x, y) 2-(d) v(x, y) Barry 2 [12] [7], [11] Barry A i,c (x, y) N v(x, ny) Y L (x, ny) βiy R (x, ny) A i,0 (x, y) = A i,1 (x, y) = n=1 N α (5) N v(x, ny) Y R (x, ny) βiy L (x, ny) n=1 N α (6) N α Y L (x, y) Y R (x, y) 3 The Beatles Hey Jude S(x, y) : (a) S(x, y) (b) T (x) (c) S(x, y) (d) β i 0 β i 1 S(x, y) = max A i,c(x, y) min A i,c(x, y) (7) i,c i,c 2 S(x, y) 2-(e) S(x, y) The Beatles Hey Jude S(x, y) 3-(a) Y R (x, y) 0 S (x, y) = 1 N α N v(x, ny) Y L (x, ny) (8) n=1 c 2013 Information Processing Society of Japan 3
4 4 2.3 S(x, y) 3 (4) S(x, y) 4 S(x, y) T 1 F 1 F 2 2 1/12 F 2/F 1 2 1/12 5 T 2 3-(a) 3-(c) Viterbi [8], [10] [8] T (x) S(x, y) 5 c t 1 c t 4 [8] 3-(a) 3-(b) U m = {(x m,1, y m,1 ), (x m,2, y m,2 ),...} x m,1 = x m,2 1 = x m, m U m m M U m x m,first = x m,1 x m,last x m,last < x n,first, (m < n, m, n M) D M D M = ( m M (x,y) U m S(x, y) γ 1 (x,y) U m log y log T (x) γ 2 log y m,last log y m,first ) (9) m m γ 1 γ 2 (9) c t 1 c t 4 M c t 1 c t 2 2 D L Y X d L (x, y) D E Y 1 d E (y) d E (0) = 0 (10) d L (0, y) = S(0, y) + γ 1 log y log T (0) (11) if (x.y) U m and x = x m,first then { de (j) + S(x, y) γ 1 log y log T (x) d L (x, y) max j γ 2 log j log y } c 2013 Information Processing Society of Japan 4
5 (12) if (x, y) U m and x = x m,last then { de (y) d E (y) max d L (x 1, y) + S(x, y) γ1 log y log T (x) 1 ADC2004 1/2 Pop Daisy Opera Jazz MIDI Proposed MIDI (13) if (x, y) U m and x m,first < x < x m,last then d L (x m,n, y m,n ) d L(x m,n 1, y m,n 1 ) + S(x m,n, y m,n ) γ 1 log(y m,n ) log T (x m,n ) D M D Mmax (14) = max d E (j), (15) j D Mmax 3-(c) 3-(d) 3. Zhu [2] [2] Hz (4) H 16 (9) γ 1 γ (5) α 0.5 a k 0.15π 2 ADC Pop Daisy Opera Jazz MIDI Proposed MIDI MIREX *1 MIREX Raw Pitch Accuracy 1/2 50 MIREX ADC Pop Daisy Opera Jazz, MIDI 5 MIREX MELODIA[11] 1 Jazz MIDI Pop Daisy Opera 1/2 1 2 Opera *1 Music Information Retrieval Evaluation exchange (MIREX) [Online]. Melody Extraction c 2013 Information Processing Society of Japan 5
6 3 MIDI 1000 Reference Melody Top 1 Top 5 Top 10 MIDI 100 % 100 % 100 % MELODIA % % % Proposed (Monaural) % % % Proposed (Stereo) % % % Reference Melody Top 1 Top 5 Top 10 MIDI % % % MELODIA % % % Proposed (Monaural) % % % Proposed (Stereo) % % % 4.2 MIDI MELODIA MIDI 1000 MIDI Top 1 Top 5 5 Top MELODIA MIDI 4 MIDI 5. 3 [1] S. Pauws, CubyHum: a fully operational query by humming system, in Proc. ISMIR, pp , [2] Y. Zhu and D. Shasha, Warping indexes with envelope transform for query by humming, in ACM SIGMOD Int. Conf., pp , [3] A. Ghias, J. Logan, D. Chamberlin, and B. Smith, Query by humming: musical information retrieval in an audio database, in Proc. ACM Multimedia, pp , [4] L. Lu, H. You, and H.-J. Zhang, A new approach to query by humming in music retrieval, in Proc. ICME, pp.22-25, [5] T. Nishimura, H. Hashiguchi, J. Takita, J. X. Zhang, M. Goto and R. Oka, Music signal spotting retrieval by a humming query using start frame feature dependent continuous dynamic programming, in Proc. ISMIR, pp , [6] J. Song, S. Y. Bae, and K. Yoon, Mid-level music melody representation of polyphonic audio for query-byhumming system, in Proc. ISMIR, pp , [7] M. Goto, A real-time music-scene-description system: predominant-f0 estimation for detecting melody and bass line in real-world audio signals, in Speech Communication, vol. 43, no. 4, pp , [8] Y. Li, D. L. Wang, Separation of singing voice from music accompaniment for monaural recordings, in Trans. Audio, Speech and Language Processing, vol. 15, no. 4, pp , [9] H. Tachibana, T. Ono, N. Ono, and S. Sagayama, Melody line estimation in homophonic music audio signals based on temporal-variablity of melody source, in Proc. ICASSP, pp , [10] C. L. Hsu, D. L. Wang, and J.-S. R. Jang, A trend estimation algorithm for singing pitch detection in musical recordings, in Proc. ICASSP, pp , [11] J. Salamon and E. Goméz, Melody extraction from polyphonic music signals using pitch contour characteristic, in Trans. Audio, Speech and Language Processing, vol. 20, no. 6, pp , [12] D. Barry, B. Lawlor, and E. Coyle, Sound source separation: Azimuth discrimination and resynthesis, in Proc. Int. Conf. Digital Audio Effects, [13] R. B. Dannenberg and N. Hu, Understanding search performance in query-by-humming systems, in Proc. ISMIR, pp , c 2013 Information Processing Society of Japan 6
Query by Phrase (QBP) (Music Information Retrieval, MIR) QBH QBP / [1, 2] [3, 4] Query-by-Humming (QBH) QBP MIDI [5, 6] [8 10] [7]
Query by Phrase: a 2 2 Query by Phrase QBP QBP GaP-NMF GaP-NMF GaP-NMF QBP. Music Information Retrieval MIR [ 2] [3 4]Query-by-Humming QBH MIDI [5 6] [7] Waseda University 2 National Institute of Advanced
Fourier transform, STFT 5. Continuous wavelet transform, CWT STFT STFT STFT STFT [1] CWT CWT CWT STFT [2 5] CWT STFT STFT CWT CWT. Griffin [8] CWT CWT
1,a) 1,2,b) Continuous wavelet transform, CWT CWT CWT CWT CWT 100 1. Continuous wavelet transform, CWT [1] CWT CWT CWT [2 5] CWT CWT CWT CWT CWT Irino [6] CWT CWT CWT CWT CWT 1, 7-3-1, 113-0033 2 NTT,
Non-negative Matrix Factorization, NMF [5] NMF. [1 3] Bregman [4] Harmonic-Temporal Clustering, HTC [2,3] 1,2,b) NTT
1,a) 1,2,b) 1. [1 3] Bregman [4] Harmonic-Temporal Clustering, HTC [2,3] 1 7-3-1 113-0033 2 NTT 3-1 243-0198 a) Tomohio Naamura@ipc.i.u-toyo.ac.jp b) ameoa@hil.t.u-toyo.ac.jp/ameoa.hiroazu@lab.ntt.co.jp
Singing Information Processing: Music Information Processing for Singing Voices
: 1 1 1 1 Singing Information Processing: Music Information Processing for Singing Voices Masataka Goto, 1 Takeshi Saitou, 1 Tomoyasu Nakano 1 and Hiromasa Fujihara 1 This paper introduces our research
Vol.4-DCC-8 No.8 Vol.4-MUS-5 No.8 4// 3 3 Hanning (T ) 3 Hanning 3T (y(t)w(t)) dt =.5 T y (t)dt. () STRAIGHT F 3 TANDEM-STRAIGHT[] 3 F F 3 [] F []. :
Vol.4-DCC-8 No.8 Vol.4-MUS-5 No.8 4//,a) Vocoder (F) F F. PSOLA [] sinusoidal model [] phase vocoder Vocoder [3] (F) F 3 [4], [5], [6], [7], [8], [9] [], [], [], [3], [4] [5], [6] [7], [8], University
SNR F0 [2], [3], [4] F0 F0 F0 F0 F0 TUSK F0 TUSK F0 6 TUSK 6 F0 2. F0 F0 [5] [6] [7] p[8] Cepstrum [9], [10] [11] [12] [13] F0 [14] F0 [15] DIO[16] [1
1,a) 2 F0 TUSK F0 F0 F0 F0 TUSK TUSK F0 Prototype of a framework for overviewing the performance of F0 estimators Morise Masanori 1,a) Kawahara Hideki 2 Abstract: This article represents a framework for
Parameter Estimation of Mixture Model of Multiple Instruments and Application to Musical Instrument Identification
Vol.009-MUS-81 No.13 009/7/30 1 1 1 1 10 81.6% Parameter Estimation of Mixture Model of Multiple Instruments and Application to Musical Instrument Identification KATSUTOSHI ITOYAMA, 1 MASATAKA GOTO, KAZUNORI
( ) (Harmonic-Temporal Clustering; HTC) [1], [2] ( ) ( ) [4] HTC. (Non-negative Matrix Factorization; NMF) [3] [5], [6] [7], [8]
1 1 1 1, Product of ExpertsPoE) 1. ) Harmonic-Temporal Clustering; HTC) [1], [] ) ) HTC Non-negative Matrix Factorization; NMF) [3] 1 Graduate School of Information Science and Technology, The University
Buried Markov Model Pairwise
Buried Markov Model 1 2 2 HMM Buried Markov Model J. Bilmes Buried Markov Model Pairwise 0.6 0.6 1.3 Structuring Model for Speech Recognition using Buried Markov Model Takayuki Yamamoto, 1 Tetsuya Takiguchi
The Algorithm to Extract Characteristic Chord Progression Extended the Sequential Pattern Mining
1,a) 1,b) J-POP 100 The Algorithm to Extract Characteristic Chord Progression Extended the Sequential Pattern Mining Shinohara Toru 1,a) Numao Masayuki 1,b) Abstract: Chord is an important element of music
Ανάλυση, Περιγραφή και Ανάκτηση Μουσικών Δεδομένων: το έργο ΠΟΛΥΜΝΙΑ*
Ανάλυση, Περιγραφή και Ανάκτηση Μουσικών Δεδομένων: το έργο ΠΟΛΥΜΝΙΑ* Δρ. Σοφία Τσεκερίδου Επίκουρος Καθηγήτρια *Παρουσιάζονται αποτελέσματα έρευνας και ανάπτυξης που προέκυψαν από τη συνεργασία με το
E-mail: {kameoka,sagayama}@hil.t.u-tokyo.ac.jp, m.goto@aist.go.jp GUI
E-mail: {kameoka,sagayama}@hil.t.u-tokyo.ac.jp, m.goto@aist.go.jp GUI Selective Amplifier of Periodic and Non-periodic Components in Concurrent Audio Signals with Spectral Control Envelopes Hirokazu Kameoka
(Υπογραϕή) (Υπογραϕή) (Υπογραϕή)
(Υπογραϕή) (Υπογραϕή) (Υπογραϕή) (Υπογραϕή) F 1 F 1 RGB ECR RGB ECR δ w a d λ σ δ δ λ w λ w λ λ λ σ σ + F 1 ( ) V 1 V 2 V 3 V 4 V 5 V 6 V 7 V 8 V 9 V 10 M 1 M 2 M 3 F 1 F 1 F 1 10 M 1
3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o
Sound Source Identification based on Deep Learning with Partially-Shared Architecture 1 2 1 1,3 Takayuki MORITO 1, Osamu SUGIYAMA 2, Ryosuke KOJIMA 1, Kazuhiro NAKADAI 1,3 1 2 ( ) 3 Tokyo Institute of
CSJ. Speaker clustering based on non-negative matrix factorization using i-vector-based speaker similarity
i-vector 1 1 1 1 i-vector CSJ i-vector Speaker clustering based on non-negative matrix factorization using i-vector-based speaker similarity Fukuchi Yusuke 1 Tawara Naohiro 1 Ogawa Tetsuji 1 Kobayashi
Gemini, FastMap, Applications. Εαρινό Εξάμηνο Τμήμα Μηχανικών Η/Υ και Πληροϕορικής Πολυτεχνική Σχολή, Πανεπιστήμιο Πατρών
Gemini,, Applications Τμήμα Μηχανικών Η/Υ και Πληροϕορικής Πολυτεχνική Σχολή, Πανεπιστήμιο Πατρών Εαρινό Εξάμηνο 2011-2012 Table of contents 1 Table of contents 1 2 Table of contents 1 2 3 Table of contents
Anomaly Detection with Neighborhood Preservation Principle
27 27 Workshop on Information-Based Induction Sciences (IBIS27) Tokyo, Japan, November 5-7, 27. Anomaly Detection with Neighborhood Preservation Principle Tsuyoshi Idé Abstract: We consider a task of anomaly
Estimation, Evaluation and Guarantee of the Reverberant Speech Recognition Performance based on Room Acoustic Parameters
Vol.21-SLP-83 No.9 21/1/29 1 Estimation, Evaluation and Guarantee of the Reverberant Speech Recognition Performance based on Room Acoustic Parameters Takanobu Nishiura 1 We study on estimation, evaluation
F0 Estimation of Melody and Bass Lines in Real-world Musical Audio Signals
99-MUS-31-16, Vol.99, No.68, August 1999. 31 16 goto@etl.go.jp CD EM F0 Estimation o Melody and Bass Lines in Real-world Musical Audio Signals Masataka Goto Electrotechnical Laboratory 1-1-4 Umezono, Tsukuba,
VOCODER VOCODER Vocal
Vol.1-MUS-95 No.3 1/6/ VOCODER 1,a) 1,b) 1,c) 1,d) VOCODER VOCODER Vocal VOCODER Cross synthesis VOCODER which preserves linguistic information and characteristic timbre of musical instruments and animal
Re-Pair n. Re-Pair. Re-Pair. Re-Pair. Re-Pair. (Re-Merge) Re-Merge. Sekine [4, 5, 8] (highly repetitive text) [2] Re-Pair. Blocked-Repair-VF [7]
Re-Pair 1 1 Re-Pair Re-Pair Re-Pair Re-Pair 1. Larsson Moffat [1] Re-Pair Re-Pair (Re-Pair) ( ) (highly repetitive text) [2] Re-Pair [7] Re-Pair Re-Pair n O(n) O(n) 1 Hokkaido University, Graduate School
DEIM Forum 2014 A8-1, 606 8501 E-mail: {tsukuda,ohshima,kato,tanaka}@dl.kuis.kyoto-u.ac.jp 1 2,, 1. Google 1 Yahoo 2 Bing 3 Web Web BM25 [1] HITS [2] PageRank [3] Web 1 [4] 1http://www.google.com 2http://www.yahoo.com
Ψηφιακή Επεξεργασία Φωνής
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Φωνής Διάλεξη: Προσαρμόσιμο Αρμονικό Μοντέλο Παρουσίαση: Gilles Degottex Στυλιανού Ιωάννης Τμήμα Επιστήμης Υπολογιστών A Full-Band Adaptive Harmonic
Quick algorithm f or computing core attribute
24 5 Vol. 24 No. 5 Cont rol an d Decision 2009 5 May 2009 : 100120920 (2009) 0520738205 1a, 2, 1b (1. a., b., 239012 ; 2., 230039) :,,.,.,. : ; ; ; : TP181 : A Quick algorithm f or computing core attribute
Yoshifumi Moriyama 1,a) Ichiro Iimura 2,b) Tomotsugu Ohno 1,c) Shigeru Nakayama 3,d)
1,a) 2,b) 1,c) 3,d) Quantum-Inspired Evolutionary Algorithm 0-1 Search Performance Analysis According to Interpretation Methods for Dealing with Permutation on Integer-Type Gene-Coding Method based on
Japanese Fuzzy String Matching in Cooking Recipes
1 Japanese Fuzzy String Matching in Cooking Recipes Michiko Yasukawa 1 In this paper, we propose Japanese fuzzy string matching in cooking recipes. Cooking recipes contain spelling variants for recipe
ER-Tree (Extended R*-Tree)
1-9825/22/13(4)768-6 22 Journal of Software Vol13, No4 1, 1, 2, 1 1, 1 (, 2327) 2 (, 3127) E-mail xhzhou@ustceducn,,,,,,, 1, TP311 A,,,, Elias s Rivest,Cleary Arya Mount [1] O(2 d ) Arya Mount [1] Friedman,Bentley
Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb
Ξ 31 Vol 31,No 1 2 0 0 1 2 JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb 2 0 0 1 :025322778 (2001) 0120016205 (, 230026) : Q ( m 1, m 2,, m n ) k = m 1 + m 2 + + m n - n : Q ( m 1, m 2,, m
Identifying Scenes with the Same Person in Video Content on the Basis of Scene Continuity and Face Similarity Measurement
Identifying Scenes with the Same Person in Video Content on the Basis of Scene Continuity and Face Similarity Measurement Tatsunori Hirai, Tomoyasu Nakano, Masataka Goto and Shigeo Morishima Abstract We
Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction
() () Study on e-adhesion control by monitoring excessive angular momentum in electric railway traction Takafumi Hara, Student Member, Takafumi Koseki, Member, Yutaka Tsukinokizawa, Non-member Abstract
[5] F 16.1% MFCC NMF D-CASE 17 [5] NMF NMF 3. [5] 1 NMF Deep Neural Network(DNN) FUSION 3.1 NMF NMF [12] S W H 1 Fig. 1 Our aoustic event detect
NMF 1 1,a) 1 AED NMF DNN IEEE D-CASE 2012 20% DNN NMF 1. Computational Auditory Scene Analysis: CASA [1] [2] [3] [4] [5] Non-negative Matrxi Factorization (NMF) NMF 2. CASA IEEE 1 Dept. Computer Science
Signal processing for handling singing voice texture
1 TANDEM-STRAIGHT Signal processing for handling singing voice texture Hideki Kawahara 1 Singers explore vocal expressions to the limit. Conventional speech processing algorithms, which were designed to
(1) (2) MFA/SFA: material flow analysis/ substance flow analysis MFA/SFA
(1) (2) MFA/SFA: material flow analysis/ substance flow analysis MFA/SFA 18 1) I. Daigo, Y. Matsuno, Y. Adachi: Substance Flow Analysis of Chromium and Nickel in the Material Flow of Stainless Steel in
Area Location and Recognition of Video Text Based on Depth Learning Method
21 6 2016 12 Vol 21 No 6 JOURNAL OF HARBIN UNIVERSITY OF SCIENCE AND TECHNOLOGY Dec 2016 1 1 1 2 1 150080 2 130300 Gabor RBM OCR DOI 10 15938 /j jhust 2016 06 012 TP391 43 A 1007-2683 2016 06-0061- 06
An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio
C IEEJ Transactions on Electronics, Information and Systems Vol.133 No.5 pp.910 915 DOI: 10.1541/ieejeiss.133.910 a) An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software
[1] DNA ATM [2] c 2013 Information Processing Society of Japan. Gait motion descriptors. Osaka University 2. Drexel University a)
1,a) 1,b) 2,c) 1,d) Gait motion descriptors 1. 12 1 Osaka University 2 Drexel University a) higashiyama@am.sanken.osaka-u.ac.jp b) makihara@am.sanken.osaka-u.ac.jp c) kon@drexel.edu d) yagi@am.sanken.osaka-u.ac.jp
Reading Order Detection for Text Layout Excluded by Image
19 5 JOURNAL OF CHINESE INFORMATION PROCESSING Vol119 No15 :1003-0077 - (2005) 05-0067 - 09 1, 1, 2 (11, 100871 ; 21IBM, 100027) :,,, PMRegion,, : ; ; ; ; :TP391112 :A Reading Order Detection for Text
Acoustic Signal Adjustment by Considering Musical Expressive Intention Using a Performance Intension Function
1,a) 2 MOS Acoustic Signal Adjustment by Considering Musical Expressive Intention Using a Performance Intension Function Yuma Koizumi 1,a) Katunobu Itou 2 Abstract: We propose an estimation method for
Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by Using Existing Devices
No. 3 + 1,**- Technical Research Report, Earthquake Research Institute, University of Tokyo, No. 3, pp. + 1,,**-. MT * ** *** Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by
Εξάλειψη αντήχησης από ηχητικά σήματα με υποκειμενικά / ψυχοακουστικά κριτήρια
Εξάλειψη αντήχησης από ηχητικά σήματα με υποκειμενικά / ψυχοακουστικά κριτήρια Θωμάς Ζαρούχας Διπλ. Ηλ/γος Μηχανικός thozar@wcl.ee.upatras.gr Παναγιώτης Χατζηαντωνίου Δρ. Ηλ/γος Μηχανικός hagianto@wcl.ee.upatras.gr
Stabilization of stock price prediction by cross entropy optimization
,,,,,,,, Stabilization of stock prediction by cross entropy optimization Kazuki Miura, Hideitsu Hino and Noboru Murata Prediction of series data is a long standing important problem Especially, prediction
Content. Introduction... 1
Content Introduction... 1 1 Fundamentals of acoustics... 7 1.1 Sound field equations and the wave equation... 8 1.1.1 Sound field quantities... 9 1.1.2 Derivation of the wave equation... 10 1.2 Plane waves
GPU. CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA. Parallelizing the Number Partitioning Problem for GPUs
GPU 1 1 NP number partitioning problem Pedroso CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA C Pedroso Python 323 Python C 12.2 Parallelizing the Number Partitioning Problem for
ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ
ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ ΤΜ. ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ 2018-2019 Επιβλέπουσα: Μπίμπη Ματίνα Ανάλυση της πλατφόρμας ανοιχτού κώδικα Home Assistant Το Home Assistant είναι μία πλατφόρμα ανοιχτού
Echo path identification for stereophonic acoustic echo cancellation without pre-processing
Echo path identification for stereophonic acoustic echo cancellation without pre-processing Yuusuke MIZUNO Takuya NUNOME Akihiro HIRANO Kenji NAKAYAMA Division of Electronics and Computer Science Graduate
{takasu, Conditional Random Field
DEIM Forum 2016 C8-6 CRF 700 8530 3 1 1 700 8530 3 1 1 101 8430 2-1-2 E-mail: pobp52cw@s.okayama-u.ac.jp, ohta@de.cs.okayama-u.ac.jp, {takasu, adachi}@nii.ac.jp Conditional Random Field 1. Conditional
Ερευνητική+Ομάδα+Τεχνολογιών+ Διαδικτύου+
Ερευνητική+Ομάδα+Τεχνολογιών+ Διαδικτύου+ Ερευνητικές,Δραστηριότητες,και, Ενδιαφέροντα,, Τμήμα,Μηχανικών,Η/Υ,&,Πληροφορικής, Τομέας,Λογικού,των,Υπολογιστών, Εργαστήριο,Γραφικών,,Πολυμέσων,και,Γεωγραφικών,
1,a) 1,b) 2 3 Sakriani Sakti 1 Graham Neubig 1 1. A Study on HMM-Based Speech Synthesis Using Rich Context Models
HMM 1,a 1,b 3 Sakriani Sakti 1 Graham Neubig 1 1 Hidden Markov Model HMM HMM HMM HMM HMM A Study on HMM-Based Speech Synthesis Using Rich Context Models Shinnosuke Takamichi 1,a Toda Tomoki 1,b Shiga Yoshinori
ΓΙΑΝΝΟΥΛΑ Σ. ΦΛΩΡΟΥ Ι ΑΚΤΟΡΑΣ ΤΟΥ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΜΑΚΕ ΟΝΙΑΣ ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ
ΓΙΑΝΝΟΥΛΑ Σ. ΦΛΩΡΟΥ Ι ΑΚΤΟΡΑΣ ΤΟΥ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΜΑΚΕ ΟΝΙΑΣ ΑΝΑΠΛΗΡΩΤΡΙΑ ΚΑΘΗΓΗΤΡΙΑ ΤΟΥ ΤΜΗΜΑΤΟΣ ΛΟΓΙΣΤΙΚΗΣ ΤΟΥ ΤΕΙ ΚΑΒΑΛΑΣ ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΙΑΝΟΥΑΡΙΟΣ 2008 ΒΙΟΓΡΑΦΙΚΟ
[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1
1,a) Bayesian Approach An Application of Monte-Carlo Tree Search Algorithm for Shogi Player Based on Bayesian Approach Daisaku Yokoyama 1,a) Abstract: Monte-Carlo Tree Search (MCTS) algorithm is quite
ITU-R BT.1908 (2012/01) !" # $ %& '( ) * +, - ( )
(2012/01)!" # $ %& '( ) * +, - 0 1 "'./ ( ) BT ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R 1 1 http://www.itu.int/itu-r/go/patents/en. (http://www.itu.int/publ/r-rec/en ) () ( ) BO BR BS BT F M P RA RS S SA
Detection and Recognition of Traffic Signal Using Machine Learning
1 1 1 Detection and Recognition of Traffic Signal Using Machine Learning Akihiro Nakano, 1 Hiroshi Koyasu 1 and Hitoshi Maekawa 1 To improve road safety by assisting the driver, traffic signal recognition
Ανάκτηση Εικόνας βάσει Υφής με χρήση Eye Tracker
Ειδική Ερευνητική Εργασία Ανάκτηση Εικόνας βάσει Υφής με χρήση Eye Tracker ΚΑΡΑΔΗΜΑΣ ΗΛΙΑΣ Α.Μ. 323 Επιβλέπων: Σ. Φωτόπουλος Καθηγητής, Μεταπτυχιακό Πρόγραμμα «Ηλεκτρονική και Υπολογιστές», Τμήμα Φυσικής,
Ανάλυση σχημάτων βασισμένη σε μεθόδους αναζήτησης ομοιότητας υποακολουθιών (C589)
Ανάλυση σχημάτων βασισμένη σε μεθόδους αναζήτησης ομοιότητας υποακολουθιών (C589) Μεγαλοοικονόμου Βασίλειος Τμήμα Μηχ. Η/ΥκαιΠληροφορικής Επιστημονικός Υπεύθυνος Στόχος Προτεινόμενου Έργου Ανάπτυξη μεθόδων
DEIM Forum 2016 G7-5 152-8565 2-12-1 152-8565 2-12-1 889-1601 5200 E-mail: uragaki.k.aa@m.titech.ac.jp,,,.,,,,,,, 1. 1. 1,,,,,,.,,,,, 1. 2 [1],,,,, [2] (, SPM),,,,,,,. [3],, [4]. 2 A,B, A B, B A, B, 2,,,
2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems
2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems Multiple User Interfaces MobileSoft'16, Multi-User Experience (MUX) S1: Insourcing S2: Outsourcing S3: Responsive design
Τμήμα Επιστήμης Υπολογιστών ΗΥ-474. Ψηφιακός ήχος. Χαρακτηριστικά σήματος ήχου Ψηφιοποίηση ήχου Συνθετικοί ήχοι MIDI
Ψηφιακός ήχος Χαρακτηριστικά σήματος ήχου Ψηφιοποίηση ήχου Συνθετικοί ήχοι MIDI Παραγωγή ήχων Δόνηση Μέσο διάδοσης Αισθητήρες Χαρακτηριστικά Ένταση Συχνότητα Υποκειμενικά χαρακτηριστικά Ακουστικότητα Ύψος
Speech Recognition using Phase Information based on Long-Term Analysis
THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. 441 8580 1 1 E-mail: {kyama,sueyoshi,nakagawa}@slp.cs.tut.ac.jp MFCC Liu 2 1 1 90% MFCC 20% Abstract Speech
Χαρακτηρισµός Νεοπλασµάτων στη Μαστογραφία από το Σχήµα της Παρυφής µε χρήση Νευρωνικών ικτύων
Χαρακτηρισµός Νεοπλασµάτων στη Μαστογραφία από το Σχήµα της Παρυφής µε χρήση Νευρωνικών ικτύων Χ. Γεωργίου 1 (xgeorgio@hol.gr),. Κάβουρας 2 (cavouras@hol.gr), Ν. ηµητρόπουλος 3, Σ. Θεοδωρίδης 1 (stheodor@di.uoa.gr)
Razor. [1], [2] (typical) LSI V/F. Razor. (Timing Fault: TF) [7] Razor [3], [4], [5] DVFS - Dynamic Voltage and Frequency Scaling [6]
,a),.,.,.,,,,.,. [], [] (typial) LSI (Timing Fault: TF) TF Razor [], [], [] DVFS - Dynami Voltage an Frequeny Saling [] TF (V) (F) TF TF Grauate Shool of Information Siene an Tehnology, The University
Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn
2015 11 Nov 2015 36 6 Journal of Zhengzhou University Engineering Science Vol 36 No 6 1671-6833 2015 06-0056 - 05 C 1 1 2 2 1 450001 2 461000 C FCM FCM MIA MDC MDC MIA I FCM c FCM m FCM C TP18 A doi 10
1181 (real-timespeechdriven) 1 1 ( ) D FAP FAP (voiceactivationdetectionvad) D FaceGen 3- D XfaceEd MPEG-4 1 FAP 66 FAP ( ) FAP 84
ISSN1000-0054 CN11-2223/N ( ) 2011 51 9 JTsinghuaUniv(Sci& Tech) 2011Vol.51 No.9 5/33 1180-1186 ( 710129) [1-2] 2 [1] MPEG-4 3-D MOS MOS 3.42 3.50 TP391 1000-0054(2011)09-1180-07 A Real-timespeechdriventalkingavatar
Δράσεις για την ενίσχυση της Δημιουργικότητας μέσω της Μουσικής Πληροφόρησης και της Τηλεκπαίδευσης στη Φιλαρμονική Ένωση Κέρκυρας «Καποδίστριας»
Δράσεις για την ενίσχυση της Δημιουργικότητας μέσω της Μουσικής Πληροφόρησης και της Τηλεκπαίδευσης στη Φιλαρμονική Ένωση Κέρκυρας «Καποδίστριας» Ομάδα Έργου: Επιστημονικός Υπεύθυνος: Πέτρος Κωσταγιόλας,
A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks
P2P 1,a) 1 1 1 P2P P2P P2P P2P A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks NARISHIGE Yuki 1,a) ABE Kota 1 ISHIBASHI Hayato 1 MATSUURA Toshio 1
ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ
ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ Master of science in Networking and Data Communications Ακαδημαϊκό Έτος 2013-2014 Συνδιοργάνωση Το ΤΕΙ Πειραιά και το πανεπιστήμιο Kingston της Μεγάλης Βρετανίας συνδιοργανώνουν
HOSVD. Higher Order Data Classification Method with Autocorrelation Matrix Correcting on HOSVD. Junichi MORIGAKI and Kaoru KATAYAMA
DEIM Forum 2010 D1-4 HOSVD 191-0065 6-6 E-mail: j.morigaki@gmail.com, katayama@tmu.ac.jp Lathauwer (HOSVD) (Tensor) HOSVD Savas HOSVD Sun HOSVD,, Higher Order Data Classification Method with Autocorrelation
Σύστημα ψηφιακής επεξεργασίας ακουστικών σημάτων με χρήση προγραμματιζόμενων διατάξεων πυλών. Πτυχιακή Εργασία. Φοιτητής: ΤΣΟΥΛΑΣ ΧΡΗΣΤΟΣ
Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε. Σύστημα ψηφιακής επεξεργασίας ακουστικών σημάτων με χρήση προγραμματιζόμενων διατάξεων πυλών. Πτυχιακή Εργασία Φοιτητής:
Καταλογοποίηση ακουστικών μουσικών δεδομένων
ΚΕΦΑΛΑΙΟ 5 Καταλογοποίηση ακουστικών μουσικών δεδομένων Περιεχόμενα 5.1 ΕΙΣΑΓΩΓΗ.......................... 147 5.2 ΣΧΕΤΙΚΕΣ ΕΡΓΑΣΙΕΣ.................... 149 5.3 Ο ΑΛΓΟΡΙΘΜΟΣ MS-INDEX................ 151
Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation and Peak Detection
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, XXXX XXXX Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation
BCI On Feature Extraction from Multi-Channel Brain Waves Used for Brain Computer Interface
BCI On Feature Extraction from Multi-Channel Brain Waves Used for Brain Computer Interface Hiroya SAITO Kenji NAKAYAMA Akihiro HIRANO Graduate School of Natural Science and Technology,Kanazawa Univ. E-mail:
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016
Harvard School of Engineering and Applied Sciences CS 152: Programming Languages Dynamic types, Lambda calculus machines Apr 21 22, 2016 1 Dynamic types and contracts (a) To make sure you understand the
Schedulability Analysis Algorithm for Timing Constraint Workflow Models
CIMS Vol.8No.72002pp.527-532 ( 100084) Petri Petri F270.7 A Schedulability Analysis Algorithm for Timing Constraint Workflow Models Li Huifang and Fan Yushun (Department of Automation, Tsinghua University,
Indexing Methods for Encrypted Vector Databases
Computer Security Symposium 2013 21-23 October 2013 305-0006 1-1-1 junpei.kawamoto@acm.org LSH LSH LSH Indexing Methods for Encrypted Vector Databases Junpei Kawamoto Faculty of Engineering, Information
Development of a Seismic Data Analysis System for a Short-term Training for Researchers from Developing Countries
No. 2 3+/,**, Technical Research Report, Earthquake Research Institute, University of Tokyo, No. 2, pp.3+/,,**,. * * Development of a Seismic Data Analysis System for a Short-term Training for Researchers
1 n-gram n-gram n-gram [11], [15] n-best [16] n-gram. n-gram. 1,a) Graham Neubig 1,b) Sakriani Sakti 1,c) 1,d) 1,e)
1,a) Graham Neubig 1,b) Sakriani Sakti 1,c) 1,d) 1,e) 1. [11], [15] 1 Nara Institute of Science and Technology a) akabe.koichi.zx8@is.naist.jp b) neubig@is.naist.jp c) ssakti@is.naist.jp d) tomoki@is.naist.jp
Applying Markov Decision Processes to Role-playing Game
1,a) 1 1 1 1 2011 8 25, 2012 3 2 MDPRPG RPG MDP RPG MDP RPG MDP RPG MDP RPG Applying Markov Decision Processes to Role-playing Game Yasunari Maeda 1,a) Fumitaro Goto 1 Hiroshi Masui 1 Fumito Masui 1 Masakiyo
Feasible Regions Defined by Stability Constraints Based on the Argument Principle
Feasible Regions Defined by Stability Constraints Based on the Argument Principle Ken KOUNO Masahide ABE Masayuki KAWAMATA Department of Electronic Engineering, Graduate School of Engineering, Tohoku University
A Vocabulary-Free Infinity-Gram Model for Chord Progression Analysis
1 1 n n n n n n A Vocabulary-Free Infinity-Gram Model for Chord Progression Analysis Kazuyoshi Yoshii 1 and Masataka Goto 1 This paper presents a novel nonparametric Bayesian n-gram model as a statistical
Discriminative Language Modeling Based on Risk Minimization Training
1,a) 1 1 1 2 Bayes Dscrmnatve Language Modelng Based on Rsk Mnmzaton Tranng Kobayash Ako 1,a) Oku Takahro 1 Fujta Yuya 1 Sato Shoe 1 Nakagawa Sech 2 Abstract: Ths paper descrbes dscrmnatve language models
Maxima SCORM. Algebraic Manipulations and Visualizing Graphs in SCORM contents by Maxima and Mashup Approach. Jia Yunpeng, 1 Takayuki Nagai, 2, 1
Maxima SCORM 1 2, 1 Muhammad Wannous 1 3, 4 2, 4 Maxima Web LMS MathML HTML5 Flot jquery JSONP JavaScript SCORM SCORM Algebraic Manipulations and Visualizing Graphs in SCORM contents by Maxima and Mashup
Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation
3 2 3 2 3 undle Adjustment or 3-D Reconstruction: Implementation and Evaluation Yuuki Iwamoto, Yasuyuki Sugaya 2 and Kenichi Kanatani We describe in detail the algorithm o bundle adjustment or 3-D reconstruction
DEIM Forum 2 D3-6 819 39 744 66 8 E-mail: kawamoto@inf.kyushu-u.ac.jp, tawara@db.soc.i.kyoto-u.ac.jp, {asano,yoshikawa}@i.kyoto-u.ac.jp 1.,, Amazon.com The Internet Movie Database (IMDb) 1 Social spammers
Kenta OKU and Fumio HATTORI
DEIM Forum 2012 A1-3 525 8577 1 1 1 E-mail: oku@fc.ritsumei.ac.jp, fhattori@is.ritsumei.ac.jp Kenta OKU and Fumio HATTORI College of Information Science and Engineering, 1 1 1 Nojihigashi, Kusatsu-city,
ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ ΠΜΣ «ΠΛΗΡΟΦΟΡΙΚΗ & ΕΠΙΚΟΙΝΩΝΙΕΣ» OSWINDS RESEARCH GROUP
ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ ΠΜΣ «ΠΛΗΡΟΦΟΡΙΚΗ & ΕΠΙΚΟΙΝΩΝΙΕΣ» OSWINDS RESEARCH GROUP 2015-2016 http://oswinds.csd.auth.gr/pms-theses201516 Ιδιωτικότητα και ανωνυμία σε ανοικτές πλατφόμες Privacy and anonymity
Company. Patras, Greece
Company Patras, Greece Accusonus is start-up, focusing on innovative digital audio technologies. Our offices are located at the Patras Innovation Hub, Patras, Greece.The company s mission is to offer advanced
Scrub Nurse Robot: SNR. C++ SNR Uppaal TA SNR SNR. Vain SNR. Uppaal TA. TA state Uppaal TA location. Uppaal
Scrub Nurse Robot: SNR SNR SNR SNR Uppaal Uppaal timed automatonta SNR C++ Uppaal TA SNR SNR 1 1SNR3 SNR SNR C++ SNR Uppaal TA Vain Uppaal TA TA state Uppaal TA location TRON (Testing Realtime Systems
情報処理学会研究報告 IPSJ SIG Technical Report Vol.2014-MUS-104 No /8/26 1,a) Music Structure and Composition with Sound Directivity in 3D Space
1,a) 1 1 2 2. Music Structure and Composition with Sound Directivity in 3D Space Riki Ishino 1,a) Yusuke Naka 1 Yuya Yoshida 1 Yusuke Matsui 2 Tomoko Yonezawa 2 Abstract: In this research, we propose a
ΣΤΟΧΟΙ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΠΕΡΙΕΧΟΜΕΝΟ
Σχεδίαση Συστηµάτων µε DSPs, Συστήµατα Επεξεργασίας Σηµάτων µε DSPs*. Μεταπτυχιακά Τµήµατα, Ηλεκτρονικής και Υπολογιστών & Ηλεκτρονικής και Επεξεργασίας της Πληροφορίας * 2006-2007 24 Οκτωβρίου 2006 ΣΤΟΧΟΙ
ΕΥΡΕΣΗ ΤΟΥ ΔΙΑΝΥΣΜΑΤΟΣ ΘΕΣΗΣ ΚΙΝΟΥΜΕΝΟΥ ΡΟΜΠΟΤ ΜΕ ΜΟΝΟΦΘΑΛΜΟ ΣΥΣΤΗΜΑ ΟΡΑΣΗΣ
ΕΥΡΕΣΗ ΤΟΥ ΔΙΑΝΥΣΜΑΤΟΣ ΘΕΣΗΣ ΚΙΝΟΥΜΕΝΟΥ ΡΟΜΠΟΤ ΜΕ ΜΟΝΟΦΘΑΛΜΟ ΣΥΣΤΗΜΑ ΟΡΑΣΗΣ Νικόλαος Κυριακούλης *, Ευάγγελος Καρακάσης, Αντώνιος Γαστεράτος, Δημήτριος Κουλουριώτης, Σπυρίδων Γ. Μουρούτσος Δημοκρίτειο
Automatic extraction of bibliography with machine learning
Automatic extraction of bibliography with machine learning Takeshi ABEKAWA Hidetsugu NANBA Hiroya TAKAMURA Manabu OKUMURA Abstract In this paper, we propose an extraction method of bibliography using support
2 ~ 8 Hz Hz. Blondet 1 Trombetti 2-4 Symans 5. = - M p. M p. s 2 x p. s 2 x t x t. + C p. sx p. + K p. x p. C p. s 2. x tp x t.
36 2010 8 8 Vol 36 No 8 JOURNAL OF BEIJING UNIVERSITY OF TECHNOLOGY Aug 2010 Ⅰ 100124 TB 534 + 2TP 273 A 0254-0037201008 - 1091-08 20 Hz 2 ~ 8 Hz 1988 Blondet 1 Trombetti 2-4 Symans 5 2 2 1 1 1b 6 M p
Web 論 文. Performance Evaluation and Renewal of Department s Official Web Site. Akira TAKAHASHI and Kenji KAMIMURA
長 岡 工 業 高 等 専 門 学 校 研 究 紀 要 第 49 巻 (2013) 論 文 Web Department of Electronic Control Engineering, Nagaoka National College of Technology Performance Evaluation and Renewal of Department s Official Web Site
Maude 6. Maude [1] UIUC J. Meseguer. Maude. Maude SRI SRI. Maude. AC (Associative-Commutative) Maude. Maude Meseguer OBJ LTL SPIN
78 Maude 1 Maude [1] UIUC J. Meseguer ( 1 ) ( ) Maude Maude SRI 90 UIUC SRI Maude SRI S. Eker C++ Maude 2 Maude Meseguer OBJ 1983-84 OBJ2[3] OBJ Maude OBJ 1 CafeOBJ 3 Maude 4 Maude CafeOBJ Maude: A Computer
LAN. On the Dynamic Performance of Indoor Positioning System using Wireless LAN on Smartphone
一 般 社 団 法 人 電 子 情 報 通 信 学 会 信 学 技 報 THE INSTITUTE OF ELECTRONICS, IEICE Technical Report INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL ITS2015-6 REPORT(2015-06) OF IEICE. THE INSTITUTE OF ELECTRONICS,
v.connect 2 v.connect : A Singing Synthesis System Enabling Users to Control Vocal Tones Makoto Ogawa, 1 Syunji Yazaki 1 and Kôki Abe 1 VOCALOID
v.connect 1 1 1 VOCALOID UTAU WORLD Vorbis v.connect 2 1.7 2.2 v.connect : A Singing Synthesis System Enabling Users to Control Vocal Tones Makoto Ogawa, 1 Syunji Yazaki 1 and Kôki Abe 1 Since the release
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ Σημασιολογική Συσταδοποίηση Αντικειμένων Με Χρήση Οντολογικών Περιγραφών.
Current Status and Future Prospects of Camera-Based Character Recognition and Document Image Analysis
THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. 599 8531 1 1 980 8579 6 6 05 812 8581 6 10 1 E-mail: {kise,masa}@cs.osakafu-u.ac.jp, machi@aso.ecei.tohoku.ac.jp,
Analysis of prosodic features in native and non-native Japanese using generation process model of fundamental frequency contours
THE INSTITUTE O ELECTRONICS, INORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT O IEICE. 277 8562 5 1 5 113 3 7 3 1 6 817 17 8 E-mail: {hiran,wtgu,hirose,mine}@gavo.t.u-tokyo.ac.jp, goh@kawai.com
Τιμοκατάλογος λιανικής
Τιμοκατάλογος λιανικής 2013 Γ. Σεφέρη 28 - Κωνσταντινοπολίτικα 54 352 - Τηλ & Fax: 2310-322155 - www.apopsissound.gr T 1 Περιγραφή Τιμή Headphone design: Semi-open Headphone impedance: 600 ohms Frequency