* 225009 A Zn 2 + X XRD SEM FTIR Zn 2 + 64. 7% ~ 73. 3% DOI 10. 13204 /j. gyjz201606020 STUDY OF BIOREMEDIATION USING IRON BACTERIA FOR ARTIFICIALLY ZINC POLLUTION SOIL Xu Zhaoyang Bai Tingchun Huang Jianzhang Pang Yishan Zhou Feng College of Civil Science and EngineeringYangzhou UniversityYangzhou 225009China Abstract Bio-grouting using iron-based complexes produced by the metabolism of iron bacteria A was conducted to remediate artificially zinc pollution soil and the effect of bioremediation was investigated. Scanning Electron Microscopy SEM X-ray Diffraction XRD and Fourier Transform Infrared Spectroscopy FTIR were used to identify the composition and the structure of iron-based complexes and analyze the deposition mechanism of heavy metal. The results showed that the concentration of available Zn 2 + in soil reduced by 64. 7% ~ 73. 3% after three times bio-grouting. Microscopy analyses showed that the iron-based complexeswhich containing schwertmanniteas well as other substances with excellent flocculation efficiency and large specific surface areahad poor crystalline formbut could fix heavy metals in a contaminated environment through adsorption and co-precipitation. Keywords iron bacteria heavy metal bioremediation iron-based complex adsorption co-precipitation 1 16. 1% 3 4 19. 4% Cd 2 + 0. 9% Cd 2 + 5 mg /L 21 25% ~ 60% 5 6-7 Zn 2 + 2 8 3 * 51278446 1971 zhaoyang_xu@ aliyun. com 2015-12 - 06 90 Industrial Construction Vol. 46 No. 6 2016 2016 46 6
A A Zn 2 + 1 1. 1 A 1 L 10 g 0. 5 g 0. 5 g 0. 5 g 0. 2 g 0. 5 g 5 mol /L NaOH ph 6. 8 ~ 7. 0 ph 7. 0 ThZ - 100B 200 r /min 30 3 d 8. 6 JN303-3 30 1. 2 18 ~ 35 30 30 10 d ph 1 A 2b 3 d 5 d 1. 2 10 9 /ml 2c 2d 1 Fig. 1 A Growth curve of iron a 1 d b 10 d c d Fig. 2 1. 3 Zn 2 + 1. 3. 1 2 Formation process of sediment through strain metabolism Zn 2 + 50 ml 4. 8 g /L Zn NO 3 2 250 ml 3 d 30 7 ~10 d 2b 3 A Zn 2 + 1. 3. 2 Zn 2 + a 1 d b 7 ~ 10 d 3 0. 5 mm Fig. 3 Changing process after bacteria mixed 1 GB with Zn NO 3 2 solution 15618 1995 2. 0 Zn 2 + Zn 2 + 100 ml 500 g Zn 2 + Zn 2 + 11 g Zn NO 3 2 6H 2 O 500 ml 963. 0 mg /kg Zn NO 3 2 91
1 2. 5 ph Table 1 / / g kg - 1 g kg - 1 1 Physical and chemical properties indexes of intact soil / Zn 2 + / cmol kg - 1 92 2016 46 6 Cd 2 + / Cu 2 + / Pb 2 + / Cr 3 + / 6. 3 ~ 6. 5 10. 89 0. 67 17. 54 18. 35 0. 04 5. 89 2. 37 16. 51 250 ml 3 d 2 250 g Zn 2 + 30 X XRD 2d 15 d 250 ml 3 SEM 250 ml FTIR 250 ml 3 2. 1 XRD SEM M - 1 M - 2 3 4 XRD 5 5 Zn 2 + XRD 6a SEM 6b 10 g M - 1 M - 2 Zn 2 + SEM 20 ml DTPA 2 h A 0. 45 μm KIIM6 Zn 2 + Zn Zn 2 + Zn 2 + XRD 1. 3. 3 Zn 2 + 2 Zn 2 + Zn 2 + 963. 0 mg /kg 746. 4 mg /kg 746. 4 mg /kg 2 Zn 2 + Table 2 Test results of available Zn 2 + in soil / / M - 1 746. 4 199. 3 ~ 263. 5 M - 2 746. 4 590. 4 ~ 610. 6 /% 64. 7 ~ 73. 3 18. 2 ~ 20. 9 M - 1 Zn 2 + 64. 7% ~ 73. 3% M - 2 M - 1 M - 2 Zn 2 + M - 1 2. 2 FTIR Zn NO 3 2 Fe 5 PO 4 4 OH 3 2H 2 O θ XRD XRD pattern of bio-metabolites 7 9 4 Fig. 4 5 Zn 2 + XRD Fig. 5 XRD pattern of bio-metabolites and Zn 2 + coprecipitates
a b Zn 2 + 6 Fig. 6 SEM of sediment 7 3 391. 9 cm - 1 3 O - H Table 3 IR absorbance characteristics of standard - OH and synthetic schwertmannite 3 10 11 XRD SEM 8 Zn 2 + Zn 2 + 7 8 Zn 2 + A ph OH - Fe 3 + OH - Zn 2 + 11 - OH H 2 O 2 - SO 4 Fe - O 3 318 1 629 702 ~ 1 118 432. 0 3 391. 9 1 625. 0 848 ~ 1 034 443. 2 2. 3 A OH - 9 12-13 Zn 2 + Zn 2 + 7 Fig. 7 FTIR spectrum of iron-based complexes Fig. 9 9 Structure diagram of schwertmannite 8 Zn 2 + Fig. 8 FTIR spectrum of iron-based complexes with Zn 2 + 3 1 A Zn 2 + Zn 2 + 2 XRD SEM FTIR 3 3 132 93
8 y = x 3 6. 8% 5. D. y = x 1990. 8 6Orangun C O Jirsa J OBreen J E. A Reevaluation of Test Data on Fig. 8 Comparison of the ultimate bond strength between the tested data and the estimated value by formulas Development Length and Splices J. ACI 1977 74 3114-122. 7Harajli M HHamad B SRteil A A. Effect of Confinement on Bond Strength Between Steel Bars and Concrete J. ACI Structural Journal2004101 5 595-603. 8Plizzari G ADeldossi M AMassimo S. Transverse Reinforcement Effects on Anchored Deformed BarsJ. Magazine of Concrete Research199850 2 161-177. 1 9. J. 2005 35 410-12. 10Chana P S. A Test Method to Establish Realistic Bond Stresses 2 J. Magazine of Concrete Research199042 151 83-90. 11du Béton C E. CEB-FIP Model Code 2010S. 12. M. 2006. 3 1Tepfers R. Cracking of Concrete Cover Along Anchored Deformed Reinforcing Bars J. Magazine of Concrete Research197931 1063-12. 2EsfahaniReza MRanganet al. Local Bond Strength of Reinforcing Bars in Normal Strength and High-Strength Concrete J. ACI Structural Journal199895 2 96-106. 3. J. 1989 233-43. 4. J. 1988 4 48-14. 93 Zn 2 + 64. 7% ~ 73. 3% J. 2012 258-61. 7. J. 2013 143280-3282. 8. J. 2014 344-47. 1. EB / 9. FeOOH OL. 2015-12 - 06. http / /www. zhb. gov. cn /gkml /hbb / J. 2003 22 4352-354. qt /201404 / t20140417_270670. htm. 10Regenspurg SBrand APeiffer S. Formation and Stability of 2Hynkiewicz KBaum C. Application of Micro-Organisms in Schwertmannite in Acid Mining Lakes J. Geochim. Cosmoehim Bioremediation of Environment from Heavy MetalsG. Malik A Grohmann EAkhtar R. Environmental Deterioration and Human Health. Springer Netherlands 2014 215-227. 3 J. 2015 5224-227. 4 J. 2015 3189-191. 5. 3 Cu Cd J. 2004 68 1185-1197. 11Solener MTunali SOzcan A Set al. Adsorption Characteristics of Lead II Ions onto the Clay Acrylamide PMEA Composite. from Aqueous SolutionsJ. Desalination 2008 223 308-322.. 12. Schwertmannite J. 2007 2367-370. 2004 23 3471-474. 13. Fe III 6. Zn 2 + J. 199312 5365-372. 132 2016 46 6