23 10( 142) V ol. 23, N o. 10 200510 System s Engineering O ct., 2005 100124098 (2005) 1020081205 Ξ 1, 2, 1 2, (1., 710049; 21, 266033),,,,,,,, ; ; F224. 32 A 20 6070 [1, 2 ], 1, 1. 1, (1) T = {1, 2}, 1, 2 [3, 4 ], (2) 5 = { y, n} 1, y T ullock 1980 1, n, i 1, [5 ],, H illm an Sam et [6 ], L eininger Yang [7 ] 1 ( y n), 2 T ullock, P { = y }= q, P { = n}= 1- q. H ehenkamp L eininger T ullock (3) M = {m 1, m 2} 1, m = m (ESS), 1 [8 ] ; m = m 2,, [9-14 ] (4) 2 A = {a1, a2} a= a1,,,,,,, a= a2,, c1, c2, 0c1,, c2., (5) = n, m = m 2,,,,, 1. 2, N (N Ξ 2005208207 (70121001) ; (10371094) (19632),,,,
82 2005 N ature), N 1, 1. 1 (5), ; 2, (1) 1 (m 1, m 2), 2 1, 1 P ( y gm 1) = P ( ngm 2) = 1, P ( y gm 2) =, 1 V P ( ngm 1) = 0 2 U 2 ( j,,, 1 I; 1, V I, F (F > 0) 1, U 1 ( n,m 2, a1) = 0 U 2 ( n,m 2, a1) = - c1 U 1 ( n,m 2, a2) = 0 U 2 ( n,m 2, a2) = - c2, g, 1 1 g 1 g [ (m 2, m 2), (a1, a1), p ( 0, 1) ] ( = - c1. a 3 (m 1) = a1. [15 ] ) g 1 a 3 ( m ) = (a1, a1) (1), m ( ) = (m 1,m 2) (2) m ( ) = m 1, = y m 2, = n m 2, = y m 2, = n ai) P ( j g) m = m 1, U 2 ( j,m 1, ai) P ( jgm 1) = V - I. U 2 ( y,m 1, ai) 1 = {U 2 ( y,m 1, a1),u 2 ( y,m 1, U i (, m, a) i (i= 1, 2) a2) } = {- c1, - c2} = - c1. a 3 (m 1) = a1., m = m 2, U 2 ( j,m 2, ai) P ( jgm 2) = U 1 ( y,m 1, a1) = - I U 2 ( n,m 2, ai) 1 = {U 2 ( n,m 2, a1),u 2 ( n,m 2, U 2 ( y,m 1, a1) = - a c1 i U 1 ( y,m 1, a2) = - I a2) } = {- c1, - c2} = - c1. a 3 (m 2) = a1. U 2 ( y,m 1, a2) = - c2 U 1 ( y,m 2, a1) = V - I 1 {m 1, m 2}, 2 {a1, a1}, 2 U 2 ( y,m 2, a1) = - c1 U 1 ( y,m 2, a2) = - I - F 2 a 3 (m ) = (a1, a1), 1 U 2 ( y,m 2, a2) = - U 1 ( j,, a 3 (m ) ) c2 = y, U 1 ( y,, a1) = {U 1 ( y, m 1, a1 ), U 1 ( y, m 2, a1) } = {- I, V - I } = V - I. m 3 ( y ) = m 2. = n, m 3 ( n) = m 2. 1 ( ) = (m 2, m 2), m 3, (1) (2) 1 (m 2, m 2), 2 P ( y gm 2) = p, P ( n gm 2) = 1- m 1) = 1, P ( ngm 1) = 0 m = m 2, p, P ( y g g U 2 ( j,m 2, ai) P ( j gm 2) = {pu 2 ( y, m 2, a1) + (1- p ) U 2 ( n, m 2, a1), pu 2 ( y, m 2, a2) + (1- p )U 2 ( n, m 2, a2) }= {p (- c1) + (1- p ) g (- c1), p (- c2) + (1- p ) (- c2) }= - c1. a1. a 3 (m 2) = U 2 ( j,m 1, ai) p ( jgm 1) = m = m 1, {U 2 ( y, m 1, a1),u 2 ( y,m 1, a2) } = {- c1, - c2} 1 (m 2, m 2), 2 2 (a1, a1), (1), 1 (m 2, m 2), 1. 3,,, k kf g, 2
2 g 2 k (c2- c1) gp F, [ (m 1, m 2), 1 3 k> (c2- c1) gp F, 12 (m 1,m 2) (1) 1 (m 1, m 2), 2 P ( y gm 1) = P ( ngm 2) = 1, P ( ngm 1) U 2 ( j,m 1, ai) p ( j gm 1) = m = m 1, {U 2 ( y,m 1, a1),u 2 ( y,m 1, a2) } = {- c1, - c2} = - c1. a 3 ( m 1) = a1. m = m 2, U 2 ( j,m 2, ai) p ( j gm 2) = {U 2 ( n,m 2, a1),u 2 ( n,m 2, a2) } = {- c1, - c2} = - c1. a 3 (m 2) = a1., 1 (m 1, m 2) 2 (a1, a1) (2) 2 (a1, a1), 1, U 1 ( j,, a 3 (m ) ) = y, U 1 ( y,, a1) = {U 1 ( y,m 1, a1),u 1 ( y,m 2, a1) } = {- I, 0} = 0 m 3 ( y ) = m 2. 10, 83 = n, 2. 1 (5), m 3 ( n) = m 2., 2 (a1, a1) 1 (m 2,m 2) (3) 1 (m 2, m 2), 2 P ( y gm 2) = p, P ( ngm 2) = 1- p, P ( y gm 1) = m = m 2, 1, P ( ngm 1) = 0 2 ai, ai) P ( j g) U 2 ( j,m 2, ai) P ( jgm 2) = {pu 2 ( y,m 2, ai) + (1 - p )U 2 ( n,m 2, ai) } = {pu 2 ( y,m 2, a1) + (1 - p ) U 2 ( n,m 2, a1), pu 2 ( y, m 2, a2) + (1 - p ) U 2 ( n,m 2, a2) } = {p (- c1) + (1 - p ) (- c1), p (kf - c2) + (1 - p ) (- c2) } = p kf - c2. a 3 (m 2) = a2. m = m 1, U 2 ( j,m 1, ai) P ( jgm 1) = {U 2 ( y,m 1, a1),u 2 ( y,m 1, a2) } = {- c1, - c2} = - c1. a 3 (m 1) = a1., (m 2, m 2) 2 (a1, a2) (4) 2 (a1, a2), 1, U 1 ( j,, a 3 (m ) ) = y, U 1 ( y,, a1) = {U 1 ( y,m 1, m (a1, a1), p (0, 1) ] ; k a1),u 1 ( y,m [ (m 2, m 2), (a1, a1), p (0, 1) ] 2, a2) } = {- I, - I - F } = - I, m 3 ( y ) = m 1. = n, 2. 1 (5), m 3 ( n) = m 2., 2 (a1, a2) 1 1. 4, = P ( y gm 2) = 0, ai,, U 2 ( j,, ai) P ( jg),, g, 3 3 g 4 k > (c2- c1) gf, [ (m 1, m 2), (a1, a2), p (0, 1) ] 1 (m 1, m 2), 2 P ( y gm 1) = P ( ngm 2) = 1, P ( y gm 2) = P ( n gm 1 ) = 0 2 U 2 ( j,,
84 2005 m = m 1, U 2 ( j,m 1, ai) P ( jgm 1) = U 2 ( y,m 1, ai) 1 = {U 2 ( y,m 1, a1),u 2 ( y,m 1, a2) } = {- c1, - c2} = - c1. a 3 (m 1) = a1. m = m 2, U 2 ( j,m 2, ai) P ( jgm 2) = U 2 ( n,m 2, ai) 1 = {U 2 ( n,m 2, a1),u 2 ( n,m 2, a2) } = {- c1, kf - c2} = kf - c2. a 3 (m 2) = a2. 1 U 1 ( j,, a 3 (m ) ) = y, U 1 ( y,, ai) = {U 1 ( y,m 1,, a1), U 1 ( y,m 2, a2) } = {- I, - I - F } = - I., m 3 ( y ) = m 1. = n, m 3 ( n) = m 2. 1 m 3 ( ) = (m 1, m 2), k,,,, c2, 4, (4) 4,,,,,, ;,,, (1-, p ) kf,,,,,, 2 (1) 2,,, k(c2- c1) gp F, 1 {m 1, m 2},,, 2 {a1, a2}, 2 a 3, (m ) = (a1, a2) 1 ( ), 1 2 a 3 (m ) = (a1, a2), (2) 3, k> (c2- c1) gp F, (3),, F, 2 3,,, [1 ]T ullock G. T he w elfare costs of tariffs,monopolies and theft [J ]. W estern Econom ic Journal, 1967, 5 224232. [2 ]K rueger A. T he political econom y of the rent2seek ing society[j ]. Am erican Econom ic eview, 1974. [3 ]Tollison D. ent2seek ing a survey[j ]. Kyk los, 1982, 35 (4) 575602. [4 ]H indmoor A. ent seek ing evaluated[j ]. T he Journal of Political Ph ilosophy, 1999, 7 (4) 434452. [5 ]T ullock G. Efficient rent2seek ing[a ]. Buchanan, Tollison, T ullock. Tow ard a theory of the rent2seek ing society[c ]. T exas A & M U niversity P ress, 1980 315. [6 ]H illm an A, Sam et D. D issipation of contestable rents by sm all num bers of contenders[j ]. Public Choice, 1987, 108 169195. [7 ]L einingerw, Yang C. D ynam ic rent2seek ing gam es[j ]. Gam es and Econom ic Behavior, 1994, 7 406422. [8 ]H ehenkamp B, L eininger W, Possajennikov A. Evolutionary equilibrium in tullock contests sp ite and overdissipation [J ]. European Journal of Political Econom y, 2004, 20 10451057. [9 ]. [J ]., 1996, (9) 2629. [10 ]. [M ]., 1999. [11 ],. [J ]., 1999, (6) 1420. [12 ],. [J ]., 2003, (2) 6169.
10, 85 [13 ],. [J ]. ( ), 2000, (2) 5156. [14 ],. 2 [J ]., 2002, (4) 3341. [15 ]. [M ]., 1996. A D ynam ic Game Ana lysis on D isposa l of en t- seek ing Phenom ina with Incomplete Informa tion WAN G B in 1, 2, XU Yin2feng 1,L I Zh i2m in 2 (1. School of M anagem ent, X i an J iaotong U niversity, X i an 710049; 2. Q ingdao T echno logicalu n iversity, Q iagdao 266033, Ch ina) Abstract In acco rdance w ith the info rm ation un symm etry during dispo sal of ren t2seek ing, w e establish th ree incom p lete info rm ation dynam ic m odels invo lving governm en t in spection departm en ts and group s fo r p rofits, sub2gam e refined Bayesian N ash equilibrium respectively. and then give their T he result show s that it can t effectively reduce the ren t2seek ing phenom ina only by punish ing of rent behavior or aw arding of inspection behavior, w h ile only by m eans of general encourag2 ing to different inspection behavior during punishm ent of rent2seek ing behavior, can imp rove disposal effect and effectively p revent rent2seek ing behavioṙ Key words ent2seek ing; Incomp lete Inform ation D ynam ic Gam e; Sub2gam e efined Bayesian N ash Equilibrium