2.153 Adaptive Control Lecture 7 Adaptive PID Control

Σχετικά έγγραφα
ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

C.S. 430 Assignment 6, Sample Solutions

Solution Series 9. i=1 x i and i=1 x i.

Second Order RLC Filters

UNIVERSITY OF CALIFORNIA. EECS 150 Fall ) You are implementing an 4:1 Multiplexer that has the following specifications:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016

Example Sheet 3 Solutions

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Homework 3 Solutions

A Method of Trajectory Tracking Control for Nonminimum Phase Continuous Time Systems

Srednicki Chapter 55

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Numerical Analysis FMN011

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Generating Set of the Complete Semigroups of Binary Relations

Uniform Convergence of Fourier Series Michael Taylor

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

Finite Field Problems: Solutions

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

2 Composition. Invertible Mappings

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

Other Test Constructions: Likelihood Ratio & Bayes Tests

Section 8.3 Trigonometric Equations

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Second Order Partial Differential Equations


A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Inverse trigonometric functions & General Solution of Trigonometric Equations

EE512: Error Control Coding

Θ. Ζαχαριάδης Αν. Καθηγητής. Λ. Σαράκης Καθ. Εφαρμογών

CRASH COURSE IN PRECALCULUS

ME 374, System Dynamics Analysis and Design Homework 9: Solution (June 9, 2008) by Jason Frye

ST5224: Advanced Statistical Theory II

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν.

Διπλωματική Εργασία του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών

The challenges of non-stable predicates

Tridiagonal matrices. Gérard MEURANT. October, 2008

Ψηφιακή Επεξεργασία Φωνής

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Probability and Random Processes (Part II)

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Depth versus Rigidity in the Design of International Trade Agreements. Leslie Johns

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

6.3 Forecasting ARMA processes

The Simply Typed Lambda Calculus

derivation of the Laplacian from rectangular to spherical coordinates

Έλεγχος (PID-Control)

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Phasor Diagram of an RC Circuit V R

Matrix Hartree-Fock Equations for a Closed Shell System

Distances in Sierpiński Triangle Graphs

Notes on the Open Economy

Approximation of distance between locations on earth given by latitude and longitude

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Areas and Lengths in Polar Coordinates

Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik

Matrices and Determinants

ΕΘΝΙΚΗ ΣΧΟΛΗ ΤΟΠΙΚΗΣ ΑΥΤΟ ΙΟΙΚΗΣΗΣ Β ΕΚΠΑΙ ΕΥΤΙΚΗ ΣΕΙΡΑ ΤΜΗΜΑ: ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΙΟΙΚΗΣΗΣ ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ. Θέµα:

Αλγοριθμική ασυμπτωτική ανάλυση πεπερασμένης αργής πολλαπλότητας: O ελκυστής Rössler

w o = R 1 p. (1) R = p =. = 1

5. Choice under Uncertainty

Lecture 2. Soundness and completeness of propositional logic

10.7 Performance of Second-Order System (Unit Step Response)

ΑΥΤΟΜΑΤΟΠΟΙΗΣΗ ΜΟΝΑΔΑΣ ΘΡΑΥΣΤΗΡΑ ΜΕ ΧΡΗΣΗ P.L.C. AUTOMATION OF A CRUSHER MODULE USING P.L.C.

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Elements of Information Theory

Homework 8 Model Solution Section

Statistical Inference I Locally most powerful tests

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Chapter 5. Exercise Solutions. Microelectronics: Circuit Analysis and Design, 4 th edition Chapter 5 EX5.1 = 1 I. = βi EX EX5.3 = = I V EX5.

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Areas and Lengths in Polar Coordinates

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ


( y) Partial Differential Equations

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008

4.6 Autoregressive Moving Average Model ARMA(1,1)

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

Assalamu `alaikum wr. wb.

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/2006

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Transcript:

2.153 Adaptive Control Lecture 7 Adaptive PID Control Anuradha Annaswamy aanna@mit.edu ( aanna@mit.edu 1 / 17

Pset #1 out: Thu 19-Feb, due: Fri 27-Feb Pset #2 out: Wed 25-Feb, due: Fri 6-Mar Pset #3 out: Wed 4-Mar, due: Fri 13-Mar Pset #4 out: Wed 11-Mar, due: Fri 20-Mar Midterm (take home out: Mon 30-Mar, due: Fri 3-Apr ( aanna@mit.edu 2 / 17

Adaptive Control of a Second-order Plant e 1 G c (s τ x s(js B Plant: Jẍ Bẋ = τ J > 0 PI Control: Adaptive PI Control: G c (s = k p k i s τ = k p e(t k i e(τdτ τ = k p (te(t k i (t e(τdτ PID Control: Adaptive PID Control: G c (s = k p k d s k i s τ = k p e(t k i e(τdτ de kd dt τ = k p (te(t k i (t e(τdτ k d (tė(t J and B are unknown. Adjust k p (t, k i (t and k d (t so that the closed-loop system is stable and lim t e(t = 0. ( aanna@mit.edu 3 / 17

Adaptive Control of a Second-order Plant e 1 G c (s τ x s(js B Plant: Jẍ Bẋ = τ J > 0 PI Control: Adaptive PI Control: G c (s = k p k i s τ = k p e(t k i e(τdτ τ = k p (te(t k i (t e(τdτ PID Control: Adaptive PID Control: G c (s = k p k d s k i s τ = k p e(t k i e(τdτ de kd dt τ = k p (te(t k i (t e(τdτ k d (tė(t J and B are unknown. Adjust k p (t, k i (t and k d (t so that the closed-loop system is stable and lim t e(t = 0. ( aanna@mit.edu 3 / 17

Adaptive Control of a Second-order Plant e 1 G c (s τ x s(js B Plant: Jẍ Bẋ = τ J > 0 PI Control: Adaptive PI Control: G c (s = k p k i s τ = k p e(t k i e(τdτ τ = k p (te(t k i (t e(τdτ PID Control: Adaptive PID Control: G c (s = k p k d s k i s τ = k p e(t k i e(τdτ de kd dt τ = k p (te(t k i (t e(τdτ k d (tė(t J and B are unknown. Adjust k p (t, k i (t and k d (t so that the closed-loop system is stable and lim t e(t = 0. ( aanna@mit.edu 3 / 17

Adaptive Control of a Second-order Plant e Adaptive τ 1 x Controller s(js B Plant: Jẍ Bẋ = τ J > 0 PI Control: Adaptive PI Control: G c (s = k p k i s τ = k p e(t k i e(τdτ τ = k p (te(t k i (t e(τdτ PID Control: Adaptive PID Control: G c (s = k p k d s k i s τ = k p e(t k i e(τdτ de kd dt τ = k p (te(t k i (t e(τdτ k d (tė(t J and B are unknown. Adjust k p (t, k i (t and k d (t so that the closed-loop system is stable and lim t e(t = 0. ( aanna@mit.edu 3 / 17

PID -Control: Algebraic Part r e r Nominal τ 1 x Controller s(jsb G c (s = k p k i s k ds Parameterize k d = K, k p = 2λK > 0, k i = λ 2 K > 0 Closed-loop transfer function: K(s λ 2 s 2 (Js B K(s λ 2 = K(s λ 2 Js 3 s 2 (B K 2Kλ 2 s Kλ Stable if 0 < K < Jλ 2 B. Design the controller so that x x d ( aanna@mit.edu 4 / 17

PID Control - Algebraic Part: Tracking W cl (s r e r 1 G c (s τ x s(js B W cl (s = G c (s s(js B G c (s W 1 cl (s = 1 s(js BG 1 cl (s r = W 1 cl (s[x d ] ( = x d s(js BG 1 cl (s [x d ] = x d (s(js B [ω d ] = x d B ω d J ω d ( aanna@mit.edu 5 / 17

PID Control - Algebraic Part: Tracking W cl (s r e r 1 G c (s τ x s(js B W cl (s = G c (s s(js B G c (s W 1 cl (s = 1 s(js BG 1 cl (s r = W 1 cl (s[x d ] ( = x d s(js BG 1 cl (s [x d ] = x d (s(js B [ω d ] = x d B ω d J ω d ( aanna@mit.edu 5 / 17

PID Control - Algebraic Part: Tracking W cl (s x d W 1 r e r τ 1 x cl (s G c (s s(jsb W cl (s = G c (s s(js B G c (s W 1 cl (s = 1 s(js BG 1 cl (s r = W 1 cl (s[x d ] ( = x d s(js BG 1 cl (s [x d ] = x d (s(js B [ω d ] = x d B ω d J ω d ( aanna@mit.edu 5 / 17

PID Control - Algebraic Part: Tracking Using r = J ω d B ω d x d the block diagram can be represented as ω d J ω d r e r τ 1 B G c(s s(jsb x x d which can then be simplified to ẍ d J ẋ d x d B e Plant τ 1 G c(s s(jsb x ( aanna@mit.edu 6 / 17

PID Control - Algebraic Part: Tracking - Revised Design ẍ d J ẋ d x d B Plant e τ 1 x G c (s s(jsb Move B from feedforward - to feedback G c (s = (K Jλs Kλ s ( aanna@mit.edu 7 / 17

PID Control - Algebraic Part: Tracking - Revised Design ẍ d J x d Controller e τ G c (s Plant 1 s(jsb B ẋ x Move B from feedforward - to feedback G c (s = (K Jλs Kλ s ( aanna@mit.edu 7 / 17

PID Control - Algebraic Part: Tracking - Revised Design r e r τ G c(s 1 s(js B B ẋ x Reparameterize to accommodate J: G c (s = (K 2λJs2 (2λK λ 2 Js λ 2 K s (K 2λJs 2 (2λK λ 2 Js λ 2 K W cl (s = Js 3 (K 2λJs 2 (2λK λ 2 Js λ 2 K Always stable, for any J and B. ( aanna@mit.edu 8 / 17

PID Control - Algebraic Part: Tracking - Complete Design ẍ d J x d e τ G c (s 1 s(js B B ẋ x G c(s = (K 2λJs2 (2λK λ 2 Js λ 2 K G c(s, W cl (s = s Js 2 G c(s r = W 1 cl (s[x d ] ( = x d (Js 2 G 1 cl (s [x d ] = x d J ω d τ = Jẍ d Bẋ G c(s[e] ( = J ẍ d 2λė λ 2 e Bẋ K (ė 2λe λ 2 e(τdτ = Je 1(t Bẋ Ke 2(t ( aanna@mit.edu 9 / 17

PID Control - Algebraic Part: Tracking - Complete Design ẍ d x d x e 1 J e 2 τ K ẋ B 1 s(js B τ = Je 1(t Bẋ Ke 2(t ( e 1 = ẍ d 2λė λ 2 e, e 2 = (ė 2λe λ 2 e(τdτ Adaptive PID control: φ = [ e 1 ẋ e 2 ], θ = [ J B K ] τ = Ĵ(te 1 B(tẋ Ke 2 ( aanna@mit.edu 10 / 17

PID Control - Algebraic Part: Tracking - Complete Design ẍ d x d x e 1 J e 2 τ K ẋ B 1 s(js B τ = Je 1(t Bẋ Ke 2(t ( e 1 = ẍ d 2λė λ 2 e, e 2 = (ė 2λe λ 2 e(τdτ Adaptive PID control: φ = [ e 1 ẋ e 2 ], θ = [ J B K ] τ = Ĵ(te 1 B(tẋ Ke 2 ( aanna@mit.edu 10 / 17

PID Control - Algebraic Part: Tracking - Complete Design ẍ d x d x e 1 J e 2 τ K ẋ B 1 s(js B τ = Je 1(t Bẋ Ke 2(t ( e 1 = ẍ d 2λė λ 2 e, e 2 = (ė 2λe λ 2 e(τdτ Adaptive PID control: φ = [ e 1 ẋ e 2 ], θ = [ J B K ] τ = Ĵ(te 1 B(tẋ Ke 2 ( aanna@mit.edu 10 / 17

PID Control - Algebraic Part: Tracking - Complete Design ẍ d x d x e 1 J e 2 τ K ẋ B 1 s(js B τ = Je 1(t Bẋ Ke 2(t ( e 1 = ẍ d 2λė λ 2 e, e 2 = (ė 2λe λ 2 e(τdτ Adaptive PID control: φ = [ e 1 ẋ e 2 ], θ = [ J B K ] τ = Ĵ(te 1 B(tẋ Ke 2 ( aanna@mit.edu 10 / 17

PID Control - Algebraic Part: Tracking - Complete Design ẍ d x d x e 1 J e 2 τ K ẋ B 1 s(js B τ = Je 1(t Bẋ Ke 2(t ( e 1 = ẍ d 2λė λ 2 e, e 2 = (ė 2λe λ 2 e(τdτ Adaptive PID control: φ = [ e 1 ẋ e 2 ], θ = [ J B K ] τ = Ĵ(te 1 B(tẋ Ke 2 ( aanna@mit.edu 10 / 17

PID Control - Algebraic Part: Tracking - Complete Design ẍ d x d x e 1 J e 2 τ K ẋ B 1 s(js B τ = Je 1(t Bẋ Ke 2(t ( e 1 = ẍ d 2λė λ 2 e, e 2 = (ė 2λe λ 2 e(τdτ Adaptive PID control: φ = [ e 1 ẋ e 2 ], θ = [ J B K ] τ = Ĵ(te 1 B(tẋ Ke 2 ( aanna@mit.edu 10 / 17

PID Control - Algebraic Part: Tracking - Complete Design ẍ d x d x e 1 Ĵ e 2 τ K ẋ B 1 s(js B τ = Je 1(t Bẋ Ke 2(t ( e 1 = ẍ d 2λė λ 2 e, e 2 = (ė 2λe λ 2 e(τdτ Adaptive PID control: φ = [ e 1 ẋ e 2 ], θ = [ J B K ] τ = Ĵ(te 1 B(tẋ Ke 2 ( aanna@mit.edu 10 / 17

Adaptive PID Control (ẋ measurable τ = Ĵ(te 1 B(tẋ Ke 2 Plantcontroller: ẍ = 1 (Bẋ τ J = 1 (Bẋ Ĵ(te 1 B(tẋ Ke 2 J e 2 = (ė 2λe λ 2 e(τdτ.... ė 2 = K J e 2 1 J Globally stable; lim t e 2 (t = lim t e(t = 0. ( Je 1 Bẋ Error Model 3 ( aanna@mit.edu 11 / 17

Adaptive Phase Lead Compensators e 1 G c (s τ x s(js B Plant: Jẍ Bẋ = τ J > 0 Phase-lead: G c (s = k s z 0 s p 0, z 0 < p 0 τ = G c (se J and B are unknown. Deternine τ so that lim t e(t = 0. ( aanna@mit.edu 12 / 17

Adaptive Phase Lead Compensators e 1 G c (s τ x s(js B Plant: Jẍ Bẋ = τ J > 0 Phase-lead: G c (s = k s z 0 s p 0, z 0 < p 0 τ = G c (se J and B are unknown. Deternine τ so that lim t e(t = 0. ( aanna@mit.edu 12 / 17

Adaptive Phase Lead Compensators e 1 G c (s τ x s(js B Plant: Jẍ Bẋ = τ J > 0 Phase-lead: G c (s = k s z 0 s p 0, z 0 < p 0 τ = G c (se J and B are unknown. Deternine τ so that lim t e(t = 0. ( aanna@mit.edu 12 / 17

Adaptive Phase Lead Compensators e Adaptive τ 1 x Controller s(js B Plant: Jẍ Bẋ = τ J > 0 Phase-lead: G c (s = k s z 0 s p 0, z 0 < p 0 τ = G c (se J and B are unknown. Deternine τ so that lim t e(t = 0. ( aanna@mit.edu 12 / 17

Phase Lead Compensators - Algebraic Part cmd Nominal 1 x, ẋ y Controller s(jsb s a θ 0 G c (s = k s z 0 s p 0, z 0 < p 0 Always stable for any J, B, z 0, p 0 > 0 with z 0 < p 0. Assume x and ẋ measurable ( aanna@mit.edu 13 / 17

Phase Lead Compensators - Synthetic output y ω d B W cl (s ω d J v 1 x, ẋ y G c (s s(jsb s a y d θ 0 θ 0 ν = θ 0 (y d y B ω d J ω d Stable for all parameters of G c (s θ 0 = θ - value for which W cl (s has a desired phase margin ( aanna@mit.edu 14 / 17

Adaptive Phase Lead Compensators - Synthetic output y ω d B ω d Ĵ v 1 x, ẋ y G c (s s(jsb s a y d θ y θ y ν = θ y (t(y d y B ω d Ĵ ω d = θ y (t(y d y B(t ω d J(t ω d θ (y d y B ω d J ω d ( aanna@mit.edu 15 / 17

Adaptive Phase Lead Compensators - Synthetic output y ω d B ω d y d Ĵ θ v 1 x, ẋ y G c(s s(jsb s a θ ω θ ν = θ T ω θ e y B ω d J ω d θ y e y θ = B, ω = ω d J ω d ( aanna@mit.edu 16 / 17

Underlying Error Model ω θ W m (s e y W m (s = θ = k c J (s z c (s a s (s p c ( s B J θ k c J (s z c (s a θ y e y B, ω = ω d J ω d ( aanna@mit.edu 17 / 17