Κανονικές Γλώσσες. Κανονικές Γλώσσες. Κανονικές Γλώσσες και Αυτόματα. Κανονικές Γλώσσες και Αυτόματα

Σχετικά έγγραφα
Κανονικές Γλώσσες. ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Γλώσσες Χωρίς Συμφραζόμενα

Γλώσσες Χωρίς Συμφραζόμενα

Πεπερασμένα Αυτόματα. ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Cretive Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπ

Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (2)

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Ισοδυναμία Αιτ. Και μη Αιτ. Π.Α.

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 5: Κανονικές Εκφράσεις

Αυτόματα. Παράδειγμα: πωλητής καφέ (iii) Παράδειγμα: πωλητής καφέ (iv) Εισαγωγή στην Επιστήμη των Υπολογιστών. Προδιαγραφές

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Επανάληψη Μαθήματος

Στοιχεία Θεωρίας Υπολογισµού (2): Πεπερασµένα Αυτόµατα, Κανονικές Εκφράσεις

CSC 314: Switching Theory

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ

Αυτόματα. Παράδειγμα: πωλητής καφέ (iii) Παράδειγμα: πωλητής καφέ (iv) Εισαγωγή στην Επιστήμη των Υπολογιστών 6

(Γραμμικές) Αναδρομικές Σχέσεις

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

Σειρά Προβλημάτων 1 Λύσεις

Εισαγωγή στην Επιστήμη των Υπολογιστών

Φροντιστήριο 10 Λύσεις

Φροντιστήριο 9 Λύσεις

Διδάσκοντες: Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Σειρά Προβλημάτων 4 Λύσεις

Σύνολα. Ορισμός Συνόλου. Υποσύνολα και Κενό Σύνολο. Στοιχεία ενός συνόλου:

Ασκήσεις από παλιές εξετάσεις

Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (1)

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 3: Ντετερμινιστικά Πεπερασμένα Αυτόματα (DFA)

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

771 Η - Θεωρία Υπολογισµών και Αλγορίθµων

Μεταγλωττιστές. Ενότητα 2: Τυπικές γλώσσες (Μέρος 1 ο ) Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ

Σύνοψη Προηγούµενου. Κανονικές Γλώσσες (3) Παραδείγµατα µε Κανονικές Εκφράσεις. Σε αυτό το µάθηµα.

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ

ιµελής Σχέση ιατεταγµένο ζεύγος (α, β): ύο αντικείµενα (όχι κατ ανάγκη διαφορετικά) σε καθορισµένη σειρά. Γενίκευση: διατεταγµένη τριάδα (α, β, γ), δι

771 Η - Θεωρία Υπολογισµών και Αλγορίθµων

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

(Γραμμικές) Αναδρομικές Σχέσεις

Σχέσεις. Διμελής Σχέση. ΣτοΊδιοΣύνολο. Αναπαράσταση

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Σχέσεις. ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Γραµµατικές για Κανονικές Γλώσσες

Στοιχεία Θεωρίας Υπολογισµού (1): Τυπικές Γλώσσες, Γραµµατικές

Ποιές οι θεµελιώδεις δυνατότητες και ποιοί οι εγγενείς περιορισµοί των υπολογιστών ; Τί µπορούµε και τί δε µπορούµε να υπολογίσουµε (και γιατί);

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 1 Λύσεις

Αυτόματα και Υπολογιστικά Μοντέλα Automata and Models of Computation

Σειρά Προβλημάτων 4 Λύσεις

Σύνοψη Προηγούµενου. Γλώσσες χωρίς Συµφραζόµενα (2) Ισοδυναµία CFG και PDA. Σε αυτό το µάθηµα. Αυτόµατα Στοίβας Pushdown Automata

ιακριτές Μέθοδοι για την Επιστήμη των Υπολογιστών

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 14: Διαγνωσιμότητα (Επιλυσιμότητα)

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 4: Μη Ντετερμινιστικά (Αντιαιτιοκρατικά) Πεπερασμένα Αυτόματα (ΝFA)

(Γραμμικές) Αναδρομικές Σχέσεις

Σειρά Προβλημάτων 4 Λύσεις

Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Σειρά Προβλημάτων 4 Λύσεις

Σύνοψη Προηγούµενου. Κανονικές Γλώσσες (1) Προβλήµατα και Γλώσσες. Σε αυτό το µάθηµα. ιαδικαστικά του Μαθήµατος.

Σχέσεις Μερικής Διάταξης

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Γεννήτριες Συναρτήσεις

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 6: Μη Κανονικές Γλώσσες

Γενικές Παρατηρήσεις. Μη Κανονικές Γλώσσες - Χωρίς Συµφραζόµενα (1) Το Λήµµα της Αντλησης. Χρήση του Λήµµατος Αντλησης.

ΠΛΗ30 ΕΝΟΤΗΤΑ 3: ΚΑΝΟΝΙΚΕΣ ΓΛΩΣΣΕΣ. Μάθηµα 3.2: ηµήτρης Ψούνης

Μοντελοποίηση υπολογισμού. Θέματα Υπολογισμού στον Πολιτισμό Πεπερασμένα αυτόματα

Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (2)

Θεωρία Υπολογισμού και Πολυπλοκότητα

Συνδυαστική Απαρίθμηση

Σειρά Προβλημάτων 1 Λύσεις

Θεωρία Υπολογισμού και Πολυπλοκότητα

Μεταγλωττιστές. Γιώργος Δημητρίου. Μάθημα 2 ο. Πανεπιστήμιο Θεσσαλίας - Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών

Σχέσεις Μερικής ιάταξης

Συνδυαστική Απαρίθμηση

Θεωρία Υπολογισμού και Πολυπλοκότητα

Συνδυαστική Απαρίθμηση

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Η δυαδική σχέση M ( «παράγει σε ένα βήμα» ) ορίζεται ως εξής: (q, w) M (q, w ), αν και μόνο αν w = σw, για κάποιο σ Σ

Σειρά Προβλημάτων 4 Λύσεις

Μη-Αριθμήσιμα Σύνολα, ιαγωνιοποίηση

Γεννήτριες Συναρτήσεις

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Η NTM αποδέχεται αν µονοπάτι στο δέντρο που οδηγεί σε αποδοχή.

Σειρά Προβλημάτων 4 Λύσεις

Θεωρία Υπολογισμού. Ενότητα 5 : Λογικά Επιχειρήματα, Αλφάβητα & Γλώσσες (2/2) Αλέξανδρος Τζάλλας

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

Σχέση Μερικής ιάταξης Σχέση Μερικής ιάταξης (ή µερική διάταξη): ανακλαστική, αντισυµµετρική, και µεταβατική. Αριθµοί: α β (αλλά όχι α < β), α β, Σύνολ

Αλγόριθμοι για αυτόματα

Σειρά Προβλημάτων 3 Λύσεις

ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ. Στις βασικές έννοιες που σχετίζονται με τη λεξική ανάλυση. Στη δήλωση ορισμό κανονικών εκφράσεων

Σχέσεις Μερικής ιάταξης

Αρχή του Περιστερώνα. ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Εισαγωγή στην Επιστήμη των Υπολογιστών

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες

Συντομότερες Διαδρομές

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Μετασχηματισμοί, Αναπαράσταση και Ισομορφισμός Γραφημάτων

Εισαγωγή στην Επιστήμη των Υπολογιστών

Transcript:

Κανονικές Γλώσσες Κανονικές Γλώσσες Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Κανονική γλώσσα αν παράγεται από κανονική γραμματική. Παραγωγές P (V Σ) Σ * ((V Σ) ε) Παραγωγές μορφής: Ένα μη-τερματικό αριστερά. Στα δεξιά, το πολύ ένα μη-τερματικό στο τέλος. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Διακριτά Μαθηματικά (Άνοιξη 2009) Κανονικές Γλώσσες 2 Κανονικές Γλώσσες και Αυτόματα Κανονικές Γλώσσες και Αυτόματα Αν γλώσσα αποφασίζεται από (D)FA, τότε παράγεται από κανονική γραμματική. DFA Μ(Q, Σ, δ, s, F) και L= L(M). Κανονική γραμματική G για την L: V = Q Σ (μη-τερματικά αντιστοιχούν σε καταστάσεις) S = s Παραγωγές Με επαγωγή αποδεικνύεται (εύκολα) ότι L = L(G) Κάθε κανονική γλώσσα αποφασίζεται από (N)FA. Κανονική γραμματική G(V, Σ, S, P) που παράγει L= L(G). Χ.β.γ παραγωγές Μη-ντετερμινιστικό αυτόματο:. Σχέση μετάβασης Δ: Με επαγωγή αποδεικνύεται (εύκολα) ότι L = L(M) Κλάση κανονικών γλωσσών ταυτίζεται με κλάση γλωσσών που αποφασίζονται από DFA (και NFA). Διακριτά Μαθηματικά (Άνοιξη 2009) Κανονικές Γλώσσες 3 Διακριτά Μαθηματικά (Άνοιξη 2009) Κανονικές Γλώσσες 4

Κλειστότητα Κλειστότητα Παράθεση L 1 L 2 Διακριτά Μαθηματικά (Άνοιξη 2009) Κανονικές Γλώσσες 5 Διακριτά Μαθηματικά (Άνοιξη 2009) Κανονικές Γλώσσες 6 Κλειστότητα Κλειστότητα Παράθεση L 1 L 2 Παράθεση L 1 L 2 Kleene star L * Kleene star L * Συμπλήρωμα DFA και εναλλαγή τελικών μη τελικών. Τομή Διακριτά Μαθηματικά (Άνοιξη 2009) Κανονικές Γλώσσες 7 Διακριτά Μαθηματικά (Άνοιξη 2009) Κανονικές Γλώσσες 8

Κλειστότητα Κανονικές Εκφράσεις Τομή L 1 L 2 Έστω DFA M 1 (Q 1, Σ, δ 2, s 1, F 1 ) με L 1 = L(M 1 ) και DFA M 2 (Q 1, Σ, δ 2, s 2, F 2 ) με L 2 = L(M 2 ). Ορίζουμε DFA Μ (Q, Σ, δ, s, F ) με L(M ) = L 1 L 2 Καταστάσεις Q = Q 1 Q 2 Αρχική κατάσταση s = (s 1, s 2 ) Τελικές καταστάσεις F = {(p, q): p F 1 και q F 2 } Συνάρτηση μετάβασης δ((p, q), σ) = (δ 1 (p, σ), δ 2 (q, σ)) Διαφορά L(M 1 ) L(M 2 ) Μόνη αλλαγή: Τελικές = {(p, q): p F 1 και q F 2 } Κανονική έκφραση αλφάβητου Σ : 1. Το και κάθε σ Σ είναι ΚΕ. 2. Αν α και β είναι ΚΕ, τότε (α β) είναι ΚΕ. 3. Αν α και β είναι ΚΕ, τότε (αβ) είναι ΚΕ. 4. Αν α είναι ΚΕ, τότε α * είναι ΚΕ. 5. Τίποτα άλλο δεν είναι ΚΕ. Παραδείγματα ΚΕ του Σ = {0, 1}: (παραλείπουμε παρενθέσεις) ε γιατί εκφράζεται σαν * (0 1), (0 1)1 *, ((0 1)1(0 1)0) * (10 01) * (0001 1000) *, (1 1 * ) * 0 * 10 * 010 * (10 * * ) Διακριτά Μαθηματικά (Άνοιξη 2009) Κανονικές Γλώσσες 9 Διακριτά Μαθηματικά (Άνοιξη 2009) Κανονικές Γλώσσες 10... και Αντίστοιχες Γλώσσες Παραδείγματα Αν μια ΚΕ, είναι η αντίστοιχη γλώσσα. 1.. 2.. 3.. 4.. Μια γλώσσα μπορεί να αναπαρίσταται από άπειρες κανονικές εκφράσεις. Ποια γλώσσα αντιστοιχεί στην ΚΕ: Ποια γλώσσα αντιστοιχεί στην ΚΕ: Διακριτά Μαθηματικά (Άνοιξη 2009) Κανονικές Γλώσσες 11 Διακριτά Μαθηματικά (Άνοιξη 2009) Κανονικές Γλώσσες 12

Παραδείγματα Παραδείγματα Ποια γλώσσα αντιστοιχεί στην ΚΕ: KE για ΚΕ για Κάθε b ακολουθείται από a (ή δεν περιέχει δύο συνεχόμενα b). Γλώσσα Δεν περιέχει 111.. ΚΕ για ΚΕ για Διακριτά Μαθηματικά (Άνοιξη 2009) Κανονικές Γλώσσες 13 Διακριτά Μαθηματικά (Άνοιξη 2009) Κανονικές Γλώσσες 14 Κανονικές Εκφράσεις και Αυτόματα Κανονικές Εκφράσεις και Αυτόματα Κάθε γλώσσα που αναπαρίσταται από κανονική έκφραση αποφασίζεται από (N)FA (και είναι κανονική). Απόδειξη με επαγωγή στην πολυπλοκότητα της ΚΕ. Βάση: ορίζουμε (στοιχειώδη) NFA για, {σ}, και {ε}. Κάθε κανονική γλώσσα (που αποφασίζεται από (D)FA) αναπαρίσταται από κανονική έκφραση. Αλγόριθμος δυναμικού προγραμματισμού (παρόμοιος με αλγόριθμο Warshall) παράγει κανονική έκφραση από περιγραφή DFA. Βήμα: για ένωση, παράθεση, * βλ. προηγούμενες κατασκευές. Παράδειγμα: Γλώσσα (11 0) * (00 1) * Τα παρακάτω είναι ισοδύναμα: Μια γλώσσα παράγεται από κανονική γραμματική. Μια γλώσσα αναπαρίσταται από κανονική έκφραση. Μια γλώσσα αποφασίζεται από DFA Μια γλώσσα αποφασίζεται από NFA. Διακριτά Μαθηματικά (Άνοιξη 2009) Κανονικές Γλώσσες 15 Διακριτά Μαθηματικά (Άνοιξη 2009) Κανονικές Γλώσσες 16

ΚΕ και DFA ΚΕ και DFA Κάθε γλώσσα που γίνεται δεκτή από DFA αναπαρίσταται από κανονική έκφραση. Έστω Μ(Q, Σ, δ, s, F) με Q= {q 1,, q n } και s = q 1 Θα ορίσουμε κανονική έκφραση R: L(R) = L(M). Για κάθε i, j = 1,, n και k = 0,, n, ορίζουμε Αν R [k] (i, j) αναπαρίστανται από κανονικές εκφράσεις, L(M) αναπαρίσταται από κανονική έκφραση (ένωση). R [k] (i, j) με κανονικές εκφράσεις: επαγωγή στο k. Επίσης βλ. αλγόριθμο Floyd-Warshall για συντομότερα μονοπάτια και μεταβατική κλειστότητα. Δυναμικός προγραμματισμός (bottom-up): Συνδυάζουμε γλώσσες που αποδέχονται περιορισμένα τμήματα του αυτομάτου για να βρούμε γλώσσα που αποδέχεται όλο το αυτόματο. Διακριτά Μαθηματικά (Άνοιξη 2009) Κανονικές Γλώσσες 17 Διακριτά Μαθηματικά (Άνοιξη 2009) Κανονικές Γλώσσες 18 Παρατηρήσεις Δύο Χαρακτηριστικά Κανονικών Γλωσσών Κάθε πεπερασμένη γλώσσα είναι κανονική. Απόδειξη (εύκολη) με επαγωγή στον #συμβ/ρών. Κανονική γλώσσα που αναπαρίσταται από ΚΕ χωρίς * (ισοδύναμα από DFA χωρίς «κύκλο»); Είναι πεπερασμένη. Ο τελεστής * (ισοδύναμα, ο κύκλος στο DFA) μοναδικός τρόπος δημιουργίας άπειρου πλήθους συμβ/ρών. Ημνήμηγια αναγνώριση συμβ/ράς κανονικής γλώσσας εξαρτάται από γλώσσα αλλά όχι συμβολοσειρά. Ένδειξη ότι { 1 n 0 n : n 0} δεν είναι κανονική. Άπειρες κανονικές γλώσσες: DFA με κύκλους. Απλή επαναληπτική δομή / περιοδικότητα. Ένδειξη ότι {1 n : n πρώτος} δεν είναι κανονική. Ανάγκη (μαθηματικού) εργαλείου για απόδειξη ότι γλώσσα είναι μη κανονική. Διακριτά Μαθηματικά (Άνοιξη 2009) Κανονικές Γλώσσες 19 Διακριτά Μαθηματικά (Άνοιξη 2009) Κανονικές Γλώσσες 20

Λήμμα Άντλησης (Pumping Lemma) Μη Κανονικότητα Γλωσσών Έστω L μιαάπειρηκανονικήγλώσσα. Υπάρχει k 1 τ.ω. κάθε w L, w k, γράφεται w = xyz, y ε, xy k, και xy n z L για κάθε n 0. DFA Μ(Q, Σ, δ, s, F) με k καταστάσεις που αποφασίζει L. Έστω. Υπολογισμός Μ(w): Ν.δ.ο. L = {0 n 1 n : n 0} δεν είναι κανονική. L άπειρη. Άρα αν είναι κανονική, ισχύει το Λ. Άντλησης. Αν L κανονική, υπάρχει k > 0, τ.ω. για κάθε w L, w k, υπάρχουν x, y, z συμ/ρές, w = xyz, xy k, y ε, και xy n z L για κάθε n 0. Πρέπει xyz L (n = 1). Αν y αποτελείται μόνο από 0, xy 0 z L(πιο πολλά 1). Αν y αποτελείται μόνο από 1, xy 0 z L(πιο πολλά 0). Αν y αποτελείται από 0 ακολουθούμενα από 1, xy 2 z L(γιατί 0 + 1 + 0 + 1 + ). Άρα L δεν είναι κανονική. διέρχεται από ίδια κατάσταση τουλάχιστον 2 φορές. Υπάρχουν 0 i < j k, ώστε q i = q j. Έστω Μ δέχεται xy n z : x οδηγεί Μ στην q i, y n κάνει n κύκλους με αφετηρία και κατάληξη q i, και z οδηγεί Μ σε τελική. Διακριτά Μαθηματικά (Άνοιξη 2009) Κανονικές Γλώσσες 21 Διακριτά Μαθηματικά (Άνοιξη 2009) Κανονικές Γλώσσες 22 Μη Κανονικότητα Γλωσσών Μη Κανονικότητα Γλωσσών Ν.δ.ο. L = {1 n : n πρώτος} δεν είναι κανονική. L άπειρη. Άρα αν είναι κανονική, ισχύει το Θ. Άντλησης. Αν L κανονική, υπάρχουν x, y, z συμ/ρές, y ε, ώστε xy n z L για κάθε n 0. Δηλαδή x + n y + z πρώτος. Δεν ισχύει για n = x + 2 y + z + 2, αφού: Ν.δ.ο. L = {w {0, 1} * :w έχει ίδιο αριθμό 0 και 1} δεν είναι κανονική. L 0 * 1 * = { 0 n 1 n : n 0}, που δεν είναι κανονική. 0 * 1 * κανονική. Κανονικές γλώσσες κλειστές ως προς τομή. Άρα L δεν είναι κανονική. που δεν είναι πρώτος! L δεν είναι κανονική. Διακριτά Μαθηματικά (Άνοιξη 2009) Κανονικές Γλώσσες 23 Διακριτά Μαθηματικά (Άνοιξη 2009) Κανονικές Γλώσσες 24