(Γραμμικές) Αναδρομικές Σχέσεις
|
|
- Κόσμος Ρόκας
- 8 χρόνια πριν
- Προβολές:
Transcript
1 (Γραμμικές) Αναδρομικές Σχέσεις Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναδρομικές Σχέσεις Αναπαράσταση ακολουθίας α εκφράζοντας ως συνάρτηση -1, -2,, με δεδομένες αρχικές συνθήκες. Ακολουθία Fibonacci F n = F n-1 + F n-2, F 0 = 1 και F 1 = 1. Συχνά F 0 = 0 και F 1 = 1 ως αρχικές συνθήκες. Γεωμετρική πρόοδος με λόγο λ: = λ-1, α 0 = 1. Αριθμητική πρόοδος με βήμα ω: = -1 + ω, α 0 = 0. Άθροισμ πρώτων φυσικών: = -1 + n, α 0 = 0. Αναδρομικές σχέσεις προκύπτουν «φυσιολογικά» από την περιγραφή του προβλήματος. Ανάλυση αναδρομικών αλγορίθμων, συνδυαστική,... «Επίλυση» για υπολογισμό n-οστού όρου: όχι πάντα εύκολη. Γραμμικές σχέσεις με σταθερούς συντελεστές. Σχέσεις που προκύπτουν από διαίρει-και-βασίλευε αλγόριθμους. Διακριτά Μαθηματικά (Άνοιξη 2009) Αναδρομικές Σχέσεις 2 Παράδειγμα Παράδειγμα Οι Πύργοι του Ανόι: #κινήσεων ώστε n δίσκοι, όλοι διαφορετικού μεγέθους, να μεταφερθούν από αριστερά στα δεξιά χωρίς κάποιος δίσκος να βρεθεί πάνω από κάποιον άλλο μικρότερο. T(n): #κινήσεων γι 1 δίσκους. Αρχική συνθήκη: Τ(0) = 0, Τ(1) = 1, Τ(2) = 3, Τ(3) = 7, Τ(n) = 2T(n-1) + 1 Αναδρομική σχέση για #δυαδικών συμβ/ρών μήκους n που δεν περιέχουν το 00 (δύο συνεχόμενα 0). α 0 = 1, α 1 = 2, α 2 = 3, α 3 = 5,... Κάθε συμβ/ρά μήκους n-1 χωρίς 00 δίνει μία συμβ/ρά μήκους n χωρίς 00 με την προσθήκη του ψηφίου 1. Έτσι παίρνουμε -1 συμβ/ρές μήκους n χωρίς 00. Κάθε συμβ/ρά μήκους n-1 χωρίς 00 που τελειώνει σε 1 δίνει άλλη μία συμβ/ρά μήκους n χωρίς 00 με την προσθήκη του ψηφίου 0. Έτσι παίρνουμε -2 (διαφορετικές) συμβ/ρές μήκους n χωρίς 00. Συνεπώς = , με α 0 = 1, α 1 = 2. Διακριτά Μαθηματικά (Άνοιξη 2009) Αναδρομικές Σχέσεις 3 Διακριτά Μαθηματικά (Άνοιξη 2009) Αναδρομικές Σχέσεις 4
2 Παράδειγμα Γραμμικές Αναδρομικές Σχέσεις με Σταθερούς Συντελεστές Αναδρομική σχέση για #πενταδικών συμβ/ρών μήκους n με άρτιο αριθμό 0. α 0 = 1, α 1 = 4, α 2 = 17,... Κάθε συμβ/ρά μήκους n-1 με άρτιο αριθμό 0 δίνει 4 συμβ/ρές μήκους n με άρτιο αριθμό 0, με προσθήκη ενός από τα 1, 2, 3, 4. Έτσι παίρνουμε 4-1 συμβ/ρές μήκους n με άρτιο αριθμό 0. Κάθε συμβ/ρά μήκους n-1 με περιττό αριθμό 0 δίνει 1 συμβ/ρά μήκους n με άρτιο αριθμό 0, με προσθήκη ενός 0. Έτσι παίρνουμε 5 n-1-1 (διαφορετικές) συμβ/ρές μήκους n με άρτιο αριθμό 0. Συνεπώς = 5 n , με α 0 = 1. Αναδρομική σχέση όπου C 0,, C k σταθερές, καλείται γραμμική αναδρομική σχέση με σταθερούς συντελεστές και οδηγό συνάρτηση f(n). Αν C 0 0 και C k 0, είναι τάξης k. Αν f(n) = 0, είναι ομογενής. Π.χ = 2 n, -2-3 = 0, = n 3 Ακολουθία (ή «λύση») της σχέσης προσδιορίζεται μοναδικά από τιμές k αρχικών (ή διαδοχικών) όρων (αρχικές συνθήκες). Αν δίνονται τιμές < k όρων (ή μηδιαδοχικών), μπορεί > 1 «λύσεις». Αν δίνονται τιμές > k διαδοχικών όρων, μπορεί καμία «λύση». «Λύση»: άθροισμα ομογενούς λύσης και ειδικής λύσης. Ομογενής λύση: προκύπτει από ομογενή και αρχικές συνθήκες. Ειδική λύση: προκύπτει από οδηγό συνάρτηση f(n). Διακριτά Μαθηματικά (Άνοιξη 2009) Αναδρομικές Σχέσεις 5 Διακριτά Μαθηματικά (Άνοιξη 2009) Αναδρομικές Σχέσεις 6 Ομογενής Λύση Ομογενής Λύση: Παραδείγματα Αναζητούμε λύσεις της μορφής = x n, x 0. Έτσι θεωρούμε την:... που είναι ισοδύναμη με την χαρακτηριστική εξίσωση: Εξετάζουμε μόνο την περίπτωση που η χ.ε. έχει πραγματικές ρίζες. Αν η χ.ε. έχει k ρίζες x 1,, x k πολλαπλότητας 1, ομογενής λύση: Α 1,..., Α k σταθερές που προσδιορίζονται από αρχικές συνθήκες. Αφού τα x i ρίζες της χ.ε., κάθε A i x i n επαληθεύει την ομογενή σχέση. Αυτή η διαδικασία οδηγεί στη συνολική λύση για ομογενείς αναδρομικές σχέσεις (π.χ Fibonacci). = 4-2 με α 0 = 2 και α 1 = 0: Χαρακτηριστική εξίσωση x 2 4 = 0με ρίζες 2 και -2. Μορφή (ομογενούς) λύσης = Α 1 2 n + Α 2 (-2) n n = 0: 2 = A 1 + A 2 Τελικά έχουμε Α 1 = Α 2 = 1. n = 1: 0 = 2A 1 2A 2 (Ομογενής) λύση = 2 n + (-2) n Αν α 0 = 1 και α 1 = 2, τότε = 2 n = 0 με α 0 = 2 και α 1 = -1. Χαρακτηριστική εξίσωση x 2 6x + 8 = 0 με ρίζες 2 και 4. Μορφή (ομογενούς) λύσης = Α 1 2 n + Α 2 4 n n = 0: 2 = A 1 + A 2 Τελικά έχουμε Α 1 = 9/2 και Α 2 = -5/2. n = 1: -1 = 2A 1 +4A 2 (Ομογενής) λύση = 9 2 n n-1 Διακριτά Μαθηματικά (Άνοιξη 2009) Αναδρομικές Σχέσεις 7 Διακριτά Μαθηματικά (Άνοιξη 2009) Αναδρομικές Σχέσεις 8
3 Ομογενής Λύση: Πολλαπλές Ρίζες Ειδική Λύση Αν χ.ε. έχει κάποια ρίζα x 1 πολλαπλότητας m, τμήμα ομογενούς λύσης που αντιστοιχεί στην x 1 είναι:... όταν η οδηγός συνάρτηση είναι γινόμενο πολυωνύμου του n με εκθετική συνάρτηση του n. Θεωρούμε οδηγό συνάρτηση: Ομογενής σχέση επαληθεύεται από κάθε A i n m-i x 1 n γιατί x 1 αποτελεί ρίζα της χ.ε. και της 1 ης, 2 ης,..., (m-1)-οστής παραγώγου της. Π.χ = 0 με α 0 = 1 και α 1 = 6. Χαρακτηριστική εξίσωση x 2 6x + 9= 0 με διπλή ρίζα 3. Μορφή (ομογενούς) λύσης = Α 1 n 3 n + Α 2 3 n n = 0: 1 = A 2 Τελικά έχουμε Α 1 = Α 2 = 1. n = 1: 6 = 3A 1 +3A 2 (Ομογενής) λύση = (n+1)3 n Αν f(n) είναι πολυώνυμο, θεωρούμε ότι β = 1. Όταν β δεν είναι ρίζα της χ.ε., τότε ειδική λύση: Όταν βρίζατης χ.ε. πολλαπλότητας m, τότε ειδική λύση: P 1,, P t+1 σταθερές που προσδιορίζονται ώστε η ειδική λύση να ικανοποιεί την αναδρομική σχέση με οδηγό συνάρτηση f(n). Διακριτά Μαθηματικά (Άνοιξη 2009) Αναδρομικές Σχέσεις 9 Διακριτά Μαθηματικά (Άνοιξη 2009) Αναδρομικές Σχέσεις = 3n 2 14n To β = 1 δεν είναι ρίζα της χ.ε. Μορφή ειδικής λύσης: α (p) n = P 1 n 2 + P 2 n + P 3 Προσδιορίζουμε τα P 1, P 2, P 3 αντικαθιστώντας στην αναδρομική σχέση και εξισώνοντας συντελεστές αντίστοιχων όρων: = (n+1) 2 n To β = 2 δεν είναι ρίζα της χ.ε. (ηχ.ε. έχει ρίζες 1 και 3). Μορφή ειδικής λύσης: α (p) n = (P 1 n + P 2 ) 2 n Προσδιορίζουμε τα P 1, P 2 αντικαθιστώντας στην αναδρομική σχέση και εξισώνοντας συντελεστές αντίστοιχων όρων: Άρα P 1 = 1, P 2 = 2, και P 3 = 2. Ειδική λύση: α (p) n = n 2 + 2n + 2 Άρα P 1 = 4 και P 2 = 12. Ειδική λύση: α (p) n = (4n + 12) 2 n Διακριτά Μαθηματικά (Άνοιξη 2009) Αναδρομικές Σχέσεις 11 Διακριτά Μαθηματικά (Άνοιξη 2009) Αναδρομικές Σχέσεις 12
4 = (n+1) 2 n To β = 2 είναι ρίζα της χ.ε. πολλαπλότητας 2. Μορφή ειδικής λύσης: α (p) n = n 2 (P 1 n + P 2 ) 2 n Προσδιορίζουμε τα P 1, P 2 αντικαθιστώντας στην αναδρομική σχέση και εξισώνοντας συντελεστές αντίστοιχων όρων: = (n 2 +1) 3 n To β = 3 είναι ρίζα της χ.ε. πολλαπλότητας 2. Μορφή ειδικής λύσης: α (p) n = n 2 (P 1 n 2 + P 2 n + P 3 ) 3 n Προσδιορίζουμε τα P 1, P 2, P 3 αντικαθιστώντας στην αναδρομική σχέση και εξισώνοντας συντελεστές αντίστοιχων όρων: Άρα P 1 = 1/6 και P 2 = 1. Ειδική λύση: α (p) n = (n 3 / 6 + n 2 ) 2 n Άρα P 1 = 1/12, P 2 = 1/3, και P 3 = 11/12. Ειδική λύση: α (p) n = n 2 (n 2 /12 + n/3 + 11/12) 3 n Διακριτά Μαθηματικά (Άνοιξη 2009) Αναδρομικές Σχέσεις 13 Διακριτά Μαθηματικά (Άνοιξη 2009) Αναδρομικές Σχέσεις 14 Συνολική Λύση Υπολογίζουμε την ειδική λύση (γενική μορφή και τιμές των P i ). Υπολογίζουμε την ομογενή λύση χωρίςτιμέςγιαταα i. Προσδιορίζουμε τα Α i απότοάθροισμαειδικήςκαιομογενούς λύσεις για αρχικές συνθήκες. Λύση που ικανοποιεί αναδρομική σχέση (ειδική λύση) και τις αρχικές συνθήκες (ομογενής λύση). Μορφή συνολικής λύσης δεν εξαρτάται από αρχικές συνθήκες. Μόνο συντελεστές Α i ομογενούς λύσης εξαρτώνται από αρχικές συνθήκες. Συνολική Λύση: Παραδείγματα = 3n 2 14n + 12 με α 0 = 1 και α 1 = 4. Α 1 = -3/2 και Α 2 = 1/2 Συνολική λύση = n 2 + 2n n n = (n+1) 2 n με α 0 = 0 και α 1 = 2. Α 1 = -1/6 και Α 2 = 0 Συνολική λύση = -(1/6) n 2 n (n 2 + 6n 1) Διακριτά Μαθηματικά (Άνοιξη 2009) Αναδρομικές Σχέσεις 15 Διακριτά Μαθηματικά (Άνοιξη 2009) Αναδρομικές Σχέσεις 16
5 Επίλυση με Γεννήτριες Συναρτήσεις Για γραμμικές αναδρομικές σχέσεις με σταθερούς συντελεστές είναι (συνήθως) εύκολο να υπολογίσουμε τη ΓΣ της ακολουθίας. Η ακολουθία που αντιστοιχεί στη ΓΣ αποτελεί τη «λύση» της σχέσης. Παράδειγμα (πύργοι του Ανόι): 2-1 = 1 με α 0 = 0. Για κάθε n 1 πολλαπλασιάζουμε με x n και αθροίζουμε: Αν συμβολίσ. με Α(x) τη ΓΣ της έχουμε τώρα μια σχέση για Α(x): Χρησιμοποιώντας α 0 = 0 και λύνοντας ως προς A(x): Κλασματική ανάλυση: «Λύση»: Επίλυση με Γεννήτριες Συναρτήσεις Παράδειγμα: 3-1 = 5 n-1 με α 0 = 1. Για κάθε n 1 πολλαπλασιάζουμε με x n και αθροίζουμε: Αν συμβολίσ. με Α(x) τη ΓΣ της έχουμε τώρα μια σχέση για Α(x): Χρησιμοποιώντας α 0 = 1 και λύνοντας ως προς A(x): Κλασματική ανάλυση: «Λύση»: Διακριτά Μαθηματικά (Άνοιξη 2009) Αναδρομικές Σχέσεις 17 Διακριτά Μαθηματικά (Άνοιξη 2009) Αναδρομικές Σχέσεις 18
(Γραμμικές) Αναδρομικές Σχέσεις
(Γραμμικές) Αναδρομικές Σχέσεις ιδάσκοντες:. Φωτάκης. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναδρομικές Σχέσεις Αναπαράσταση
(Γραμμικές) Αναδρομικές Σχέσεις
(Γραμμικές) Αναδρομικές Σχέσεις ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναδρομικές Σχέσεις Αναπαράσταση
Γεννήτριες Συναρτήσεις
Ακολουθίες Γεννήτριες Συναρτήσεις Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Ακολουθία: αριθμητική
a n + 6a n a n 2 + 8a n 3 = 0, a 0 = 1, a 1 = 2, a 2 = 8
Διακριτά Μαθηματικά Σχέσεις Αναδρομής Ι 1 / 17 a n + 6a n 1 + 12a n 2 + 8a n 3 = 0, a 0 = 1, a 1 = 2, a 2 = 8 2 / 17 a n + 6a n 1 + 12a n 2 + 8a n 3 = 0, a 0 = 1, a 1 = 2, a 2 = 8 1ος τρόπος: Εχουμε τη
Γεννήτριες Συναρτήσεις
Γεννήτριες Συναρτήσεις ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναπαράσταση Ακολουθιών Ακολουθία:
O n+2 = O n+1 + N n+1 = α n+1 N n+2 = O n+1. α n+2 = O n+2 + N n+2 = (O n+1 + N n+1 ) + (O n + N n ) = α n+1 + α n
Η ύλη συνοπτικά... Στοιχειώδης συνδυαστική Γεννήτριες συναρτήσεις Σχέσεις αναδρομής Θεωρία Μέτρησης Polyá Αρχή Εγκλεισμού - Αποκλεισμού Σχέσεις Αναδρομής Γραμμικές Σχέσεις Αναδρομής με σταθερούς συντελεστές
Υπολογιστικά & Διακριτά Μαθηματικά
Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 5: Αναδρομικές σχέσεις - Υπολογισμός Αθροισμάτων Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Αναδρομικές Σχέσεις «ιαίρει-και-βασίλευε»
Αναδρομικές Σχέσεις «ιαίρει-και-βασίλευε» ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιαίρει-και-βασίλευε
a n = 3 n a n+1 = 3 a n, a 0 = 1
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
Γεννήτριες Συναρτήσεις
Γεννήτριες Συναρτήσεις ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναπαράσταση Ακολουθιών Ακολουθία:
n ίδια n διαφορετικά n n 0 n n n 1 n n n n 0 4
Διακριτά Μαθηματικά Ι Επαναληπτικό Μάθημα 1 Συνδυαστική 2 Μεταξύ 2n αντικειμένων, τα n είναι ίδια. Βρείτε τον αριθμό των επιλογών n αντικειμένων από αυτά τα 2n αντικείμενα. Μεταξύ 3n + 1 αντικειμένων τα
- εξίσωση που εκφράζει τον n-οστό όρο a n της ακολουθίας, - µέσω ενός ή περισσότερων όρων από τους a 0, a 1,..., a n 1, - για κάθε n n 0, όπου n 0 N.
Αναδροµικές Σχέσεις Αναδροµικές Σχέσεις Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Αναδροµική Σχέση για την ακολουθία a n } είναι: - εξίσωση που εκφράζει τον n-οστό
Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ
Διακριτά Μαθηματικά Ι Ενότητα 2: Γεννήτριες Συναρτήσεις Μέρος 2 Διδάσκων: Χ. Μπούρας (bouras@cti.gr) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Ψηφιακή Επεξεργασία Σημάτων
Ψηφιακή Επεξεργασία Σημάτων Ενότητα : Συστήματα Διακριτού Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Συστήματα Διακριτού Χρόνου Εξισώσεις Διαφορών Επίλυση Εξισώσεων Διαφορών με Γραμμικούς Συντελεστές
P(n, r) = n! P(n, r) = n r. (n r)! n r. n+r 1 r n!
Διακριτά Μαθηματικά Σύνοψη Θεωρίας Τυπολόγιο Αναστασία Κόλλια 20/11/2016 1 / 55 Κανόνες γινομένου και αθροίσματος Κανόνας αθροίσματος: Αν ένα γεγονός μπορεί να συμβεί κατά m τρόπους και ένα άλλο γεγονός
Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ
Διακριτά Μαθηματικά Ι Ενότητα 2: Γεννήτριες Συναρτήσεις Μέρος 3 Διδάσκων: Χ. Μπούρας (bouras@cti.gr) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
ΠΛΗ 20, 1 η ΟΣΣ (Συνδυαστική)
ΠΛΗ 20, 1 η ΟΣΣ (Συνδυαστική) Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο Οργανωτικά Ζητήματα Επικοινωνία: Επίλυση αποριών, οδηγίες,..., και λοιπά
Ασυμπτωτικός Συμβολισμός
Ασυμπτωτικός Συμβολισμός ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Υπολογιστική Πολυπλοκότητα Υπολογιστική
Συνδυαστική Απαρίθμηση
Συνδυαστική Απαρίθμηση ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συνδυαστική Απαρίθμηση Υπολογισμός
κ.λπ. Ισχύει πως x = 100. Οι διαφορετικές λύσεις αυτής της εξίσωσης χωρίς κανένα περιορισμό είναι
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Διακριτά Μαθηματικά 3 η γραπτή εργασία, Σχέδιο Λύσεων Επιμέλεια: Δ. Φωτάκης, Δ. Σούλιου ΘΕΜΑ (Συνδυαστική,.6 μονάδες)
ΠΛΗ 20, 1 η ΟΣΣ (Συνδυαστική)
ΠΛΗ 20, 1 η ΟΣΣ (Συνδυαστική) Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο Οργανωτικά Ζητήματα Επικοινωνία: Επίλυση αποριών, οδηγίες,..., και λοιπά
Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ
Διακριτά Μαθηματικά Ι Ενότητα 2: Γεννήτριες Συναρτήσεις Μέρος 1 Διδάσκων: Χ. Μπούρας (bouras@cti.gr) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
α n z n = 1 + 2z 2 + 5z 3 n=0
Η ύλη συνοπτικά... Στοιχειώδης συνδυαστική Γεννήτριες συναρτήσεις Σχέσεις αναδρομής Θεωρία Μέτρησης Polyá Αρχή Εγκλεισμού - Αποκλεισμού Η ύλη συνοπτικά... Γεννήτριες συναρτήσεις Τι είναι η γεννήτρια Στην
(a 1, b 1 ) (a 2, b 2 ) = (a 1 a 2, b 1 b 2 ).
ΕΜ0 - Διακριτά Μαθηματικά Ιανουαρίου 006 Άσκηση - Λύσεις Πρόβλημα [0 μονάδες] Εστω L και L δύο κυκλώματα σε ένα γράφημα G. Εστω a μία ακμή που ανήκει και στο L και στο L και έστω b μία ακμή που ανήκει
Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής
D ολοκλήρωση ρητών συναρτήσεων Το θέμα μας στην ενότητα αυτή είναι η ολοκλήρωση ρητών συναρτήσεων. Ας θυμηθούμε πρώτα ποιες συναρτήσεις ονομάζονται ρητές. Ορισμός: Μία συνάρτηση ονομάζεται ρητή όταν μπορεί
Αναδρομικές ακολουθίες και Θεωρία Αριθμών
Αναδρομικές ακολουθίες και Θεωρία Αριθμών Εμμανουήλ Καπνόπουλος Επιβλέπων καθηγητής Ιωάννης Αντωνιάδης Μεταπτυχιακή Εργασία Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπιστήμιο Κρήτης Ηράκλειο Οκτώβριος
Συνδυαστική Απαρίθμηση
Συνδυαστική Απαρίθμηση ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συνδυαστική Απαρίθμηση Υπολογισμός
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 13: Αλγόριθμοι-Μεγάλων ακεραίων- Εκθετοποίηση- Πολλαπλασιασμός πινάκων -Strassen Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό
Συνδυαστική Απαρίθµηση Υπολογισµός (µε συνδυαστικά επιχειρήµατα) του πλήθους των διαφορετικών αποτελεσµάτων ενός «πειράµατος». «Πείραµα»: διαδικασία µ
Συνδυαστική Απαρίθµηση ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιµέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συνδυαστική Απαρίθµηση Υπολογισµός
Συνδυαστική Απαρίθμηση
Συνδυαστική Απαρίθμηση ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συνδυαστική Απαρίθμηση Υπολογισμός
Συνδυαστική Απαρίθμηση
Συνδυαστική Απαρίθμηση ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συνδυαστική Απαρίθμηση Υπολογισμός
Συνδυαστική Απαρίθμηση
Συνδυαστική Απαρίθμηση ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συνδυαστική Απαρίθμηση
Διαίρει-και-Βασίλευε. Διαίρει-και-Βασίλευε. MergeSort. MergeSort. Πρόβλημα Ταξινόμησης: Είσοδος : ακολουθία n αριθμών (α 1
Διαίρει-και-Βασίλευε Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Διαίρει-και-Βασίλευε Γενική μέθοδος
Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Αρχή του Περιστερώνα Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συναρτήσεις Συνάρτηση:
β) 3 n < n!, n > 6 i i! = (n + 1)! 1, n 1 i=1
Κεφάλαιο 2: Στοιχεία Λογικής - Μέθοδοι Απόδειξης 1. Να αποδειχθεί ότι οι λογικοί τύποι: (p ( (( p) q))) (p q) και p είναι λογικά ισοδύναμοι. Θέλουμε να αποδείξουμε ότι: (p ( (( p) q))) (p q) p, ή με άλλα
2.3 Πολυωνυμικές Εξισώσεις
. Πολυωνυμικές Εξισώσεις η Μορφή Ασκήσεων: Ασκήσεις που μας ζητούν να λύσουμε μια πολυωνυμική εξίσωση.. Να λυθούν οι εξισώσεις: i. + + + 6 = 0 ii. 7 = iii. ( + ) + 7 = 0 iv. 8 + 56 = 0 i. + + + 6 = 0 (
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 3: Ασυμπτωτικός συμβολισμός Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Κανονικές Γλώσσες. Κανονικές Γλώσσες. Κανονικές Γλώσσες και Αυτόματα. Κανονικές Γλώσσες και Αυτόματα
Κανονικές Γλώσσες Κανονικές Γλώσσες Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Κανονική γλώσσα αν παράγεται από κανονική γραμματική. Παραγωγές P (V Σ) Σ * ((V Σ) ε) Παραγωγές μορφής:
Συνδυαστική Απαρίθμηση
Παραδείγματα Συνδυαστική Απαρίθμηση Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο n θρανία στη σειρά
Συνδυαστική Απαρίθμηση
Συνδυαστική Απαρίθμηση Διδάσκοντες: Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συνδυαστική Απαρίθμηση Υπολογισμός
1 GRAMMIKES DIAFORIKES EXISWSEIS DEUTERAS TAXHS
1 GRAMMIKES DIAFORIKES EXISWSEIS DEUTERAS TAXHS Γραμμικές μη ομογενείς διαφορικές εξισώσεις δευτέρας τάξης λέγονται οι εξισώσεις τύπου y + p(x)y + g(x)y = f(x) (1.1) Οταν f(x) = 0 η εξίσωση y + p(x)y +
Συνδυαστική Απαρίθμηση
Συνδυαστική Απαρίθμηση ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συνδυαστική Απαρίθμηση Υπολογισμός
ΜΕΜ251 Αριθμητική Ανάλυση
ΜΕΜ251 Αριθμητική Ανάλυση Διάλεξη 10, 12 Μαρτίου 2018 Μιχάλης Πλεξουσάκης Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Περιεχόμενα 1. Παρεμβολή 2. Παράσταση και υπολογισμός του πολυωνύμου παρεμβολής
Γλώσσες Χωρίς Συμφραζόμενα
Γλώσσα χωρίς Συμφραζόμενα Γλώσσες Χωρίς Συμφραζόμενα Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος 05 Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση... Error! Bookmark not defined. Σκοποί Μαθήματος (Επικεφαλίδα
Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ.
Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ. Σάλαρης Πολλές φορές μας δίνεται να λύσουμε ένα πρόβλημα που από την πρώτη
Δυναμικός Προγραμματισμός
Τρίγωνο του Pascal Δυναμικός Προγραμματισμός Διωνυμικοί συντελεστές Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο
2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ
ογελ ΣΥΚΕΩΝ ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ο ΓΕΛ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β ΛΥΚΕΙΟΥ ογελ ΣΥΚΕΩΝ ογελ ΣΥΚΕΩΝ ΣΧΟΛΙΚΟ ΕΤΟΣ -4 ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Επιμέλεια: ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ
ΚΕΦΑΛΑΙΟ 5 ΑΚΟΛΟΥΘΙΕΣ ΑΡΙΘΜΗΤΙΚΗ ΓΕΩΜΕΤΡΙΚΗ ΠΡΟΟΔΟΣ
ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 5 ΑΚΟΛΟΥΘΙΕΣ ΑΡΙΘΜΗΤΙΚΗ ΓΕΩΜΕΤΡΙΚΗ ΠΡΟΟΔΟΣ ΓΙΑΝΝΗΣ ΠΑΤΕΡΑΣ ΜΑΘΗΜΑΤΙΚΟΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΑΚΟΛΟΥΘΙΕΣ ΚΕΦΑΛΑΙΟ 5 ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Ακολουθία ονομάζουμε
ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ A ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ
ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ A ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ www.pitetragono.gr Σελίδα. ΔΥΝΑΜΕΙΣ : Ισχύουν οι
, ο αριθμός στον οποίο αντιστοιχεί ο 2 καλείται δεύτερος όρος της ακολουθίας και τον συμβολίζουμε συνήθως με
5. ΑΚΟΛΟΥΘΙΕΣ Γενικά ακολουθία πραγματικών αριθμών είναι μια αντιστοίχιση των φυσικών αριθμών,,,...,ν,... στους πραγματικούς αριθμούς. Ο αριθμός στον οποίο αντιστοιχεί ο καλείται πρώτος όρος της ακολουθίας
Κανονικές Γλώσσες. ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Κανονικές Γλώσσες ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Κανονικές Γλώσσες Κανονική γλώσσα αν
Πεπερασμένα Αυτόματα. ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Πεπερασμένα Αυτόματα ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Πεπερασμένα Αυτόματα είναι απλούστερες
Γιώργος Καριπίδης-Ανθούλα Σοφιανοπούλου ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΑ ΟΡΙΑ ΣΥΝΑΡΤΗΣΗΣ
Γιώργος Καριπίδης-Ανθούλα Σοφιανοπούλου ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΑ ΟΡΙΑ ΣΥΝΑΡΤΗΣΗΣ ΓΕΩΜΕΤΡΙΚΗ ΕΡΜΗΝΕΙΑ του ορίου συνάρτησης όταν χ χ Για να έχει νόημα το όριο συνάρτησης f με πεδίο
Ανισώσεις Γινόμενο και Ανισώσεις Πηλίκο
Ανισώσεις Γινόμενο και Ανισώσεις Πηλίκο Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» www.ma8eno.gr Ανισώσεις γινόμενο και ανισώσεις πηλίκο Πρόσημο γινομένου της μορφής P()
Δομές Δεδομένων & Αλγόριθμοι
Θέματα Απόδοσης Αλγορίθμων 1 Η Ανάγκη για Δομές Δεδομένων Οι δομές δεδομένων οργανώνουν τα δεδομένα πιο αποδοτικά προγράμματα Πιο ισχυροί υπολογιστές πιο σύνθετες εφαρμογές Οι πιο σύνθετες εφαρμογές απαιτούν
3.1 ΕΞΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ
ΚΕΦΑΛΑΙΟ : ΕΞΙΣΩΣΕΙΣ. ΕΞΙΣΩΣΕΙΣ ΟΥ ΒΑΘΜΟΥ ΜΕΘΟΔΟΛΟΓΙΑ : ΑΠΛΗ ΜΟΡΦΗ Κάθε εξίσωση που έχει ή μπορεί να πάρει τη μορφή : α+β=0 ή α=-β () λέγεται εξίσωση ου βαθμού (ή πρωτοβάθμια εξίσωση), με άγνωστο το, ενώ
ΚΕΦΑΛΑΙΟ 3 Ο 3.2 Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η. (Σ) όπου α, β, α, β, είναι οι
ΚΕΦΑΛΑΙΟ 3 Ο ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ 3. Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η ΓΡΑΦΙΚΗ ΕΠΙΛΥΣΗ ΤΟΥ. Ποια είναι η μορφή ενός συστήματος δύο γραμμικών εξισώσεων, δύο αγνώστων; Να δοθεί παράδειγμα.
Fast Fourier Transform
Fast Fourier Transform Παναγιώτης Πατσιλινάκος ΕΜΕ 19 Οκτωβρίου 2017 Παναγιώτης Πατσιλινάκος (ΕΜΕ) Fast Fourier Transform 19 Οκτωβρίου 2017 1 / 20 1 Εισαγωγή Στόχος Προαπαιτούμενα 2 Η ιδέα Αντιστροφή -
Δυναμική Μηχανών I. Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις. Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές
Δυναμική Μηχανών I Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις 5 3 Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com
Ασκήσεις3 Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα.
Ασκήσεις 0 Ασκήσεις Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα o H -στήλη του P P είναι E αν και μόνο αν η -στήλη του P είναι ιδιοδιάνυσμα του που αντιστοιχεί στην ιδιοτιμή
Ασυμπτωτικός Συμβολισμός
Ασυμπτωτικός Συμβολισμός Επιμέλεια διαφανειών: Δημήτρης Φωτάκης (λίγες προσθήκες: Άρης Παγουρτζής) Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Υπολογιστική Πολυπλοκότητα
Διδάσκοντες: Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Σχέσεις Διδάσκοντες: Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Διμελής Σχέση Διατεταγμένο ζεύγος (α, β):
Εισαγωγικές Έννοιες. ημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο
Εισαγωγικές Έννοιες ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
1 Ανάλυση αλγορίθµων. 2 Συµβολισµοί O, Ω και Θ. 3 Αναδροµικές εξισώσεις
Γενικό πλάνο Μαθηµατικά για Πληροφορική 6ο Μάθηµα 1 Ανάλυση αλγορίθµων Ηλίας Κουτσουπιάς, Γιάννης Εµίρης 2 Συµβολισµοί O, Ω και Θ Τµήµα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήµιο Αθηνών 27/11/2008 3
Δυναμικός Προγραμματισμός
Δυναμικός Προγραμματισμός Επιμέλεια διαφανειών: Δ. Φωτάκης Τροποποιήσεις: Α. Παγουρτζής Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Διωνυμικοί Συντελεστές Διωνυμικοί
I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr
I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο
Μη γράφετε στο πίσω μέρος της σελίδας
Διακριτά Μαθηματικά Ενδιάμεση εξέταση 1 Φεβρουάριος 2014 Σελ. 1 από 7 Στη σελίδα αυτή γράψτε μόνο τα στοιχεία σας. Γράψτε τις απαντήσεις σας στις επόμενες σελίδες, κάτω από τις αντίστοιχες ερωτήσεις. Στις
Να επιλύουμε και να διερευνούμε την εξίσωση αx + β = 0, βάση τη γραφική παράσταση της ευθείας y = ax + β.
Ενότητα 1 Εξισώσεις Ανισώσεις α βαθμού Στην ενότητα αυτή θα μάθουμε: Να επιλύουμε και να διερευνούμε την εξίσωση αx + β = 0, με βάση τη γραφική παράσταση της ευθείας y = ax + β. Να επιλύουμε την ανίσωση
A N A B P Y T A ΑΣΚΗΣΕΙΣ ΠΟΛΥΩΝΥΜΩΝ. 1 (α + β + γ) [(α-β) 2 +(α-γ) 2 +(β-γ) 2 ] και τις υποθέσεις
ΑΣΚΗΣΕΙΣ ΠΟΛΥΩΝΥΜΩΝ ΑΣΚΗΣΗ η Αν α +β +γ = αβγ και α + β + γ, να δείξετε ότι το πολυώνυμο P()=(α β) +(β γ) + γ α είναι το μηδενικό πολυώνυμο. Από την ταυτότητα του Euler α +β +γ -αβγ = (α + β + γ)[(α-β)
4.2 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ
14 4 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ Ας υποθέσουμε ότι θέλουμε να βρούμε το πηλίκο και το υπόλοιπο της διαίρεσης του με τον Σύμφωνα με το γνωστό αλγόριθμο της διαίρεσης, το πηλίκο θα είναι ένας ακέραιος κ, τέτοιος,
Αριθμητική Ανάλυση και Εφαρμογές
Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Πεπερασμένες και Διαιρεμένες Διαφορές Εισαγωγή Θα εισάγουμε την έννοια των διαφορών με ένα
Ασκήσεις3 Διαγωνίσιμες Γραμμικές Απεικονίσεις
Ασκήσεις 5 Βασικά σημεία Ιδιότητες ιδιόχωρων: Έστω,, Ισχύουν τα εξής Ασκήσεις Διαγωνίσιμες Γραμμικές Απεικονίσεις κάποιες διακεκριμένες ιδιοτιμές της γραμμικής απεικόνισης : V V, όπου o Αν v v 0, όπου
F 5 = (F n, F n+1 ) = 1.
Λύσεις Θεμάτων Θεωρίας Αριθμών 1. (α) Να δειχθεί ότι ο πέμπτος αριθμός της μορφής Fermat, δηλαδή ο F 5 2 25 + 1 διαιρείται από το 641. (β) Εστω F n η ακολουθία των αριθμών Fermat, δηλαδή F n 2 2n + 1,
Εισαγωγή στην Ανάλυση Αλγορίθμων
Εισαγωγή στην Ανάλυση Αλγορίθμων (4) Μεθοδολογία αναδρομικών σχέσεων (Ι) Με επανάληψη της αναδρομής Έστω όπου r και a είναι σταθερές. Βρίσκουμε τη σχέση που εκφράζει την T(n) συναρτήσει της T(n-) την T(n)
12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο
ΓΕΝΙΚΑ ΠΕΡΙ ΑΝΙΣΩΣΕΩΝ Έστω f σύνολο Α, g Α ΒΑΘΜΟΥ είναι δύο παραστάσεις μιας μεταβλητής πού παίρνει τιμές στο Ανίσωση με έναν άγνωστο λέγεται κάθε σχέση της μορφής f f g g ή, η οποία αληθεύει για ορισμένες
- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 6: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ
ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 6: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ R - ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ - ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΑΚΟΛΟΥΘΙΑΣ [Κεφ..6: Μη Πεπερασμένο Όριο στο R - Κεφ..7: Όρια Συνάρτησης
Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος
6/6/06 Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος Άσκηση (Μονάδες ) 0 Δίνεται ο πίνακας A =. Nα υπολογίσετε την βαθμίδα του και να βρείτε τη διάσταση και από μία βάση α) του μηδενοχώρου
Γλώσσες Χωρίς Συμφραζόμενα
Γλώσσες Χωρίς Συμφραζόμενα Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γλώσσα χωρίς
ιακριτές Μέθοδοι για την Επιστήμη των Υπολογιστών
ιακριτές Μέθοδοι για την Επιστήμη των Υπολογιστών ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο
Μαθηµατικά για Πληροφορική
Μαθηµατικά για Πληροφορική 6ο Μάθηµα Ηλίας Κουτσουπιάς, Γιάννης Εµίρης Τµήµα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήµιο Αθηνών 27/11/2008 27/11/2008 1 / 55 Γενικό πλάνο 1 Ανάλυση αλγορίθµων 2 Συµβολισµοί
Επιλογή. Πρόβλημα Επιλογής. Μέγιστο / Ελάχιστο. Εφαρμογές
Επιλογή Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Πρόβλημα Επιλογής Πίνακας Α[]με n στοιχεία (όχι ταξινομημένος). Αριθμός
Συνδυαστική Απαρίθμηση
Συνδυαστική Απαρίθμηση ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συνδυαστική Απαρίθμηση
Διάλεξη 04: Παραδείγματα Ανάλυσης
Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα
Μαθηματική Επαγωγή. Τεχνικές Απόδειξης. Αποδείξεις Ύπαρξης. Μαθηματική Επαγωγή
Μαθηματική Επαγωγή Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Τεχνικές Απόδειξης Εξαντλητική
ιαίρει-και-βασίλευε ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο
ιαίρει-και-βασίλευε ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιαίρει-και-βασίλευε Γενική μέθοδος σχεδιασμού αλγορίθμων: ιαίρεση σε ( 2) υποπροβλήματα
Σχέσεις. Διμελής Σχέση. ΣτοΊδιοΣύνολο. Αναπαράσταση
Διμελής Σχέση Σχέσεις Διδάσκοντες: Φ. Αφράτη, Δ. Επιμέλεια διαφανειών: Δ. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Διατεταγμένο ζεύγος (α, β): Δύο αντικείμενα
τα βιβλία των επιτυχιών
Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από
2018 Φάση 2 ιαγωνίσµατα Επανάληψης ΑΛΓΕΒΡΑ. Α' Γενικού Λυκείου. Σάββατο 21 Απριλίου 2018 ιάρκεια Εξέτασης:3 ώρες ΘΕΜΑΤΑ
ΘΕΜΑ A ΑΛΓΕΒΡΑ Α' Γενικού Λυκείου Σάββατο 1 Απριλίου 018 ιάρκεια Εξέτασης: ώρες ΘΕΜΑΤΑ Πεδίο ορισμού μιας συνάρτησης f (x) από ένα σύνολο Α σε ένα σύνολο Β ονομάζουμε το σύνολο Α, στο οποίο φαίνονται οι
Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων
Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα
Ασυμπτωτικός Συμβολισμός
Ασυμπτωτικός Συμβολισμός ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό
ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ
ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από
Αρχή του Περιστερώνα. ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Αρχή του Περιστερώνα ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συναρτήσεις Συνάρτηση: διμελής σχέση
ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ
ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ . ΣΥΝΟΛΑ ΑΡΙΘΜΩΝ Τα σύνολα των αριθμών είναι τα εξής : i. Φυσικοί αριθμοί : 0,,,,......,,,,0,,,,...
Γραμμική Διαφορική Εξίσωση 2 ου βαθμού
//04 Γραμμική Διαφορική Εξίσωση ου βαθμού, με τη βοήθεια του αορίστου ολοκληρώματος, της χρήσιμης γραμμικής διαφορικής εξίσωσης πρώτου βαθμού af ( ) f ( ) cf ( ) g( ), ac,, σταθεροί πραγματικοί αριθμοί
Επιμέλεια διαφανειών: Δ. Φωτάκης Τροποποιήσεις-προσθήκες: Α. Παγουρτζής. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Διαίρει-και-Βασίλευε Επιμέλεια διαφανειών: Δ. Φωτάκης Τροποποιήσεις-προσθήκες: Α. Παγουρτζής Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Διαίρει-και-Βασίλευε Γενική
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 4. Παραδείγματα Ανάλυσης Πολυπλοκότητας Ανάλυση Αναδρομικών Αλγόριθμων
ΕΠΛ31 Δομές Δεδομένων και Αλγόριθμοι 4. Παραδείγματα Ανάλυσης Πολυπλοκότητας Ανάλυση Αναδρομικών Αλγόριθμων Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις Επαναληψης
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις Επαναληψης ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 22 Μαΐου 2013 Ασκηση 1. (1) Να λυθεί η γραµµική
ΚΕΦΑΛΑΙΟ 5 ΓΕΝΝΗΤΡΙΕΣ ΣΥΝΑΡΤΗΣΕΙΣ
ΚΕΦΑΛΑΙΟ 5 ΓΕΝΝΗΤΡΙΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Εισαγωγή Οι γεννήτριες συναρτήσεις είναι ένα από τα ισχυρά εργαλεία για μια ενοποιημένη αντιμετώπιση πολλών κατηγοριών προβλημάτων απαρίθμησης Ο Lplce έθεσε πρώτος τις