Στοιχεία Θεωρίας Υπολογισµού (1): Τυπικές Γλώσσες, Γραµµατικές

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Στοιχεία Θεωρίας Υπολογισµού (1): Τυπικές Γλώσσες, Γραµµατικές"

Transcript

1 Στοιχεία Θεωρίας Υπολογισµού (1): Τυπικές Γλώσσες, Γραµµατικές Ορέστης Τελέλης Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Υπολογισµού 1 / 24

2 Μοντελοποίηση του Υπολογισµού Ποιές οι θεµελιώδεις δυνατότητες και ποιοί οι εγγενείς περιορισµοί των υπολογιστών; Τί µπορούµε και τί δε µπορούµε να υπολογίσουµε (και γιατί); Η µελέτη των ερωτηµάτων αυτων προϋποθέτει ορισµό του υπολογιστή. ηλαδή, ορισµό και κατανόηση της ϕύσης του υπολογισµού. Ισοδύναµα, προϋποθέτει ορισµό της έννοιας του αλγορίθµου. Αφετηρία προς την κατεύθυνση αυτή δίνουν οι εξής παρατηρήσεις: Οι υπολογιστές επεξεργάζονται ακολουθίες συµβόλων. Αποδέχονται/εκτελούν οδηγίες σε καλά ορισµένες τυπικές γλώσσες. Οι οδηγίες αυτές αποτελούνται από ακολουθίες συµβόλων. Οι τυπικές γλώσσες επιτρέπουν την ανάπτυξη υπολογιστικών µοντέλων. Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Υπολογισµού 2 / 24

3 Αλφάβητο και Λέξεις Αλφάβητο: πεπερασµένο, µη κενό σύνολο από σύµβολα. Σ = { 0, 1 } Σ = { a, b, c } Σ = { while, void, int, for, if... } Λέξη/Συµβολοσειρά: πεπερασµένη ακολουθία συµβόλων του αλφαβήτου , a b b b c a, ένα πρόγραµµα σε C (ή Java, ή C++,... ) Μήκος λέξης: πλήθος συµβόλων της λέξης, συµβολίζεται µε w. Κενή Λέξη: Λέξη µηδενικού µήκους, συµβολίζεται µε ɛ (ή µε λ). Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Υπολογισµού 3 / 24

4 Πράξεις µε Λέξεις Παράθεση των λέξεων x και y: x y ή απλώς xy. Π.χ., παράθεση των 010 και 10 δίνει Επανάληψη της λέξης w k ϕορές: w k = k ϕορές {}}{ w w w. Αντίστροφη w R της λέξης w: προκύπτει γράφοντας την w «ανάποδα». (100) R = 001, (abcc) R = ccba. Παλινδροµική Λέξη: w = w R, π.χ.: (010) R = 010. Για κάθε δύο λέξεις x και y: (x y) R = y R x R. x υπολέξη της w αν: w = y x z. Επιτρέπεται είτε y = ɛ είτε z = ɛ (ή και τα δύο). Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Υπολογισµού 4 / 24

5 Πράξεις σε αλφάβητο Σ k : σύνολο λέξεων µήκους k 0 που αποτελούνται από σύµβολα του Σ. { 0, 1 }2 = { 00, 01, 10, 11 }. { a, b, c } 2 = { ab, bc, ac, ca, cb, ba }. Παρατήρηση: Σ 0 = {ɛ}, για κάθε αλφάβητο Σ. Σ : σύνολο όλων των λέξεων επί του Σ: Σ = k N Σ k Π.χ., { 0, 1 } = { ɛ, 0, 1, 00, 01, 10, 11, 000, 001,... }. Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Υπολογισµού 5 / 24

6 Τυπικές Γλώσσες Τυπική Γλώσσα L επί του αλφαβήτου Σ: ένα υποσύνολο του Σ. Με άπειρο ή πεπερασµένο πλήθος συµβολοσειρών (λέξεων) - αριθµήσιµο. Παραδείγµατα γλωσσών επί του αλφαβήτου Σ = { 0, 1, 2 }: { 012, 120, 201, 210, 102, 021 } = Σ 3 { ɛ, 0, 00, 000,... } { w Σ : το τελευταίο ψηφίο του w είναι 1 }. { } = (η κενή γλώσσα). { ɛ } η γλώσσα που περιέχει µόνο την κενή λέξη. Γλώσσα C = { w : w συντακτικά ορθό πρόγραµµα σε C } Κάθε συντακτικά ορθό πρόγραµµα είναι µία λέξη της γλώσσας. Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Υπολογισµού 6 / 24

7 Πράξεις µε Γλώσσες Πράξεις Συνόλων: ένωση, τοµή, διαφορά, συµπλήρωµα,... Παράθεση: L 1 L 2 = L 1 L 2 = { w = x 1 x 2 : όπου x 1 L 1, x 2 L 2 } Π.χ., αν L 1 = { 0, 00, 11 } και L 2 = { ɛ, 1 }: L 1 L 2 = { 0, 00, 11, 01, 001, 111 } Παράθεση Γλώσσας µε την ίδια: L 2 = { w = x 1 x 2, για x 1 L και x 2 L } Παράθεση Γλώσσας k φορές: L k = { w = x 1 x 2 x k, για x 1, x 2,..., x k L } Προσοχή: για κάθε γλώσσα L: L 0 = {ɛ} Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Υπολογισµού 7 / 24

8 Πράξεις µε Γλώσσες Παράθεση κάθε (πεπερασµένου) πλήθους λέξεων της L: L = k N L k (Παρατήρηση: k 0.) Παράδειγµα: L = { a, bb } = L = { ɛ, a, bb, abb, bba, aabb, bbaa, abba,... } Επίσης: L = { ɛ } L = { ɛ } L = L = { ɛ } Παράθεση θετικού πεπερασµένου πλήθους λέξεων της L: L + = L k (Παρατήρηση: k 1.) k Z + Πότε είναι L = L + ; Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Υπολογισµού 8 / 24

9 Μέθοδοι Αναπαράστασης Γλωσσών Απαρίθµηση των λέξεών τους, όταν είναι πεπερασµένες. ιατύπωση κοινής χαρακτηριστικής ιδιότητας που έχουν οι λέξεις: L 1 = { w {0, 1} : w έχει άρτιο πλήθος από 1 } L 2 = { 0 n 1 n : n 0 }. Συνολοθεωρητικές πράξεις επί άλλων γνωστών γλωσσών, π.χ., L 1 L 2. Γραµµατικές: µηχανισµοί παραγωγής λέξεων της γλώσσας. Υπολογιστικές Μηχανές: αποφασίζουν αν µια λέξη ανήκει στη γλώσσα. Ενας συντακτικός αναλυτής αποφασίζει αν ένα πρόγραµµα C είναι ορθό. Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Υπολογισµού 9 / 24

10 Γραµµατική οµής Φράσεως G = (V, T, S, P) Αλφάβητο Γραµµατικής, V: περιέχει όλα τα σύµβολα της γραµµατικής. Σύνολο τερµατικών συµβόλων: T V. Οι λέξεις της γλώσσας αποτελούνται µόνο από τερµατικά σύµβολα. Σύνολο µη τερµατικών συµβόλων: N = V \ T. Εχουν ϱόλο «µεταβλητών»: αντικαθίστανται σύµφωνα µε κανόνες. Συµβολίζονται συνήθως µε κεφαλαία γράµµατα. Εναρκτήριο (Αρχικό) Σύµβολο: S N. (µη τερµατικό) Η παραγωγή λέξεων εκκινεί από το S και ακολουθεί κανόνες παραγωγής. Σύνολο Κανόνων Παραγωγής P (V N V ) V. ιµελής σχέση που συσχετίζει λέξεις µε µη τερµατικά, µε άλλες λέξεις. Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Υπολογισµού 10 / 24

11 Παράδειγµα Γραµµατική G = (V, T, S, P) µε: V = { a, b, A, B, S }, T = { a, b }, αρχικό σύµβολο S και σύνολο κανόνων παραγωγής P: P = { S ABa, A BB, B ab, AB b } Λέξεις που παράγονται από τη G: b a S ABa, AB b a b a b a b a S ABa, A BB, B ab ( 3) a b a b a b a S ABa, B ab, A BB, B ab ( 2) Είναι εποµένως L(G) = { ba, abababa }. Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Υπολογισµού 11 / 24

12 Σχέσεις Παραγωγής Εστω: w 0 = l z 0 r V και w 1 = l z 1 r V. Αν: z 0 z 1 P, Λέµε ότι: «η w 1 παράγεται άµεσα από την w 0». Γράφουµε: w 0 w 1. Εστω: w 0, w 1,..., w n V. Αν: w i w i+1, για i = 0,..., n 1, Λέµε ότι: «η w n παράγεται από την w 0». Γράφουµε: w 0 w n. Γλώσσα Γραµµατικής G: L(G) = { w T : S w } Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Υπολογισµού 12 / 24

13 Παραδείγµατα Ποιά γλώσσα παράγει η γραµµατική G = (V, T, S, P), µε: 1. V = { S, A, a, b }, T = { a, b}, P = {S aa, S b, A aa} 2. V = { 0, 1, S }, T = { 0, 1 }, P = { S 11S, S 0 } Να δοθούν γραµµατικές δοµής ϕράσεως που παράγουν τις γλώσσες: 3. { 0 n 1 n : n = 0, 1, 2,... } 4. { 0 m 1 n : m, n N } 5. { 0 n 1 n 2 n : n N } Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Υπολογισµού 13 / 24

14 Παράδειγµα (1) Ποιά γλώσσα παράγει η γραµµατική G = (V, T, S, P) µε: V = { S, A, a, b }, T = { a, b}, P = {S aa, S b, A aa} Με δοκιµές: Ξεκινώντας από το αρχικό σύµβολο, S, έχουµε δύο δυνατές παραγωγές: S aa και S b Η δεύτερη παραγωγή µας δίνει τη λέξη b. Συνεχίζοντας από την πρώτη, µε τον κανόνα A aa λαµβάνουµε aaa. Εποµένως, είναι L(G) = { aaa, b}. Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Υπολογισµού 14 / 24

15 Παράδειγµα (2) Ποιά γλώσσα παράγει η γραµµατική G = (V, T, S, P) µε: V = { 0, 1, S }, T = { 0, 1 }, P = { S 11S, S 0 } Με δοκιµές: Ξεκινώντας έχουµε S 0, εποµένως 0 L(G). Εχουµε επίσης S 11S. Στη συνέχεια, χρησιµοποιώντας S 0, συµπεραίνουµε 110 L(G). Μπορούµε επίσης να συνεχίσουµε µε S 11S και να λάβουµε 1111S. Συνεχίζοντας µε S 0, συµπεραίνουµε L(G). ιαισθητικά συµπεραίνουµε ότι L(G) = { 0, 110, 11110, ,... } Οι λέξεις µε άρτιο πλήθος από 1 και ένα µοναδικό 0 στο τέλος. Αυτό αποδεικνύεται επαγωγικά. Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Υπολογισµού 15 / 24

16 Παράδειγµα (3) Να δοθεί γραµµατική δοµής ϕράσεως που παράγει τη γλώσσα: { 0 n 1 n n = 0, 1, 2,... } Παρατηρούµε ότι ɛ L(G) (για n = 0). Εισάγουµε έναν κανόνα S ɛ. Επειδή «πλήθος 0» = «πλήθος των 1», εισάγουµε τον κανόνα S 0 S 1. Αποδεικνύεται επαγωγικά ότι η γραµµατική αυτή είναι ορθή. G = ( V = {0, 1, S}, T = {0, 1}, S, P = { S ɛ, S 0 S 1 } ) Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Υπολογισµού 16 / 24

17 Παράδειγµα (4α) Να δοθεί γραµµατική δοµής ϕράσεως που παράγει τη γλώσσα: { 0 m 1 n m και n είναι µη αρνητικοί ακέραιοι } Μια γραµµατική G 1 = (V, T, S, P) που παράγει τη γλώσσα είναι ως εξής: Αλφάβητο Γραµµατικής G 1 : V = { 0, 1, S }. Τερµατικά Σύµβολα της G 1 : T = { 0, 1 }. Μη τερµατικά Σύµβολα της G 1 : N = { S }. Παραγωγές της G 1 : P = { S ɛ, S 0S, S S1 }. Παρατηρούµε ότι παράγεται η λέξη ɛ και επιπλέον για κάθε άλλη παραγωγή πεπερασµένου πλήθους ϐηµάτων έχουµε ένα S διαθέσιµο για αντικατάσταση, είτε µε 0S, είτε µε S1 (όσες ϕορές επιθυµούµε). Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Υπολογισµού 17 / 24

18 Παράδειγµα (4β) Να δοθεί γραµµατική δοµής ϕράσεως που παράγει τη γλώσσα: { 0 m 1 n m και n είναι µη αρνητικοί ακέραιοι } Μια δεύτερη γραµµατική G 2 = (V, T, S, P) που παράγει τη γλώσσα: Αλφάβητο Γραµµατικής G 2 : V = { 0, 1, S, A }. Τερµατικά Σύµβολα της G 2 : T = { 0, 1 }. Μη τερµατικά Σύµβολα της G 2 : N = { S, A }. Παραγωγές της G 2 : P = { S ɛ, S 0S, S 1A, S 1, A 1A, A 1 } Παράγει ακριβώς την ίδια Ϲητούµενη γλώσσα µε την G 1 που παρουσιάστηκε προηγουµένως. Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Υπολογισµού 18 / 24

19 Παράδειγµα (5) Να δοθεί γραµµατική δοµής ϕράσεως που παράγει τη γλώσσα: { 0 n 1 n 2 n : n N } Παράγεται από τη γραµµατική G = (V, T, S, P), µε: Αλφάβητο: V = { 0, 1, 2, S, A, B, C }. Τερµατικά Σύµβολα: T = { 0, 1, 2 }. Μη τερµατικά Σύµβολα: N = { S, A, B, C }. Σύνολο Παραγωγών: P = { S C, C 0CAB, S ɛ, BA AB, 0A 01, 1A 11, 1B 12, 2B 22 } Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Υπολογισµού 19 / 24

20 Τύποι Γραµµατικών οµής Φράσεως Τύπος Επιτρεπτά Είδη Κανόνων Περιορισµοί 0 Ολα τα είδη 1 l A r l w r, S ɛ l, r V, w V + Αν υπάρχει S ɛ, το S να µην εµφανίζεται στα δεξιά άλλου κανόνα. 2 A w A V \ T, w V 3 A a B, A a, S ɛ A, B V \ T, a T Γλώσσα Τύπου 3: { 0 m 1 n : m, n N }. Γλώσσα Τύπου 2: { 0 n 1 n : n N }. Γλώσσα Τύπου 1: { 0 n 1 n 2 n : n N }. Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Υπολογισµού 20 / 24

21 Τύποι Γραµµατικών και Γλωσσών Τύπου 3: Κανονικές ( Regular) Γραµµατικές Παράγουν Κανονικές Γλώσσες Τύπου 2: Γραµµατικές χωρίς Συµφραζόµενα (Context-Free) Παράγουν Γλώσσες Χωρίς Συµφραζόµενα Χρησιµοποιούνται για την περιγραφή γλωσσών προγραµµατισµού. Τύπου 1: Γραµµατικές µε Συµφραζόµενα (Context-Free). Κάθε γραµµατική Τύπου t είναι και Τύπου t 1. Μια γλώσσα είναι Τύπου t αν παράγεται από γραµµατική Τύπου t, αλλά όχι από γραµµατική Τύπου t + 1. Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Υπολογισµού 21 / 24

22 Μηχανές Πεπερασµένων Καταστάσεων Πεπερασµένα Αυτόµατα Απλοϊκές µηχανές που δέχονται σαν είσοδο µία συµβολοσειρά. Σε κάθε βήµα υπολογισµού: 1. ιαβάζουν το επόµενο σύµβολο της συµβολοσειράς εισόδου. 2. Ανάλογα µε το σύµβολο που διαβάζουν, µεταβαίνουν σε µία κατάσταση. Εχουν πεπερασµένο πλήθος καταστάσεων. Εχουν µία αρχική κατάσταση από την οποία εκκινούν. Εχουν µία ή περισσότερες καταστάσεις αποδοσχής. Αποδέχονται την είσοδο, αν στο τέλος του υπολογισµού ϐρίσκονται σε κάποια από αυτές τις καταστάσεις. Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Υπολογισµού 22 / 24

23 Πεπερασµένα Αυτόµατα - Αναγνωριστές Γλώσσας Ενα αυτόµατο πεπερασµένων καταστάσεων (πεπερασµένο αυτόµατο): αποτελείται από: M = (S, Σ, δ, s 0, F) Πεπερασµένο Σύνολο Καταστάσεων Πεπερασµένο Αλφάβητο Εισόδου Συνάρτηση Μεταβάσεων Αρχική Κατάσταση Σύνολο Καταστάσεων Αποδοχής S Σ δ : S Σ S s 0 S F S Κάθε λέξη εισόδου που αποδέχεται το αυτόµατο ανήκει στη γλώσσα που αναγνωρίζει. Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Υπολογισµού 23 / 24

24 Παράδειγµα Σύνολο Καταστάσεων: S = { s 0, s 1, s 2, s 3 }. Αλφάβητο Εισόδου: Σ = { 0, 1 }. Αρχική Κατάσταση: s 0. Σύνολο Καταστάσεων Αποδοχής: F = { s 0, s 3 }. Συνάρτηση Μεταβάσεων: δ : S Σ S, όπως απεικονίζεται παρακάτω. δ 0 1 s 0 s 0 s 1 s 1 s 0 s 2 s 2 s 0 s 0 s 3 s 2 s 1 s 0 0 s , 1 0 s 2 s 3 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Υπολογισµού 24 / 24

Ποιές οι θεµελιώδεις δυνατότητες και ποιοί οι εγγενείς περιορισµοί των υπολογιστών ; Τί µπορούµε και τί δε µπορούµε να υπολογίσουµε (και γιατί);

Ποιές οι θεµελιώδεις δυνατότητες και ποιοί οι εγγενείς περιορισµοί των υπολογιστών ; Τί µπορούµε και τί δε µπορούµε να υπολογίσουµε (και γιατί); Μοντελοποίηση του Υπολογισµού Στοιχεία Θεωρίας Υπολογισµού (): Τυπικές Γλώσσες, Γραµµατικές Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ποιές οι θεµελιώδεις δυνατότητες

Διαβάστε περισσότερα

Γενικές Παρατηρήσεις. Μη Κανονικές Γλώσσες - Χωρίς Συµφραζόµενα (1) Το Λήµµα της Αντλησης. Χρήση του Λήµµατος Αντλησης.

Γενικές Παρατηρήσεις. Μη Κανονικές Γλώσσες - Χωρίς Συµφραζόµενα (1) Το Λήµµα της Αντλησης. Χρήση του Λήµµατος Αντλησης. Γενικές Παρατηρήσεις Μη Κανονικές Γλώσσες - Χωρίς Συµφραζόµενα () Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Υπάρχουν µη κανονικές γλώσσες, π.χ., B = { n n n }. Αυτό

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Υπολογισµού (2): Πεπερασµένα Αυτόµατα, Κανονικές Εκφράσεις

Στοιχεία Θεωρίας Υπολογισµού (2): Πεπερασµένα Αυτόµατα, Κανονικές Εκφράσεις Στοιχεία Θεωρίας Υπολογισµού (2): Πεπερασµένα Αυτόµατα, Κανονικές Εκφράσεις Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Υπολογισµού

Διαβάστε περισσότερα

Σύνοψη Προηγούµενου. Κανονικές Γλώσσες (1) Προβλήµατα και Γλώσσες. Σε αυτό το µάθηµα. ιαδικαστικά του Μαθήµατος.

Σύνοψη Προηγούµενου. Κανονικές Γλώσσες (1) Προβλήµατα και Γλώσσες. Σε αυτό το µάθηµα. ιαδικαστικά του Μαθήµατος. Σύνοψη Προηγούµενου Κανονικές Γλώσσες () ιαδικαστικά του Μαθήµατος. Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Εισαγωγή: Υπολογισιµότητα και Πολυπλοκότητα. Βασικές

Διαβάστε περισσότερα

Γνωριµία. Θεωρία Υπολογισµού: Εισαγωγικά. Αντικείµενο Μαθήµατος. Επικοινωνία.

Γνωριµία. Θεωρία Υπολογισµού: Εισαγωγικά. Αντικείµενο Μαθήµατος. Επικοινωνία. Γνωριµία Θεωρία Υπολογισµού: Εισαγωγικά Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς ιδάσκων: Ορέστης Τελέλης e-mail: telelis@unipi.gr Ωρες γραφείου (502, Γρ.Λαµπράκη

Διαβάστε περισσότερα

Σύνοψη Προηγούµενου. Γλώσσες χωρίς Συµφραζόµενα (2) Ισοδυναµία CFG και PDA. Σε αυτό το µάθηµα. Αυτόµατα Στοίβας Pushdown Automata

Σύνοψη Προηγούµενου. Γλώσσες χωρίς Συµφραζόµενα (2) Ισοδυναµία CFG και PDA. Σε αυτό το µάθηµα. Αυτόµατα Στοίβας Pushdown Automata Σύνοψη Προηγούµενου Γλώσσες χωρίς Συµφραζόµενα (2) Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Αυτόµατα Στοίβας Pushdown utomata Ισοδυναµία µε τις Γλώσσες χωρίς Συµφραζόµενα:

Διαβάστε περισσότερα

Σύνοψη Προηγούµενου. Γλώσσες χωρίς Συµφραζόµενα (2): Αυτόµατα Στοίβας. Παραδείγµατα Σχεδιασµού CFG. Παράδειγµα 1.

Σύνοψη Προηγούµενου. Γλώσσες χωρίς Συµφραζόµενα (2): Αυτόµατα Στοίβας. Παραδείγµατα Σχεδιασµού CFG. Παράδειγµα 1. Σύνοψη Προηγούµενου Γλώσσες χωρίς Συµφραζόµενα 2): Αυτόµατα Στοίβας Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Μη Κανονικές Γλώσσες Το Λήµµα της Αντλησης για τις

Διαβάστε περισσότερα

Μοντελοποίηση Υπολογισμού. Γραμματικές Πεπερασμένα Αυτόματα Κανονικές Εκφράσεις

Μοντελοποίηση Υπολογισμού. Γραμματικές Πεπερασμένα Αυτόματα Κανονικές Εκφράσεις Μοντελοποίηση Υπολογισμού Γραμματικές Πεπερασμένα Αυτόματα Κανονικές Εκφράσεις Προβλήματα - Υπολογιστές Δεδομένου ενός προβλήματος υπάρχουν 2 σημαντικά ερωτήματα: Μπορεί να επιλυθεί με χρήση υπολογιστή;

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Θεωρία Υπολογισμού Ενότητα 14: Γραμματικές Χωρίς Συμφραζόμενα Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 7: Ασυμφραστικές Γλώσσες (Γλώσσες Ελεύθερες Συμφραζομένων)

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 7: Ασυμφραστικές Γλώσσες (Γλώσσες Ελεύθερες Συμφραζομένων) ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 7: Ασυμφραστικές Γλώσσες (Γλώσσες Ελεύθερες Συμφραζομένων) Τι θα κάνουμε σήμερα Εισαγωγικά Ασυμφραστικές Γραμματικές (2.1) Τυπικός Ορισμός Της Ασυμφραστικής

Διαβάστε περισσότερα

Κανονικές Γλώσσες. ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Κανονικές Γλώσσες. ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Κανονικές Γλώσσες ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Κανονικές Γλώσσες Κανονική γλώσσα αν

Διαβάστε περισσότερα

Αυτόματα. Παράδειγμα: πωλητής καφέ (iii) Παράδειγμα: πωλητής καφέ (iv) Εισαγωγή στην Επιστήμη των Υπολογιστών 6

Αυτόματα. Παράδειγμα: πωλητής καφέ (iii) Παράδειγμα: πωλητής καφέ (iv) Εισαγωγή στην Επιστήμη των Υπολογιστών 6 Εισαγωγή στην Επιστήμη των Υπολογιστών 3η ενότητα: Αυτόματα και Τυπικές Γραμματικές http://www.corelab.ece.ntua.gr/courses/ Αυτόματα Τρόπος κωδικοποίησης αλγορίθμων. Τρόπος περιγραφής συστημάτων πεπερασμένων

Διαβάστε περισσότερα

Σύνοψη Προηγούµενου. Κανονικές Γλώσσες (3) Παραδείγµατα µε Κανονικές Εκφράσεις. Σε αυτό το µάθηµα.

Σύνοψη Προηγούµενου. Κανονικές Γλώσσες (3) Παραδείγµατα µε Κανονικές Εκφράσεις. Σε αυτό το µάθηµα. Σύνοψη Προηγούµενου Κανονικές Γλώσσες (3) Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς (Ντετερµινιστική) Κλειστότητα Κανονικών Γλωσσών ως προς Ενωση. Κατασκευή: DFA

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ Ενότητα 8: Ιδιότητες Γραμματικών χωρίς Συμφραζόμενα Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υπολογιστών

Εισαγωγή στην Επιστήμη των Υπολογιστών Εισαγωγή στην Επιστήμη των Υπολογιστών 3η ενότητα: Αυτόματα και Τυπικές Γραμματικές http://www.corelab.ece.ntua.gr/courses/ Αυτόματα Τρόπος κωδικοποίησης αλγορίθμων. Τρόπος περιγραφής συστημάτων πεπερασμένων

Διαβάστε περισσότερα

Μια TM µπορεί ένα από τα δύο: να αποφασίζει µια γλώσσα L. να αναγνωρίζει (ηµιαποφασίζει) µια γλώσσα L. 1. Η TM «εκτελεί» τον απαριθµητή, E.

Μια TM µπορεί ένα από τα δύο: να αποφασίζει µια γλώσσα L. να αναγνωρίζει (ηµιαποφασίζει) µια γλώσσα L. 1. Η TM «εκτελεί» τον απαριθµητή, E. Οι γλώσσες των Μηχανών Turing Αποφασισιµότητα / Αναγνωρισιµότητα Μια TM µπορεί ένα από τα δύο: να αποφασίζει µια γλώσσα L Αποδέχεται όταν (η είσοδος στην TM) w L. Ορέστης Τελέλης telelis@unipi.gr Τµήµα

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα

Θεωρία Υπολογισμού και Πολυπλοκότητα Θεωρία Υπολογισμού και Πολυπλοκότητα Κεφάλαιο 7. Κατηγορηματικές Γραμματικές 27,2 Φεβρουαρίου, 9 Μαρτίου 2007 Δρ. Παπαδοπούλου Βίκη 1 Κατηγορηματικές Γραμματικές Ή Γραμματικές Χωρίς Συμφραζόμενα Παράδειγμα.

Διαβάστε περισσότερα

Σε αυτό το µάθηµα. Εισαγωγή στις Μηχανές Turing. Μηχανή Turing (Turing Machine - TM) Μηχανές Turing. Παραδείγµατα Μηχανών Turing

Σε αυτό το µάθηµα. Εισαγωγή στις Μηχανές Turing. Μηχανή Turing (Turing Machine - TM) Μηχανές Turing. Παραδείγµατα Μηχανών Turing Σε αυτό το µάθηµα Εισαγωγή στις Μηχανές Turing Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Παραδείγµατα Μηχανών Turing Παραλλαγές: Πολυταινιακές, Μη ντετερµινιστικές

Διαβάστε περισσότερα

Ισοδυναµίες, Μερικές ιατάξεις

Ισοδυναµίες, Μερικές ιατάξεις Ισοδυναµίες, Μερικές ιατάξεις Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Σχέσεις 1 / 18 Σύνοψη Προηγούµενου Σχέσεις, Ιδιότητες, Αναπαράσταση

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα

Θεωρία Υπολογισμού και Πολυπλοκότητα Θεωρία Υπολογισμού και Πολυπλοκότητα Κεφάλαιο 4. Μη Ντετερμινιστικά Πεπερασμένα Αυτόματα 9,19 Φεβρουαρίου 2007 Δρ. Παπαδοπούλου Βίκη 1 Μοντέλα Υπολογισμού Μη Ντετερμινιστικό Πεπερασμένα Αυτόματα: Διαφορά

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (1)

Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (1) Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (1) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ασυμφραστικές Γραμματικές (2.1) Τυπικός Ορισμός Σχεδιασμός Ασυμφραστικών Γραμματικών

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα

Θεωρία Υπολογισμού και Πολυπλοκότητα Θεωρία Υπολογισμού και Πολυπλοκότητα Κεφάλαιο 4. Πεπερασμένα Αυτόματα 6 Φεβρουαρίου 2007 Δρ. Παπαδοπούλου Βίκη 1 Μοντέλα Υπολογισμού 1930 : Μηχανή Turing : αφαιρετική μηχανή (μοντελοποίηση ενός υπολογιστή)

Διαβάστε περισσότερα

Η NTM αποδέχεται αν µονοπάτι στο δέντρο που οδηγεί σε αποδοχή.

Η NTM αποδέχεται αν µονοπάτι στο δέντρο που οδηγεί σε αποδοχή. Μη ντετερµινιστικές Μηχανές Turing - NTMs (1/6) Μηχανές Turing: Μη ντετερµινισµός, Επιλύσιµα Προβλήµατα Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς 10 εκεµβρίου 2016

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητα Ενδιάμεση Εξέταση Ημερομηνία : Σάββατο, 15 Μαρτίου 2014 Διάρκεια : 9.30 11.30 Διδάσκουσα : Άννα Φιλίππου Ονοματεπώνυμο:

Διαβάστε περισσότερα

771 Η - Θεωρία Υπολογισµών και Αλγορίθµων

771 Η - Θεωρία Υπολογισµών και Αλγορίθµων 771 Η - Θεωρία Υπολογισµών και Αλγορίθµων Σηµειώσεις Μέρος 4 ο ιδάσκων: Α. Ντελόπουλος Το παρόν αποτελεί σηµειώσεις που αντιστοιχούν σε µέρος των διαλέξεων για το µάθηµα 771 Η - Θεωρία Υπολογισµών και

Διαβάστε περισσότερα

Ανω Φράγµα στην Τάξη των Συναρτήσεων. Ρυθµός Αύξησης (Τάξη) των Συναρτήσεων. Παράδειγµα (1/2) O( g(n) ) είναι σύνολο συναρτήσεων:

Ανω Φράγµα στην Τάξη των Συναρτήσεων. Ρυθµός Αύξησης (Τάξη) των Συναρτήσεων. Παράδειγµα (1/2) O( g(n) ) είναι σύνολο συναρτήσεων: Ανω Φράγµα στην Τάξη των Συναρτήσεων Ορισµός. Εστω συναρτήσεις: f : N R και g : N R Ρυθµός Αύξησης (Τάξη) των Συναρτήσεων Ορέστης Τελέλης η (τάξη της) f(n) είναι O( g(n) ) αν υπάρχουν σταθερές C και n

Διαβάστε περισσότερα

Σειρά Προβλημάτων 1 Λύσεις

Σειρά Προβλημάτων 1 Λύσεις Σειρά Προβλημάτων Λύσεις Άσκηση Ορίζουμε τη συναρμογή δύο γλωσσών Α και Β ως ΑΒ = { uv u A, v B }. (α) Έστω Α = {α,β,γ} και Β =. Να περιγράψετε τη γλώσσα ΑΒ. (β) Θεωρήστε τις γλώσσες L, M και N. Να δείξετε

Διαβάστε περισσότερα

Μεταγλωττιστές. Γιώργος Δημητρίου. Μάθημα 2 ο. Πανεπιστήμιο Θεσσαλίας - Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών

Μεταγλωττιστές. Γιώργος Δημητρίου. Μάθημα 2 ο. Πανεπιστήμιο Θεσσαλίας - Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Γιώργος Δημητρίου Μάθημα 2 ο Αλφάβητα και Γλώσσες Αλφάβητο: Ένα μη κενό και πεπερασμένο σύνολο συμβόλων Γλώσσα: Ένα οποιοδήποτε υποσύνολο των συμβολοσειρών ενός αλφαβήτου (οι προτάσεις της γλώσσας, πχ.

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Θεωρία Υπολογισμού Ενότητα 25: Γραμματικές Χωρίς Περιορισμούς Τμήμα Πληροφορικής ΘΥ 25: Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

Θεωρία Υπολογισµού και Πολυπλοκότητα

Θεωρία Υπολογισµού και Πολυπλοκότητα Θεωρία Υπολογισµού και Πολυπλοκότητα Κεφάλαιο 3. Γλώσσες και Συναρτήσεις 30 Ιανουαρίου 2007 ρ. Παπαδοπούλου Βίκη 1 3.1.1. Αλφάβητο Πως υλοποιούµε σεέναυπολογιστήένααλγόριθµοήµια σχέση; Αλφάβητο ή Γλώσσα

Διαβάστε περισσότερα

ΠΛΗ30 ΕΝΟΤΗΤΑ 3: ΚΑΝΟΝΙΚΕΣ ΓΛΩΣΣΕΣ. Μάθηµα 3.2: ηµήτρης Ψούνης

ΠΛΗ30 ΕΝΟΤΗΤΑ 3: ΚΑΝΟΝΙΚΕΣ ΓΛΩΣΣΕΣ. Μάθηµα 3.2: ηµήτρης Ψούνης ΠΛΗ30 ΕΝΟΤΗΤΑ 3: ΚΑΝΟΝΙΚΕΣ ΓΛΩΣΣΕΣ Μάθηµα 3.2: Ντετερµινιστικά Πεπερασµένα Αυτόµατα ηµήτρης Ψούνης 2 ΠΕΡΙΕΧΟΜΕΝΑ Α. Σκοπός του Μαθήµατος Β. Θεωρία 1. Πεπερασµένα Αυτόµατα 1. Λειτουργία και Παραδείγµατα

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Γλωσσών. (συνέχεια) (συνέχεια) Πέμπτη 27 Οκτωβρίου 2016 Θεόδωρος Τζουραμάνης Επίκουρος Καθηγητής

Στοιχεία Θεωρίας Γλωσσών. (συνέχεια) (συνέχεια) Πέμπτη 27 Οκτωβρίου 2016 Θεόδωρος Τζουραμάνης Επίκουρος Καθηγητής https://www.icsd.aegean.gr/t.tzouramanis/courses/dm1 ttzouram@aegean.gr Πέμπτη 7 Οκτωβρίου 016 Δ Κατά τον Καθηγητή Avram Noam Chomsky οι γραμματικές ταξινομούνται σύμφωνα με τα είδη παραγωγών που επιτρέπονται,

Διαβάστε περισσότερα

Θεωρία Υπολογισμού Αλφάβητα, Γλώσσες, Κανονικές Εκφράσεις

Θεωρία Υπολογισμού Αλφάβητα, Γλώσσες, Κανονικές Εκφράσεις 1 Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Θεωρία Υπολογισμού Ενότητα 6 : Αλφάβητα, Γλώσσες, Κανονικές Εκφράσεις Αλέξανδρος Τζάλλας 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο Τμήμα Μηχανικών

Διαβάστε περισσότερα

Κανονικές Γλώσσες. Κανονικές Γλώσσες. Κανονικές Γλώσσες και Αυτόματα. Κανονικές Γλώσσες και Αυτόματα

Κανονικές Γλώσσες. Κανονικές Γλώσσες. Κανονικές Γλώσσες και Αυτόματα. Κανονικές Γλώσσες και Αυτόματα Κανονικές Γλώσσες Κανονικές Γλώσσες Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Κανονική γλώσσα αν παράγεται από κανονική γραμματική. Παραγωγές P (V Σ) Σ * ((V Σ) ε) Παραγωγές μορφής:

Διαβάστε περισσότερα

Θέματα υπολογισμού στον πολιτισμό

Θέματα υπολογισμού στον πολιτισμό Θέματα υπολογισμού στον πολιτισμό Ενότητα 4: Μοντελοποίηση υπολογισμού: Γραμματικές Εύη Παπαϊωάννου Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων Τεχνολογιών

Διαβάστε περισσότερα

Αυτόματα. Παράδειγμα: πωλητής καφέ (iii) Παράδειγμα: πωλητής καφέ (iv) Εισαγωγή στην Επιστήμη των Υπολογιστών. Προδιαγραφές

Αυτόματα. Παράδειγμα: πωλητής καφέ (iii) Παράδειγμα: πωλητής καφέ (iv) Εισαγωγή στην Επιστήμη των Υπολογιστών. Προδιαγραφές Εισαγωγή στην Επιστήμη των Υπολογιστών 4ο εξάμηνοσ.h.m.μ.y. & Σ.Ε.Μ.Φ.Ε. http://www.corelab.ece.ntua.gr/courses/ 3η ενότητα: Αυτόματα και Τυπικές Γραμματικές Στάθης Ζάχος Συνεργασία: Κωστής Σαγώνας Επιμέλεια:

Διαβάστε περισσότερα

Γλώσσες Χωρίς Συμφραζόμενα

Γλώσσες Χωρίς Συμφραζόμενα Γλώσσα χωρίς Συμφραζόμενα Γλώσσες Χωρίς Συμφραζόμενα Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

Διαβάστε περισσότερα

Στοιχεία Αλγορίθµων και Πολυπλοκότητας

Στοιχεία Αλγορίθµων και Πολυπλοκότητας Στοιχεία Αλγορίθµων και Πολυπλοκότητας Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Πολυπλοκότητα 1 / 16 «Ζέσταµα» Να γράψετε τις συναρτήσεις

Διαβάστε περισσότερα

Σχεδίαση Γλωσσών Προγραμματισμού Λεξική Ανάλυση Ι. Εαρινό Εξάμηνο Lec 05 & & 26 /02/2019 Διδάσκων: Γεώργιος Χρ.

Σχεδίαση Γλωσσών Προγραμματισμού Λεξική Ανάλυση Ι. Εαρινό Εξάμηνο Lec 05 & & 26 /02/2019 Διδάσκων: Γεώργιος Χρ. Σχεδίαση Γλωσσών Προγραμματισμού Λεξική Ανάλυση Ι Εαρινό Εξάμηνο 2018-2019 Lec 05 & 06 25 & 26 /02/2019 Διδάσκων: Γεώργιος Χρ. Μακρής Φάσεις μεταγλώττισης Αρχικό Πρόγραμμα Λεκτική Ανάλυση λεκτικές μονάδες

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Σύνολα Συναρτήσεις και Σχέσεις Γραφήματα Λέξεις και Γλώσσες Αποδείξεις ΕΠΛ 211 Θεωρία

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ Ενότητα 1: Εισαγωγή Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

HEAD INPUT. q0 q1 CONTROL UNIT

HEAD INPUT. q0 q1 CONTROL UNIT Πεπερασμένα Αυτόματα (ΠΑ) Τα πεπερασμένα αυτόματα είναι οι απλούστερες «υπολογιστικές μηχανές». Δεν έχουν μνήμη, μόνο μία εσωτερική μονάδα με πεπερασμένο αριθμό καταστάσεων. Διαβάζουν τη συμβολοσειρά εισόδου

Διαβάστε περισσότερα

Γλώσσες που περιγράφονται από Κανονικές Εκφράσεις

Γλώσσες που περιγράφονται από Κανονικές Εκφράσεις Κανονικές Εκφράσεις Στοιχειώδεις Κανονικές Εκφράσεις Κανονικές Εκφράσεις Γλώσσες που περιγράφονται από Κανονικές Εκφράσεις ηµιουργία Κανονικών Εκφράσεων Παραδείγµατα Κανονικών Εκφράσεων Τις Κανονικές εκφράσεις

Διαβάστε περισσότερα

Σχεδίαση Γλωσσών Προγραμματισμού Συντακτική Ανάλυση Ι. Εαρινό Εξάμηνο Lec /03/2019 Διδάσκων: Γεώργιος Χρ. Μακρής

Σχεδίαση Γλωσσών Προγραμματισμού Συντακτική Ανάλυση Ι. Εαρινό Εξάμηνο Lec /03/2019 Διδάσκων: Γεώργιος Χρ. Μακρής Σχεδίαση Γλωσσών Προγραμματισμού Συντακτική Ανάλυση Ι Εαρινό Εξάμηνο 2018-2019 Lec 09 18 /03/2019 Διδάσκων: Γεώργιος Χρ. Μακρής Φάσεις μεταγλώττισης Αρχικό Πρόγραμμα Λεκτική Ανάλυση λεκτικές μονάδες Πίνακας

Διαβάστε περισσότερα

Αυτόματα και Υπολογιστικά Μοντέλα Automata and Models of Computation

Αυτόματα και Υπολογιστικά Μοντέλα Automata and Models of Computation Αυτόματα και Υπολογιστικά Μοντέλα Automata and Models of Computation Διδάσκων: Στάθης Ζάχος Επιμέλεια Διαφανειών: Μάκης Αρσένης CoReLab ΣΗΜΜΥ - Ε.Μ.Π. Φεβρουάριος 2017 Διδάσκων: Στάθης Ζάχος ( CoReLab

Διαβάστε περισσότερα

Η δυαδική σχέση M ( «παράγει σε ένα βήμα» ) ορίζεται ως εξής: (q, w) M (q, w ), αν και μόνο αν w = σw, για κάποιο σ Σ

Η δυαδική σχέση M ( «παράγει σε ένα βήμα» ) ορίζεται ως εξής: (q, w) M (q, w ), αν και μόνο αν w = σw, για κάποιο σ Σ Πεπερασμένα Αυτόματα (ΠΑ) Τα πεπερασμένα αυτόματα είναι οι απλούστερες «υπολογιστικές μηχανές». Δεν έχουν μνήμη, μόνο μία εσωτερική μονάδα με πεπερασμένο αριθμό καταστάσεων. Διαβάζουν τη συμβολοσειρά εισόδου

Διαβάστε περισσότερα

Αποφασισιµότητα / Αναγνωρισιµότητα. Μη Επιλύσιµα Προβλήµατα. Η έννοια της αναγωγής. Τερµατίζει µια δεδοµένη TM για δεδοµένη είσοδο;

Αποφασισιµότητα / Αναγνωρισιµότητα. Μη Επιλύσιµα Προβλήµατα. Η έννοια της αναγωγής. Τερµατίζει µια δεδοµένη TM για δεδοµένη είσοδο; Αποφασισιµότητα / Αναγνωρισιµότητα Ορέστης Τελέλης telelis@unipi.gr Μη Επιλύσιµα Προβλήµατα Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς 2/12/2015 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/2015

Διαβάστε περισσότερα

Ορισµός. Εστω συναρτήσεις: f : N R και g : N R. η f(n) είναι fi( g(n) ) αν υπάρχουν σταθερές C 1, C 2 και n 0, τέτοιες ώστε:

Ορισµός. Εστω συναρτήσεις: f : N R και g : N R. η f(n) είναι fi( g(n) ) αν υπάρχουν σταθερές C 1, C 2 και n 0, τέτοιες ώστε: Συµβολισµός Ω( ) Τάξη των Συναρτήσεων () Εκτίµηση Πολυπλοκότητας Αλγορίθµων Ορέστης Τελέλης telelis@unipi.gr Ορισµός. Εστω συναρτήσεις: f : N R και g : N R η f(n) είναι Ω( g(n) ) αν υπάρχουν σταθερές C

Διαβάστε περισσότερα

Μεταγλωττιστές. Ενότητα 2: Τυπικές γλώσσες (Μέρος 1 ο ) Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ

Μεταγλωττιστές. Ενότητα 2: Τυπικές γλώσσες (Μέρος 1 ο ) Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Μεταγλωττιστές Ενότητα 2: Τυπικές γλώσσες (Μέρος 1 ο ) Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Γενικό πλάνο. Μαθηµατικά για Πληροφορική. Παράδειγµα αναδροµικού ορισµού. οµική επαγωγή ΠΑΡΑ ΕΙΓΜΑ. 3ο Μάθηµα

Γενικό πλάνο. Μαθηµατικά για Πληροφορική. Παράδειγµα αναδροµικού ορισµού. οµική επαγωγή ΠΑΡΑ ΕΙΓΜΑ. 3ο Μάθηµα Γενικό πλάνο Μαθηµατικά για Πληροφορική 3ο Μάθηµα Ηλίας Κουτσουπιάς, Γιάννης Εµίρης Τµήµα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήµιο Αθηνών 14/10/2008 1 Παράδειγµα δοµικής επαγωγής 2 Ορισµός δοµικής

Διαβάστε περισσότερα

Αρχή Εγκλεισµού-Αποκλεισµού (3 σύνολα) Αρχή Εκλεισµού-Αποκλεισµού Η Τάξη των Συναρτήσεων. Εφαρµογές. Παράδειγµα 1.

Αρχή Εγκλεισµού-Αποκλεισµού (3 σύνολα) Αρχή Εκλεισµού-Αποκλεισµού Η Τάξη των Συναρτήσεων. Εφαρµογές. Παράδειγµα 1. Αρχή Εγκλεισµού-Αποκλεισµού (3 σύνολα) Αρχή Εκλεισµού-Αποκλεισµού Η Τάξη των Συναρτήσεων Ορέστης Τελέλης telelis@unipi.g Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς A B C = A + B + C A B B C A C +

Διαβάστε περισσότερα

Σύνοψη Προηγούµενου. Ισοδυναµίες, Μερικές ιατάξεις. Σχέσεις Ισοδυναµίας. Σχέσεις, Ιδιότητες, Αναπαράσταση. Ανακλαστικές (a, a) R

Σύνοψη Προηγούµενου. Ισοδυναµίες, Μερικές ιατάξεις. Σχέσεις Ισοδυναµίας. Σχέσεις, Ιδιότητες, Αναπαράσταση. Ανακλαστικές (a, a) R Σύνοψη Προηγούµενου Σχέσεις, Ιδιότητες, Αναπαράσταση Ισοδυναµίες, Μερικές ιατάξεις Ορέστης Τελέλης tllis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ανακλαστικές (, ) R Συµµετρικές (, ) R

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing (αυθεντικός ορισμός) η οποία να διαγιγνώσκει τη γλώσσα {1010 2 10 3 10 n 1 10 n 1 n 1}. (β) Να διατυπώσετε

Διαβάστε περισσότερα

Μαθηµατικά για Πληροφορική

Μαθηµατικά για Πληροφορική Μαθηµατικά για Πληροφορική 3ο Μάθηµα Ηλίας Κουτσουπιάς, Γιάννης Εµίρης Τµήµα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήµιο Αθηνών 14/10/2008 14/10/2008 1 / 24 Γενικό πλάνο 1 Παράδειγµα δοµικής επαγωγής

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ Ενότητα 5: Μη κανονικές γλώσσες Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing (αυθεντικός ορισμός) η οποία να διαγιγνώσκει τη γλώσσα {w 1w 2 w 1 {0,1} * και w 2 = 0 k 1 m όπου k και m

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ Τελικές εξετάσεις 3 Ιανουαρίου 27 Διάρκεια εξέτασης: 3 ώρες (2:-5:) ΘΕΜΑ ο

Διαβάστε περισσότερα

Μαθηµατική Επαγωγή. Ορέστης Τελέλης. Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς

Μαθηµατική Επαγωγή. Ορέστης Τελέλης. Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Μαθηµατική Επαγωγή Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Επαγωγή 1 / 17 Υπενθύµιση: Ακολουθίες Ακολουθία είναι συνάρτηση από

Διαβάστε περισσότερα

Γνωριµία. ιακριτά Μαθηµατικά. Βιβλία Μαθήµατος. Επικοινωνία. ιδάσκων: Ορέστης Τελέλης. Ωρες γραφείου (502, Γρ.

Γνωριµία. ιακριτά Μαθηµατικά. Βιβλία Μαθήµατος. Επικοινωνία. ιδάσκων: Ορέστης Τελέλης. Ωρες γραφείου (502, Γρ. Γνωριµία ιακριτά Μαθηµατικά Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς ιδάσκων: Ορέστης Τελέλης e-mail: telelis@unipi.gr Ωρες γραφείου (502, Γρ.Λαµπράκη 26): ευτέρα

Διαβάστε περισσότερα

ιακριτά Μαθηµατικά Ορέστης Τελέλης Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Σύνολα 1 / 36

ιακριτά Μαθηµατικά Ορέστης Τελέλης Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Σύνολα 1 / 36 ιακριτά Μαθηµατικά Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Σύνολα 1 / 36 Γνωριµία ιδάσκων: Ορέστης Τελέλης e-mail: telelis@unipi.gr

Διαβάστε περισσότερα

Γραµµατικές για Κανονικές Γλώσσες

Γραµµατικές για Κανονικές Γλώσσες Κανονικές Γραµµατικές Γραµµατικές για Κανονικές Γλώσσες Ταξινόµηση Γραµµατικών εξιά Παραγωγικές Γραµµατικές εξιά Παραγωγικές Γραµµατικές και NFA Αριστερά Παραγωγικές Γραµµατικές Κανονικές Γραµµατικές Γραµµατικές

Διαβάστε περισσότερα

Σειρά Προβλημάτων 1 Λύσεις

Σειρά Προβλημάτων 1 Λύσεις ΕΠΛ2: Θεωρία Υπολογισμού και Πολυπλοκότητα Σειρά Προβλημάτων Λύσεις Άσκηση Έστω αλφάβητο Σ και γλώσσες Λ, Λ 2, Λ επί του αλφάβητου αυτού. Να διερευνήσετε κατά πόσο ισχύει κάθε μια από τις πιο κάτω σχέσεις.

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Επανάληψη Μαθήματος

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Επανάληψη Μαθήματος ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Επανάληψη Μαθήματος Το Μάθημα σε μια Διαφάνεια Υπολογιστικά μοντέλα Κανονικές Γλώσσες Ντετερμινιστικά Αυτόματα Μη Ντετερμινιστικά Αυτόματα Κανονικές Εκφράσεις

Διαβάστε περισσότερα

Σειρά Προβλημάτων 3 Λύσεις

Σειρά Προβλημάτων 3 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 3 Λύσεις Να δώσετε ασυμφραστικές γραμματικές που να παράγουν τις πιο κάτω γλώσσες: (α) { a k b m c n k < m ή m > 2n, όπου k,m,n 0 } Μια γραμματική για τη γλώσσα έχει ως εξής:

Διαβάστε περισσότερα

Σειρά Προβλημάτων 3 Λύσεις

Σειρά Προβλημάτων 3 Λύσεις Σειρά Προβλημάτων 3 Λύσεις Άσκηση 1 Να δώσετε ασυμφραστικές γραμματικές που να παράγουν τις πιο κάτω γλώσσες: (α) {0 n 1 n n > 0} {0 n 1 2n n > 0} (β) {w {a,b} * η w ξεκινά και τελειώνει με το ίδιο σύμβολο

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (1)

Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (1) Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες () Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Πεπερασμένα Αυτόματα (Κεφάλαιο., Sipser) Ορισμός πεπερασμένων αυτομάτων και ορισμός του

Διαβάστε περισσότερα

Θεωρία Υπολογισμού Άρτιοι ΑΜ. Διδάσκων: Σταύρος Κολλιόπουλος. eclass.di.uoa.gr. Περιγραφή μαθήματος

Θεωρία Υπολογισμού Άρτιοι ΑΜ. Διδάσκων: Σταύρος Κολλιόπουλος. eclass.di.uoa.gr. Περιγραφή μαθήματος Περιγραφή μαθήματος Θεωρία Υπολογισμού Άρτιοι ΑΜ Σκοπός του μαθήματος είναι η εισαγωγή στη Θεωρία Υπολογισμού και στη Θεωρία Υπολογιστικής Πολυπλοκότητας (Θεωρία Αλγορίθμων). Διδάσκων: Σταύρος Κολλιόπουλος

Διαβάστε περισσότερα

Θεωρία Υπολογισμού Αρτιοι ΑΜ Διδάσκων: Σταύρος Κολλιόπουλος eclass.di.uoa.gr

Θεωρία Υπολογισμού Αρτιοι ΑΜ Διδάσκων: Σταύρος Κολλιόπουλος eclass.di.uoa.gr Θεωρία Υπολογισμού Άρτιοι ΑΜ Διδάσκων: Σταύρος Κολλιόπουλος eclass.di.uoa.gr Περιγραφή μαθήματος Σκοπός του μαθήματος είναι η εισαγωγή στη Θεωρία Υπολογισμού και στη Θεωρία Υπολογιστικής Πολυπλοκότητας

Διαβάστε περισσότερα

3 Αναδροµή και Επαγωγή

3 Αναδροµή και Επαγωγή 3 Αναδροµή και Επαγωγή Η ιδέα της µαθηµατικής επαγωγής µπορεί να επεκταθεί και σε άλλες δοµές εκτός από το σύνολο των ϕυσικών N. Η ορθότητα της µαθηµατικής επαγωγής ϐασίζεται όπως ϑα δούµε λίγο αργότερα

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing που να διαγιγνώσκει τη γλώσσα { a 2n b n c 3n n 2 } : H ζητούμενη μηχανή Turing μπορεί να διατυπωθεί ως την

Διαβάστε περισσότερα

Σειρά Προβλημάτων 1 Λύσεις

Σειρά Προβλημάτων 1 Λύσεις Σειρά Προβλημάτων 1 Λύσεις Άσκηση 1 Έστω αλφάβητο Σ και γλώσσες Λ 1, Λ 2 επί του αλφάβητου αυτού. Να διερευνήσετε κατά πόσο ισχύει κάθε μια από τις πιο κάτω σχέσεις. Σε περίπτωση που μια σχέση ισχύει να

Διαβάστε περισσότερα

Σχέσεις, Ιδιότητες, Κλειστότητες

Σχέσεις, Ιδιότητες, Κλειστότητες Σχέσεις, Ιδιότητες, Κλειστότητες Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Σχέσεις 1 / 26 Εισαγωγή & Ορισµοί ιµελής Σχέση R από

Διαβάστε περισσότερα

Μηχανές Πεπερασµένων Καταστάσεων

Μηχανές Πεπερασµένων Καταστάσεων Μηχανές Επεξεργασίας Πληροφοριών Μηχανές Πεπερασµένων Καταστάσεων Είναι µηχανές που δέχονται ένα σύνολο από σήµατα εισόδου και παράγουν ένα αντίστοιχο σύνολο σηµάτων εξόδου Σήµατα Εισόδου Μηχανή Επεξεργασίας

Διαβάστε περισσότερα

Σειρά Προβλημάτων 3 Λύσεις

Σειρά Προβλημάτων 3 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 3 Λύσεις Να δώσετε ασυμφραστικές γραμματικές που να παράγουν τις πιο κάτω γλώσσες: (α) { a m b n c p m,n,p 0 και είτε m + n = p είτε m = n + p } (β) { xx rev yy rev x, y {a,b}

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 3: Ντετερμινιστικά Πεπερασμένα Αυτόματα (DFA)

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 3: Ντετερμινιστικά Πεπερασμένα Αυτόματα (DFA) ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 3: Ντετερμινιστικά Πεπερασμένα Αυτόματα (DFA) Τι θα κάνουμε σήμερα Εισαγωγή στα Ντετερμινιστικά Πεπερασμένα Αυτόματα 14-Sep-11 Τυπικός Ορισμός Ντετερμινιστικών

Διαβάστε περισσότερα

ιαιρετότητα Στοιχεία Θεωρίας Αριθµών «Ο Αλγόριθµος της ιαίρεσης» Αριθµητική Υπολοίπων 0 r < d και a = d q +r

ιαιρετότητα Στοιχεία Θεωρίας Αριθµών «Ο Αλγόριθµος της ιαίρεσης» Αριθµητική Υπολοίπων 0 r < d και a = d q +r ιαιρετότητα Στοιχεία Θεωρίας Αριθµών ο a διαιρεί τον b: συµβολισµός: a b Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς a b και a c a (b + c) a b a bc, για κάθε c Z +

Διαβάστε περισσότερα

ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ. Στις βασικές έννοιες που σχετίζονται με τη λεξική ανάλυση. Στη δήλωση ορισμό κανονικών εκφράσεων

ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ. Στις βασικές έννοιες που σχετίζονται με τη λεξική ανάλυση. Στη δήλωση ορισμό κανονικών εκφράσεων ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ 2 Ο Εργαστηριακό Μάθημα Λεξική Ανάλυση Σκοπός: Το μάθημα αυτό αναφέρεται: Στις βασικές έννοιες που σχετίζονται με τη λεξική ανάλυση Στη δήλωση ορισμό κανονικών εκφράσεων Θεωρία Πρόλογος

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing που να διαγιγνώσκει την ακόλουθη γλώσσα. { a n b n+2 c n 2 n 2 } Λύση: H ζητούμενη μηχανή Turing μπορεί να

Διαβάστε περισσότερα

Σειρά Προβλημάτων 3 Λύσεις

Σειρά Προβλημάτων 3 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 3 Λύσεις Να δώσετε ασυμφραστικές γραμματικές που να παράγουν τις πιο κάτω γλώσσες: (α) { x x η τιμή της αριθμητικής έκφρασης 10 2n + 10 n + 1, n 1} (β) { a i b j c k d m i, j,

Διαβάστε περισσότερα

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» (ε) Κάθε συγκλίνουσα ακολουθία άρρητων αριθµών συγκλίνει σε άρρητο αριθµό.

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» (ε) Κάθε συγκλίνουσα ακολουθία άρρητων αριθµών συγκλίνει σε άρρητο αριθµό. Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο : Ακολουθίες πραγµατικών αριθµών Α Οµάδα Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς αιτιολογήστε πλήρως την απάντησή σας α Κάθε

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Θεωρία Υπολογισμού Ενότητα 7: Πεπερασμένη αναπαράσταση γλωσσών Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

Κεφάλαιο 2: Τυπικές γλώσσες. Νίκος Παπασπύρου, Κωστής Σαγώνας Μεταγλωττιστές Μάρτιος / 216

Κεφάλαιο 2: Τυπικές γλώσσες. Νίκος Παπασπύρου, Κωστής Σαγώνας Μεταγλωττιστές Μάρτιος / 216 Κεφάλαιο 2: Τυπικές γλώσσες Νίκος Παπασπύρου, Κωστής Σαγώνας Μεταγλωττιστές Μάρτιος 2017 13 / 216 Τυπικές γλώσσες (i) Βασικές έννοιες Αλφάβητο Σύμβολο Συμβολοσειρά Μήκος συμβολοσειράς Σύνολο συμβολοσειρών

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ Ενότητα 10: Συνδυασμοί μηχανών Turing Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Γραφηµάτων (1)

Στοιχεία Θεωρίας Γραφηµάτων (1) Στοιχεία Θεωρίας Γραφηµάτων (1) Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (1) 1 / 23 Μη κατευθυνόµενα γραφήµατα

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΙΑΚΡΙΤΕΣ ΜΕΘΟ ΟΙ ΓΙΑ ΤΗΝ ΕΠΙΣΤΗΜΗ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ η Γραπτή Εργασία-Ενδεικτικές Λύσεις Επιµέλεια:. Σούλιου Θέµα (Κανονικές

Διαβάστε περισσότερα

Εισαγωγή στην Τοπολογία

Εισαγωγή στην Τοπολογία Ενότητα: Τοπικές έννοιες Γεώργιος Κουµουλλής Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 1: Μαθηματικό Υπόβαθρο

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 1: Μαθηματικό Υπόβαθρο ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 1: Μαθηματικό Υπόβαθρο Τι θα κάνουμε σήμερα Εισαγωγικά (0.1) Σύνολα (0.2.1, 0.2.2) Συναρτήσεις & Σχέσεις (;;) (0.2.3) 1 Περιοχές που θα μελετήσουμε

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 4: Μη Ντετερμινιστικά (Αντιαιτιοκρατικά) Πεπερασμένα Αυτόματα (ΝFA)

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 4: Μη Ντετερμινιστικά (Αντιαιτιοκρατικά) Πεπερασμένα Αυτόματα (ΝFA) ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 4: Μη Ντετερμινιστικά (Αντιαιτιοκρατικά) Πεπερασμένα Αυτόματα (ΝFA) Τι θα κάνουμε σήμερα Εισαγωγή στα Μη Ντετερμινιστικά Πεπερασμένα Αυτόματα Τυπικός

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing (αυθεντικός ορισμός) η οποία να διαγιγνώσκει τη γλώσσα { w w = (ab) 2m b m (ba) m, m 0 } (β) Να διατυπώσετε

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (2)

Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (2) Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (2) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Κανονικές Εκφράσεις (1.3) Τυπικός Ορισμός Ισοδυναμία με κανονικές γλώσσες Μη Κανονικές

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 21η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 21η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 21η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία: «Artificial Intelligence A Modern Approach» των. Russel

Διαβάστε περισσότερα

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές»

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο : Το σύνολο των πραγµατικών αριθµών Α Οµάδα Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς αιτιολογήστε πλήρως την απάντησή σας) α)

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδες Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2014/asi2014.html, https://sites.google.com/site/maths4edu/home/algdom114

Διαβάστε περισσότερα

Θεωρία Υπολογισμού. Ασκήσεις. Δρ. Τζάλλας Αλέξανδρος, Καθηγητής Εφαρμογών. Τμ. Μηχανικών Πληροφορικής Τ.Ε.

Θεωρία Υπολογισμού. Ασκήσεις. Δρ. Τζάλλας Αλέξανδρος, Καθηγητής Εφαρμογών. Τμ. Μηχανικών Πληροφορικής Τ.Ε. , Καθηγητής Εφαρμογών Τμ. Μηχανικών Πληροφορικής Τ.Ε. Άρτα, Μάιος 25 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Φροντιστήριο 10 Λύσεις

Φροντιστήριο 10 Λύσεις Άσκηση 1 Φροντιστήριο 10 Λύσεις Να κατασκευάσετε μια μηχανή Turing με δύο ταινίες η οποία να αποδέχεται στην πρώτη της ταινία μια οποιαδήποτε λέξη w {0,1} * και να γράφει τη λέξη w R στη δεύτερη της ταινία.

Διαβάστε περισσότερα

Γλώσσες Χωρίς Συμφραζόμενα

Γλώσσες Χωρίς Συμφραζόμενα Γλώσσες Χωρίς Συμφραζόμενα Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γλώσσα χωρίς

Διαβάστε περισσότερα

Σειρά Προβλημάτων 3 Λύσεις

Σειρά Προβλημάτων 3 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 3 Λύσεις Να δώσετε ασυμφραστικές γραμματικές που να παράγουν τις πιο κάτω γλώσσες: (α) { a i b j c k d m i, j, k, m 0 και i + j = k + m } (β) { uxvx rev u,v,x {0,1,2} + και όλα

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Θεωρία Υπολογισμού Ενότητα 17: Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου

Διαβάστε περισσότερα

Περιεχόμενα Συμβολοσειρές Γλώσσες ΘΥ 6: Συμβολοσειρές & γλώσσες Επ. Καθ. Π. Κατσαρός 24/07/2014 Επ. Καθ. Π. Κατσαρός ΘΥ 6: Συμβολοσειρές & γλώσσες

Περιεχόμενα Συμβολοσειρές Γλώσσες ΘΥ 6: Συμβολοσειρές & γλώσσες Επ. Καθ. Π. Κατσαρός 24/07/2014 Επ. Καθ. Π. Κατσαρός ΘΥ 6: Συμβολοσειρές & γλώσσες ΘΥ 6: Συμβολοσειρές & γλώσσες 24/07/2014 Θεωρία Υπολογισμού Ενότητα 6: Συμβολοσειρές & γλώσσες Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Μάθηµα Θεωρίας Αριθµών Ε.Μ.Ε

Μάθηµα Θεωρίας Αριθµών Ε.Μ.Ε Μάθηµα Θεωρίας Αριθµών Ε.Μ.Ε 1. Να αποδειχθεί ότι κάθε ϑετικός ακέραιος αριθµός n 6, µπορεί να γραφεί στη µορφή όπου οι a, b, c είναι ϑετικοί ακέραιοι. n = a + b c,. Να αποδειχθεί ότι για κάθε ακέραιο

Διαβάστε περισσότερα