TABLES OF SOME INDEFINITE INTEGRALS OF BESSEL FUNCTIONS

Σχετικά έγγραφα
TABLES OF SOME INDEFINITE INTEGRALS OF BESSEL FUNCTIONS

SPECIAL FUNCTIONS and POLYNOMIALS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

2 Composition. Invertible Mappings

Section 8.3 Trigonometric Equations

Math221: HW# 1 solutions

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

CRASH COURSE IN PRECALCULUS

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Approximation of distance between locations on earth given by latitude and longitude

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

EE512: Error Control Coding

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

derivation of the Laplacian from rectangular to spherical coordinates

Concrete Mathematics Exercises from 30 September 2016

4.6 Autoregressive Moving Average Model ARMA(1,1)

Section 7.6 Double and Half Angle Formulas

Other Test Constructions: Likelihood Ratio & Bayes Tests

A summation formula ramified with hypergeometric function and involving recurrence relation

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Homework 3 Solutions

ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

If we restrict the domain of y = sin x to [ π 2, π 2

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

PARTIAL NOTES for 6.1 Trigonometric Identities

Finite Field Problems: Solutions

Matrices and Determinants

Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Solutions to Exercise Sheet 5

Every set of first-order formulas is equivalent to an independent set

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Second Order Partial Differential Equations

The Simply Typed Lambda Calculus

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Uniform Convergence of Fourier Series Michael Taylor

Areas and Lengths in Polar Coordinates

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Inverse trigonometric functions & General Solution of Trigonometric Equations

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Areas and Lengths in Polar Coordinates

C.S. 430 Assignment 6, Sample Solutions

Example Sheet 3 Solutions

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Congruence Classes of Invertible Matrices of Order 3 over F 2

Srednicki Chapter 55

Tridiagonal matrices. Gérard MEURANT. October, 2008

An Inventory of Continuous Distributions

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Second Order RLC Filters

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Evaluation of some non-elementary integrals of sine, cosine and exponential integrals type

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Lecture 2. Soundness and completeness of propositional logic

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

Instruction Execution Times

ST5224: Advanced Statistical Theory II

MathCity.org Merging man and maths

New bounds for spherical two-distance sets and equiangular lines

Strain gauge and rosettes

Section 9.2 Polar Equations and Graphs

6.3 Forecasting ARMA processes

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

GAUSS-LAGUERRE AND GAUSS-HERMITE QUADRATURE ON 64, 96 AND 128 NODES

Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

Computing the Macdonald function for complex orders

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Solution Series 9. i=1 x i and i=1 x i.

Statistical Inference I Locally most powerful tests

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Notations. Primary definition. Specific values. General characteristics. Series representations. Traditional name. Traditional notation

Lecture 34 Bootstrap confidence intervals

F19MC2 Solutions 9 Complex Analysis

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Parametrized Surfaces

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

EQUATIONS OF DEGREE 3 AND 4.

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Problem Set 3: Solutions

Homework 8 Model Solution Section

Fractional Colorings and Zykov Products of graphs

F-TF Sum and Difference angle

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Transcript:

Werner Rosenheinrich 191016 Ernst - Abbe - Hochschule Jena First variant: 40900 University of Applied Sciences Germany TABLES OF SOME INDEFINITE INTEGRALS OF BESSEL FUNCTIONS Integrals of the type J 0 d or J 0 aj 0 b d are well-known Most of the following integrals are not found in the widely used tables of Gradstein/Ryshik, Bateman/Erdélyi, Abramowitz/ Stegun, Prudnikov/Brychkov/Marichev or Jahnke/Emde/Lösch The goal of this table was to get tables for practicians So the integrals should be epressed by Bessel and Struve functions Indeed, there occured some eceptions Generally, integrals of the type µ J ν d may be written with Lommel functions, see 8], 10-74, or ], III In many cases reccurence relations define more integrals in a simple way Partially the integrals may be found by MAPLE as well In some cases MAPLE gives results with hypergeometric functions, see also ], 96, or 4] Some known integrals are included for completeness Here Z ν denotes some Bessel function or modified Bessel function of the first or second kind Partially the functions Y ν sometimes called Neumann s functions or Weber s functions and denoted by N ν ] and the Hankel functions H ν 1 and H ν are also considered The same holds for the modified Bessel function of the second kind K ν When a formula is continued in the net line, then the last sign + or - is repeated in the beginning of the new line On page 456 the used special functions and defined functions are described *E* - This sign marks formulas, that were incorrect in previous editions The pages with corrected errors are listed in the errata in the end I wish to epress my thanks to B Eckstein, S O Zafra, Yao Sun, F Nouguier, M Carbonell and R Oliver for their remarks 1

References: 1] M Abramowitz, I Stegun: Handbook of Mathematical Functions, Dover Publications, NY, 1970 ] Y L Luke: Mathematical Functions and their Approimations, Academic Press, NY, 1975 ] Y L Luke: Integrals of Bessel Functions, McGraw-Hill, NY, 196 4] A P Prudnikov, A Bryqkov, O I Mariqev: Integraly i r dy, t : Specialьnye funkcii, Nauka, Moskva, 00; FIZMATLIT, 00 5] E Jahnke, F Emde, F Lösch: Tafeln höherer Funktionen, 6 Auflage, B G Teubner, Stuttgart, 1960 6] I S Gradstein, I M Ryshik: Summen-, Produkt- und Integraltafeln / Tables of Series, Products, and Integrals, Band 1 / Volume 1, Verlag Harri Deutsch, Thun Frankfurt/M, 1981 7] I S Gradstein, I M Ryshik: Summen-, Produkt- und Integraltafeln / Tables of Series, Products, and Integrals, Band / Volume, Verlag Harri Deutsch, Thun Frankfurt/M, 1981 8] G N Watson: A Treatise on the Theory of Bessel Functions, Cambridge, University Press, 19 / 1995 9] P Humbert: Bessel-integral functions, Proceedings of the Edinburgh Mathematical Society Series, 19, :76-85 10] B A Peavy, Indefinite Integrals Involving Bessel Functions JOURNAL OF RESEARCH of the National Bureau of Standards - B, vol 718, Nos and, April - September 1967, pp 11-141 11] B G Korenev: Vvedenie v teori besselevyh funkci i, Nauka, Moskva, 1971 1] S K H Auluck: Some integral identities involving products of general solutions of Bessel s equation of integral order, arivorg/abs/10064471 1] H Bateman, A Erdélyi: Tables of Integral Transforms, vol I, McGraw-Hill Book Company, Inc, New York, Toronto, London, 1954 14] H Bateman, A Erdélyi: Tables of Integral Transforms, vol II, McGraw-Hill Book Company, Inc, New York, Toronto, London, 1954

1 1 n Z ν with integer values of n Contents 1 Integrals with one Bessel function 111 n Z 0 7 11 n+1 Z 0 11 11 n 1 Z 0 1 114 n Z 1 15 115 n Z 1 17 116 n+1 Z 1 19 117 n Z ν, ν > 1 118 Second Antiderivatives of n+1 ν Z ν 44 a n+1 Z 0 44 b n Z 1 45 119 Higher Antiderivatives 48 1110 Some Integrals of the Type n+1 Z 1 + α/ + α 50 1 Elementary Function and Bessel Function 11 n+1/ Z ν 57 a Z ν d 57 b Integrals 6 c Recurrence { Formulas } 67 1 n e ± Iν 69 K ν a Integrals with e 69 b Integrals with e 71 { } { } sinh 1 n Iν 75 cosh K ν 14 n { sin cos } J ν 78 15 n e a Z ν 81 a General facts 81 b The Case a > 0 8 c The Case a < 0 90 d Integrals 95 e Special Cases 100 { } sin 16 n 1/ cos 17 n 1/ e ± J ν 10 } 106 { Iν K ν a n 1/ e Z ν 106 b n 1/ e Z ν 107 c General formulas 109 { } { } sinh 18 n 1/ Iν 114 cosh K ν 19 n+1 ln Z 0 119 110 n ln Z 1 11 111 n+ν ln Z ν 1 a The Functions Λ k and Λ k 1 b Basic Integrals 17 c Integrals of n ln Z 0 10 c Integrals of n+1 ln Z 1 1

11 n e ± ln Z ν 16 11 n e J ν α 150 a The Case α = 1, Basic Integrals 150 b Integrals α = 1 157 c General Case α 1, Basic Integrals 159 d Integrals α 1 16 e Special Cases: ν = 0 167 f Special Cases: ν = 1 168 1 Special Function and Bessel Function 11 Orthogonal Polynomials 169 a Legendre Polynomials P n 169 b Chebyshev Polynomials T n 174 c Chebyshev Polynomials U n 179 d Laguerre Polynomials L n 18 e Hermite Polynomials H n 186 1 Eponential Integral 191 1 Sine and Cosine Integral 19 14 Error function: n erf J ν α 196 a The Case α = 1 196 b General Case 197 Products of two Bessel Functions 1 Bessel Functions with the the same Argument : 11 n+1 Zν 00 1 n Zν 05 1 n Zν 08 a The Functions Θ and Ω 08 b Integrals 14 14 n Z 0 Z 1 19 15 n+1 Z 0 Z 1 1 16 n+1 Z 0 Z 1 4 17 n+1 J ν I ν and n+1 J ν K ν 7 a ν = 0 7 b ν = 1 8 c Recurrence Relations 9 18 n J ν I 1 ν and n J ν K 1 ν 0 a ν = 0 0 b ν = 1 1 c Recurrence Relations 19 n+1] J µ Y ν a n+1 J 0 Y 0 b n J 0 Y 0 4 c n J 0 Y 1 5 d n 1 J 0 Y 1 6 e n J 1 Y 0 7 f n 1 J 0 Y 0 8 g n+1 J 1 Y 1 9 h n J 1 Y 1 40 Bessel Functions with different Arguments α and β : 1 n+1 Z ν αz ν β 41 4

a ν = 0 41 b ν = 1 51 n Z 0 αz 1 β 6 n Z ν αz ν β 77 a Basic Integrals 77 b Integrals 87 4 n+1 Z 0 αz 1 β 94 5 n+1 J 0 αi 0 β 98 6 n J 0 αi 1 β 00 7 n J 1 αi 0 β 0 8 n+1 J 1 αi 1 β 04 9 n+1 J ν αy ν β 06 Bessel Functions with different Arguments and + α 1 1 Z ν Z 1 + α and + α] 1 Z 1 + αz 1 d 07 4 Elementary Function and two Bessel Functions 41 n+1 ln Zν d and n ln Z 0 Z 1 d 08 4 n ln Z ν Zν d 16 a Integrals with 4n+ ln J 0 Z 0 16 a Integrals with 4n+1 ln J 1 Z 1 16 c Integrals with n+1 ln I ν K ν 17 d Integrals with n+ ln I ν K 1 ν 19 4 Some Cases of n ln Z ν Zν α d 44 1 ep/ sin / cos Z ν Z 1 d 1 45 Some Cases of n e α Z ν Z 1 d 46 Some Cases of { } sin / cos n α Z sinh / cosh µ Zν β d 5 a { } sin n α Z µ Z ν β d 5 cos b { sinh n cosh } α Z µ Z ν β d 41 Products of three Bessel Functions 1 n Z0 m Z1 m 45 a Basic Integral Z0 45 b Basic Integral Z 0 Z1 49 c Basic Integral Z1 5 d Basic Integral 1 Z0 56 e n Z0 60 f n Z0 Z 1 6 g n Z 0 Z1 66 h n Z1 68 i Recurrence Relations 7 j Z1 Z0 7 n Z κ α Z µ β Z ν γ 74 a n Z κ Z µ Z ν 74 b n Z κ α Z µ β Z ν α + β 85 c n Z κ α Z µ β Z ν α ± β 411 4 Products of four Bessel Functions 5

41 m Z0 n Z1 4 n 414 a Eplicit Integrals 414 b Basic Integral Z0 4 415 c Basic Integral Z0 Z1 414 d Basic Integral Z1 4 414 e Integrals of m Z0 4 46 f Integrals of m Z0 Z 1 49 g Integrals of m Z0 Z1 4 h Integrals of m Z 0 Z1 46 i Integrals of m Z1 4 49 j Recurrence relations 49 5 Quotients 455 51 Denominator p Z 0 + q Z 1 445 a Typ f Z µ /p Z 0 + q Z 1 ] 445 5 Denominator p Z 0 + q Z 1 ] 445 a Typ f Z µ /p Z 0 + q Z 1 ] 445 b Typ f Z0 n Z1 n /p Z 0 + q Z 1 ], n = 0, 1, 448 5 Denominator p Z 0 + q Z 1 ] 449 a Typ f Z µ /p Z 0 + q Z 1 ] 449 54 Denominator p Z 0 + q Z 1 ] 4 450 a Typ f Z µ /p Z 0 + q Z 1 ] 4 450 55 Denominator p Z0 + q Z1 45 a Typ f Z0 n Z1 n /p Z0 + q Z1 ], n = 0, 1, 45 b Typ f Z0 n Z1 n /p Z0 + q Z 0 Z 1 + rz1 ], n = 0, 1, 45 56 Denominator a Z 0 + b Z 1 + p Z0 0 Z 1 + r Z 45 6 Miscellaneous 455 7 Used special functions and defined functions 456 8 Errata 457 1 6

1 Integrals with one Bessel Function: See also 10], 11 n Z ν with integer values of n 111 Integrals of the type n Z 0 d Let Φ = π J 1 H 0 J 0 H 1 ], where H ν denotes the Struve function, see 1], chapter 1117, 1118 and 1 And let Ψ = π I 0 L 1 I 1 L 0 ] be defined with the modified Struve function L ν Furthermore, let Φ Y = π Y 1 H 0 Y 0 H 1 ], Φ 1 π ] H = H 1 1 H 0 H 1 0 H 1, Φ π ] H = H 1 H 0 H 0 H 1 and Ψ K = π K 0 L 1 + K 1 L 0 ] In the following formulas J ν may be substituted by Y ν and simultaneously Φ by Φ Y or H ν p, p = 1, and Φ p H Well-known integrals: J 0 d = J 0 + Φ = Λ 0 I 0 d = I 0 + Ψ = Λ 0 K 0 d = K 0 + Ψ K The new-defined function Λ 0 is discussed in 111 a on page 1 and so is Λ 0 on page 15 See also 1], 111 H p 0 Y 0 d = Y 0 + Φ Y d = Hp 0 + Φp H, p = 1, J 0 d = J 1 Φ I 0 d = I 1 + Ψ K 0 d = K 1 + Ψ K 4 J 0 d = 4 9 J 1 + J 0 + 9Φ 4 I 0 d = 4 + 9 I 1 I 0 + 9Ψ 4 K 0 d = 4 + 9 K 1 K 0 + 9Ψ K E 7

6 J 0 d = 6 5 4 + 5 J 1 + 5 5 75 J 0 5Φ 6 I 0 d = 6 + 5 4 + 5 I 1 5 5 + 75 I 0 + 5Ψ 6 K 0 d = 6 + 5 4 + 5 K 1 5 5 + 75 K 0 + 5Ψ K and so on 8 J 0 d = 8 49 6 + 1 5 4 11 05 J 1 + 7 7 45 5 + 675 J 0 + 11 05Φ 8 I 0 d = 8 + 49 6 + 1 5 4 + 11 05 I 1 7 7 + 45 5 + 675 I 0 + 11 05Ψ 10 J 0 d = 10 81 8 + 969 6 99 5 4 + 89 05J 1 + +9 9 567 7 + 19 845 5 97 675 J 0 89 05Φ 10 I 0 d = 10 + 81 8 + 969 6 + 99 5 4 + 89 05I 1 9 9 + 567 7 + 19 845 5 + 97 675 I 0 + 89 05Ψ 1 J 0 d = 11 11 1 089 9 + 68 607 7 401 45 5 + 6 018 675 J 0 + Let + 1 11 10 + 9 801 8 480 49 6 + 1 006 5 4 108 056 05 J 1 + 108 056 05Φ 1 I 0 d = 1 + 11 10 + 9 801 8 + 480 49 6 + 1 006 5 4 + 108 056 05 I 1 11 11 + 1 089 9 + 68 607 7 + 401 45 5 + 6 018 675 I 0 + 108 056 05Ψ n!! = and n!! = 1 in the case n 0 General formulas: and + + n J 0 d = n 1 k=0 n { 4 n n, n = m 1 5 n n, n = m + 1 n 1 k n 1!!] n k 1 J 0 + n 1 k!!] n k!!] k=0 ] 1 k n 1!! n k J 1 + 1 n n 1!!] Φ = n 1 k!! = n 1 k=0 k=0 1 k n!] n k! n k 1! n k 1 k+1 n! J 0 + n k! n k! ] 1 k n! n k! k n k n! n k! n k=0 n I 0 d = n 1 n 1!!] n k 1 n 1 k!!] n k!!] ] n! J 1 + 1 n n Φ n! ] n 1!! n k I 1 n 1 k!! k=0 I 0 + n 1!!] Ψ = 8

n k=0 Recurrence formulas: Ascending: Descending: = n 1 ] n! n k! k n k I 1 n! n k! k=0 n!] n k! n k 1! n k 1 k+1 n! n k! n k! ] n! I 0 + n Ψ n! n+ J 0 d = n + 1 n+1 J 0 + n+ J 1 n + 1 n+ I 0 d = n + 1 n+1 I 0 + n+ I 1 + n + 1 n+ K 0 d = n + 1 n+1 K 0 n+ K 1 + n + 1 n J 0 d = 1 n 1 n 1 I 0 d = n 1 n K 0 d = 1 n 1 n 1 n 1 J 0 + n J 1 n 1 n 1 I 0 n I 1 + n 1 n 1 K 0 + n K 1 + In the case n < 0 the previous formulas give J0 d = J 1 + 1 J 0 Φ I0 d = 1 I 0 I 1 + Ψ K0 d = 1 K 0 + K 1 + Ψ K K0 6 d = 1 5 J0 8 d = J0 4 d = 1 4 + ] 9 J 0 1 J 1 + Φ I0 4 d = 1 4 ] 9 I 0 + 1 I 1 + Ψ K0 4 d = 1 4 ] 9 K 0 + + 1 K 1 + Ψ K J0 6 d = 1 4 + 9 5 4 J 1 6 + 4 + 45 5 I0 6 d = 1 6 4 45 5 5 I 0 4 + + 9 4 6 4 45 5 K 0 + 4 + ] + 9 4 K 1 + Ψ K n J 0 d n I 0 d n K 0 d ] n J 0 d ] n I 0 d ] n K 0 d ] J 0 Φ ] I 1 + Ψ and so on 1 8 + 6 4 + 45 1 575 11 05 7 J 0 6 4 + 9 ] 5 6 J 1 + Φ E E 9

I0 8 d = 1 8 6 4 45 1 575 11 05 7 I 0 6 + 4 + 9 ] + 5 6 I 1 + Ψ J0 10 d = 1 89 05 8 6 + 9 4 5 + 11 05 J 1 8 10 + 8 6 + 45 4 1 575 + 99 5 I0 10 d = 1 89 05 9 ] J 0 Φ 10 8 6 45 4 1 575 99 5 I 0 8 + 6 + 9 4 + 5 + 11 05 8 I 1 + Ψ 9 ] J0 1 d = I0 1 d = 1 108 056 05 1 1 + 10 8 + 45 6 1 575 4 + 99 5 9 8 75 108 056 05 11 J 0 10 8 + 9 6 5 4 + 11 05 ] 89 05 J 1 + Φ 10 1 10 8 45 6 1 575 4 99 5 9 8 75 I 0 11 10 + 8 + 9 6 + 5 4 + 11 05 + 89 05 10 I 1 + Ψ General formula: With n!! as defined on page 8 holds J0 d 1 n n 1 n = n 1!!] + 1 k k + 1!! k 1!! k 1 J 0 k=0 ] n 1 1 k k + 1!!] k J 1 + Φ = k=0 = 1n n n! n! 1 n k=0 { n 1 + 1 k k +! k! k+1 k + 1! k! k+1 J 0 1 k k+ k=0 ] } k +! k+1 J 1 + Φ k + 1! With obviously modifications one gets the the formulas for the integrals n I 0 d and n K 0 d ] 10

11 Integrals of the type n+1 Z 0 d In the following formulas J ν may be substituted by Y ν or H p ν, p = 1, J 0 d = J 1 I 0 d = I 1 K 0 d = K 1 J 0 d = J 0 + 4 J 1 ] I 0 d = + 4 I 1 I 0 ] K 0 d = + 4 K 1 + K 0 ] 5 J 0 d = 4 J 0 + 4 16 + 64 J 1 ] 5 I 0 d = 4 + 16 + 64 I 1 4 + I 0 ] 5 K 0 d = 4 + 16 + 64 K 1 + 4 + K 0 ] 7 J 0 d = 6 5 144 + 1 15 J 0 + 6 6 4 + 576 04 J 1 ] 7 I 0 d = 6 + 6 4 + 576 + 04 I 1 6 5 + 144 + 1 15 I 0 ] 7 K 0 d = 6 + 6 4 + 576 + 04 K 1 + 6 5 + 144 + 1 15 K 0 ] 9 J 0 d = = 8 7 84 5 + 9 16 7 78 J 0 + 8 64 6 + 04 4 6 864 + 147 456 J 1 ] 9 I 0 d = = 8 + 64 6 + 04 4 + 6 864 + 147 456 I 1 8 7 + 84 5 + 9 16 + 7 78 I 0 ] 9 K 0 d = = 8 + 64 6 + 04 4 + 6 864 + 147 456 K 1 + 8 7 + 84 5 + 9 16 + 7 78 K 0 ] Let m J 0 d = P m J 0 + Q m J 1 ] and m I 0 d = Q mi 1 P mi 0 ], m K 0 d = Q mk 1 + P mk 0 ], then holds P 11 = 10 9 800 7 + 8400 5 91600 + 77800 Q 11 = 10 100 8 + 6400 6 0400 4 + 686400 14745600 P11 = 10 9 + 800 7 + 8400 5 + 91600 + 77800 Q 11 = 10 + 100 8 + 6400 6 + 0400 4 + 686400 + 14745600 *E* 11

P 1 = 1 11 1440 9 + 11500 7 559600 5 + 1710400 10616800 Q 1 = 1 144 10 + 14400 8 91600 6 + 177600 4 50841600 + 166400 P1 = 1 11 + 1440 9 + 11500 7 + 559600 5 + 1710400 + 10616800 Q 1 = 1 + 144 10 + 14400 8 + 91600 6 + 177600 4 + 50841600 + 166400 P 15 = 14 1 5 11 + 840 9 57900 7 + 108801600 5 60118400 + 0808990700 Q 15 = 14 196 1 + 84 10 8400 8 + 1806600 6 650809600 4 + 10404495600 416179814400 P 15 = = 14 1 5 11 + 840 9 + 57900 7 + 108801600 5 + 60118400 + 0808990700 *E* Q 15 = 14 + 196 1 + 84 10 + 8400 8 + 1806600 6 + 650809600 4 + 10404495600 + 416179814400 Recurrence formulas: n+1 J 0 d = n n J 0 + n+1 J 1 4n n+1 I 0 d = n n I 0 + n+1 I 1 + 4n n+1 K 0 d = n n K 0 n+1 K 1 + 4n k=0 n 1 J 0 d General formula: With n!! as defined on page 8 holds n 1 n+1 J 0 d = 1 k n!!] n k n k!!] n k!!] = n 1 1 k k=0 n ] + 1 k n!! n+1 k J 1 = n k!! k=0 n J 0 + k+1 n! n k n k! n k 1! k=0 n 1 I 0 d n 1 K 0 d J 0 + ] 1 k k n! n+1 k J 1 n k! With obviously modifications one gets the the formulas for the integrals n+1 I 0 d and n+1 K 0 d *E* 1

11 Integrals of the type n 1 Z 0 d The basic integral J0 d can be epressed by 0 1 J 0 t t J 0 t dt dt or = Ji 0, t see 1], equation 11119 and the following formulas There are given asymptotic epansions and polynomial approimations as well Tables of these functions may be found by 1], 111] or 11] The function Ji 0 is introduced and discussed in 9] For fast computations of this integrals one should use approimations with Chebyshev polynomials, see ], tables 9 I got the information from F Nouguier, that there is an error in a formula in 9], p 78 The true formula is The power series in Ji 0 ln = sin π π I0 d can be used without numerical problems γ ln + sin π π = ln + k=1 s=1 1 s 1 s Ji 0s ln s] 1 k k k! E In the following formulas J ν may be substituted by Y ν or H ν p, p = 1, J0 d = J 0 + J 1 4 1 J0 d 4 I0 d = I 0 I 1 4 + 1 I0 d 4 J0 d 1 5 = 1 4 4 J 0 + 1 64 + 1 16 J 1 + 1 J0 d 64 I0 d 1 5 = + 1 1 4 4 I 0 64 + 1 16 I 1 + 1 I0 d 64 J0 d 7 = 4 + 8 19 115 6 J 0 + 4 4 + 64 04 5 J 1 1 J0 d 04 I0 d 7 = 4 + 8 + 19 115 6 I 0 4 + 4 + 64 04 5 I 1 + 1 I0 d 04 J0 d 9 = = 6 8 4 + 19 916 778 8 J 0 + 6 + 4 4 64 + 04 147456 7 J 1 + I0 d 9 = = 6 + 8 4 + 19 + 916 778 8 I 0 6 + 4 4 + 64 + 04 147456 7 I 1 + J0 d 11 = 8 + 8 6 19 4 + 916 7780 E 77800 10 J 0 + + 8 4 6 + 64 4 04 + 147456 1 J0 d 14745600 9 J 1 14745600 I0 d 11 = 8 + 8 6 + 19 4 + 916 + 7780 77800 10 I 0 8 + 4 6 + 64 4 + 04 + 147456 1 14745600 9 I 1 + 14745600 1 J0 d 147456 1 I0 d 147456 I0 d 1

Descending recurrence formulas: n 1 J 0 d = 1 4n n 1 I 0 d = 1 4n n+1 J 1 n n J 0 n+1 I 1 n n I 0 + General formula: With n!! as defined on page 8 holds J0 d n+1 = ] n+1 J 0 d ] n+1 I 0 d { n 1 n 1 = 1n k k +!! k!! } n!!] 1 k+ J 0 1 k k!!] J0 d k+1 J 1 + = E k=0 k=0 { n 1 n 1 = 1n n n! 1 k k+1 k + 1! k! k+ J 0 1 k k k! } J0 d k+1 J 1 + E k=0 With obviously modifications one gets the the formula for the integral n 1 I 0 d k=0 14

114 Integrals of the type n Z 1 d In the following formulas J ν may be substituted by Y ν or H p ν, p = 1, J 1 d = J 0 I 1 d = I 0 K 1 d = K 0 J 1 d = J 1 J 0 ] I 1 d = I 0 I 1 ] K 1 d = K 0 + K 1 ] 4 J 1 d = 4 16 J 1 8 J 0 ] 4 I 1 d = + 8 I 0 4 + 16 I 1 ] 4 K 1 d = + 8 K 0 + 4 + 16 K 1 ] 6 J 1 d = 6 4 96 + 84 J 1 5 4 + 19 J 0 ] 6 I 1 d = 5 + 4 + 19 I 0 6 4 + 96 + 84 I 1 ] 6 K 1 d = 5 + 4 + 19 K 0 + 6 4 + 96 + 84 K 1 ] 8 J 1 d = = 8 6 88 4 + 4 608 18 4 J 1 7 48 5 + 1 15 9 16 J 0 ] 8 I 1 d = = 7 + 48 5 + 1 15 + 9 16 I 0 8 6 + 88 4 + 4 608 + 18 4 I 1 ] 8 K 1 d = = 7 + 48 5 + 1 15 + 9 16 K 0 + 8 6 + 88 4 + 4 608 + 18 4 K 1 ] 10 J 1 d = 10 8 640 6 + 040 4 68 640 + 1 474 560 J 1 9 80 7 + 840 5 9 160 + 77 80 J 0 ] 10 I 1 d = 9 + 80 7 + 840 5 + 9 160 + 77 80 I 0 10 8 + 640 6 + 040 4 + 68 640 + 1 474 560 I 1 ] 10 K 1 d = 9 + 80 7 + 840 5 + 9 160 + 77 80 K 0 + 15

+10 8 + 640 6 + 040 4 + 68 640 + 1 474 560 K 1 ] Let m J 1 d = Q m J 1 P m J 0 ] and m I 1 d = P mi 0 Q mi 1 ], m K 1 d = P mi 0 + Q mi 1 ], then holds P 1 = 11 10 9 + 9600 7 460800 5 + 1105900 8847600 Q 1 = 1 10 100 8 + 76800 6 764800 4 + 446800 17694700 P 1 = 11 + 10 9 + 9600 7 + 460800 5 + 1105900 + 8847600 Q 1 = 1 10 + 100 8 + 76800 6 + 764800 4 + 446800 + 17694700 *E* P 14 = 1 168 11 + 0160 9 161800 7 + 77414400 5 1857945600 + 1486564800 Q 14 = 14 1 016 10 + 01600 8 190400 6 + 464486400 4 74178400 + 97719600 P14 = 1 + 168 11 + 0160 9 + 161800 7 + 77414400 5 + 1857945600 + 1486564800 Q 14 = 14 1 + 016 10 + 01600 8 + 190400 6 + 464486400 4 + 74178400 + 97719600 Recurrence formulas: n+ J 1 d = n+ J 0 + n + n+1 J 1 4nn + 1 n J 1 d n+ I 1 d = n+ I 0 n + n+1 I 1 + 4nn + 1 n+ K 1 d = n+ K 0 n + n+1 K 1 + 4nn + 1 n I 1 d n K 1 d General formula: With n!! as defined on page 8 holds n 1 n k n!!] n!!] n 1 k J 1 d = 1 n k!!] = n 1 k=0 1 k k=0 n 1 k=0 n 1 n!! n!! n k n k!!] n k!!] J 0 = 1 k k+1 n! n 1! n 1 k n 1 k!] J 1 k=0 1 k k n! n 1!! n k J 0 n k! n 1 k! J 1 With obviously modifications one gets the the formulas for the integrals n I 1 d and n K 1 d 16

115 Integrals of the type n Z 1 d About the integrals see 11, page 1 J0 d and I0 d In the following formulas J 0 may be substituted by Y 0 and simultaneously J 1 by Y 1 J1 d = 1 J 1 + 1 J0 d I1 d = 1 I 1 + 1 I0 d J1 d 4 = 1 8 J 0 + 4 16 J 1 1 J0 d 16 I1 d 4 = 1 8 I 0 + 4 16 I 1 + 1 I0 d 16 J1 d 6 = = 8 19 4 J 0 + 4 + 4 64 84 5 J 1 + 1 J0 d 84 I1 d 6 = + 8 19 4 I 0 4 + 4 + 64 84 5 I 1 + 1 I0 d 84 J1 d 8 = = 4 + 8 19 916 6 J 0 + 6 4 4 + 64 04 184 7 J 1 1 J0 d 184 I1 d 8 = 4 + 8 + 19 916 6 I 0 6 + 4 4 + 64 + 04 184 7 I 1 + 1 I0 d 184 J1 d 10 = Recurrence formulas: = 6 8 4 + 19 916 7780 8 J 0 + 8 + 4 6 64 4 + 04 147456 1474560 9 J 1 + 1 J0 d + 1474560 I1 d 10 = = 6 + 8 4 + 19 + 916 7780 8 I 0 8 + 4 6 + 64 4 + 04 + 147456 1474560 9 I 1 + 1 I0 d + 1474560 E E J1 d J 0 n+ = 4nn + 1 n I1 d I 0 n+ = 4nn + 1 n J 1 n + n+1 1 4nn + 1 I 1 n + n+1 + 1 4nn + 1 J1 d n I1 d n 17

General formula: With n!! as defined on page 8 holds J1 d 1 n+1 n = n!! n!! { n n 1 k k +!! k!! } 1 k+ J 0 1 k k!!] J0 d k+1 J 1 + = k=0 k=0 1 n+1 = n 1 n! n 1! n 1 1 k k+1 k + 1! k! k+ J 0 1 k k k! ] J0 d k+1 J 1 + n k=0 With obviously modifications one gets the the formula for the integral n I 1 d k=0 18

116 Integrals of the type n+1 Z 1 d Φ, Φ Y, Ψ and Ψ K are the same as in 111, page 7 In the following formulas J ν may be substituted by Y ν and simultaneously Φ by Φ Y or H ν p, p = 1, and Φ p H J 1 d = Φ I 1 d = Ψ K 1 d = Ψ K J 1 d = J 1 J 0 Φ I 1 d = I 1 + I 0 Ψ K 1 d = K 1 K 0 + Ψ K 5 J 1 d = 5 4 45 J 1 5 15 J 0 + 45Φ 5 I 1 d = 5 4 + 45 I 1 + 5 + 15 I 0 45Ψ 5 K 1 d = 5 4 + 45 K 1 5 + 15 K 0 + 45Ψ K 7 J 1 d = 7 6 175 4 + 1 575 J 1 7 5 5 + 55 J 0 1 575Φ E 7 I 1 d = 7 6 + 175 4 + 1 575 I 1 + 7 + 5 5 + 55 I 0 1 575Ψ 7 K 1 d = 7 6 + 175 4 + 1 575 K 1 7 + 5 5 + 55 K 0 + 1 575Ψ K 9 J 1 d = = 9 8 441 6 + 11 05 4 99 5 J 1 9 6 7 + 05 5 075 J 0 + 99 5 Φ 9 I 1 d = = 9 8 + 441 6 + 11 05 4 + 99 5 I 1 + 9 + 6 7 + 05 5 + 075 I 0 99 5 Ψ 9 K 1 d = = 9 8 + 441 6 + 11 05 4 + 99 5 K 1 9 + 6 7 + 05 5 + 075 K 0 + 99 5 Ψ General formula: With n!! as defined on page 8 holds n 1 n+1 k n + 1!! n 1!! n k J 1 d = 1 n 1 k!!] J 1 n 1 k=0 k=0 k n + 1!! n 1!! n+1 k 1 J 0 + 1 n n + 1!! n 1!! Φ = n + 1 k!! n 1 k!! 19

n 1 k=0 n 1 = 1 k n +! n! n k!] n k k+1 n + 1! n! n k!] J 1 k=0 k n +! n! n + 1 k! n k! n+1 k 1 k J 0 + n + 1! n! n + k! n k! + 1 n n +! n! n+1 n + 1! n! Φ With obviously modifications one gets the the formulas for the integrals n+1 I 1 d and n+1 K 1 d Recurrence formulas: n+1 J 1 d = n+1 J 0 + n + 1 n J 1 n 1n + 1 n 1 J 1 d n+1 I 1 d = n+1 I 0 n + 1 n I 1 + n 1n + 1 n+1 K 1 d = n+1 K 0 n + 1 n K 1 + n 1n + 1 n 1 I 1 d n 1 K 1 d Descending: J1 d J 0 n+1 = 4n 1 n 1 J 1 n + 1 n 1 J1 d 4n 1 n 1 I1 d I 0 n+1 = 4n 1 n 1 I 1 n + 1 n + 1 I1 d 4n 1 n 1 K1 d K 0 n+1 = 4n 1 n 1 K 1 n + 1 n + 1 K1 d 4n 1 n 1 J1 d = J 0 J 1 + Φ I1 d = I 0 I 1 + Ψ K1 d = K 0 K 1 Ψ K J1 d = 1 ] 1 J 1 + 1 J 0 Φ I1 d = 1 ] + 1 I 1 + 1 I 0 + Ψ K1 d = 1 ] + 1 K 1 1 K 0 Ψ K J1 5 d = 1 4 + 45 J 0 4 ] + 9 4 J 1 + Φ I1 5 d = 1 4 45 I 0 4 + ] + 9 4 I 1 + Ψ K1 5 d = 1 4 45 K 0 4 + ] + 9 4 K 1 Ψ K J1 7 d = 1 6 4 + 9 5 1 575 6 J 1 6 + 4 ] + 45 5 J 0 Φ 0

I1 7 d = 1 1 575 K1 7 d = 1 1 575 6 + 4 + 9 + 5 6 + 4 + 9 + 5 = 1 8 + 6 4 + 45 1 575 99 5 = 1 8 6 4 45 1 575 99 5 = 1 8 6 4 45 1 575 99 5 J1 11 d = 6 I 1 + 6 4 45 5 6 K 1 6 4 45 5 J1 9 d = 7 J 0 8 6 + 9 4 5 + 11 05 8 I1 9 d = 7 I 0 8 + 6 + 9 4 + 5 + 11 05 8 K1 9 d = ] I 0 + Ψ ] K 0 Ψ k ] J 1 + Φ ] I 1 + Ψ 7 K 0 8 + 6 + 9 4 + 5 + 11 05 8 1 10 8 + 9 6 5 4 + 11 05 89 05 9 8 75 10 J 1 10 + 8 6 + 45 4 1 575 + 99 5 I1 11 d = 1 9 8 75 K1 11 d = 9 ] J 0 Φ 10 + 8 + 9 6 + 5 4 + 11 05 + 89 05 I 1 + 10 + 10 8 6 45 4 1 575 99 5 9 ] I 0 + Ψ 1 10 + 8 + 9 6 + 5 4 + 11 05 + 89 05 9 8 75 10 10 8 6 45 4 1 575 99 5 9 K 0 + Ψ K General formula: With n!! as defined on page 8 holds { J1 d 1 n n+1 = + n + 1!! n 1!! n 1 k=0 ] ] I 1 Ψ K K 1 1 k k + 1!! k 1!! k+1 J 0 } n 1 k k + 1!!] 1 1 J 1 + Φ = k=0 k+ { = n+1 n 1 n + 1! n! 1 k k +! k! n +! n! k+1 k + 1! k! k+1 J 0 k=0 } n 1 1 1 k k +!] k+ k + 1!] k+ J 1 + Φ k=0 With obviously modifications one gets the the formulas for the integrals n 1 I 1 d and n 1 K 1 d 1

117 Integrals of the type n Z ν d, ν > 1 : From the well-known recurrence relations one gets immadiately J ν+1 d = J ν + J ν 1 d and I ν+1 d = I ν I ν 1 d With this formulas follows J ν t dt = Λ 0 0 κ=1 n J κ 1, J ν+1 t dt = 1 J 0 0 κ=1 n J κ 0 I ν t dt = 1 n Λ 0+ n 1 n+κ I κ 1, κ=1 0 I ν+1 t dt = 1 n I 0 1]+ n 1 n+κ I κ The integrals Λ 0 and Λ 0 are defined on page 7 and discussed on page 1 and 15 Holds n n Y ν d = Y 0 + Φ Y Y κ 1, Y ν+1 d = Y 0 Y κ 1 H 1 ν H ν d = H1 0 + Φ1 d = H 0 + Φ κ=1 H n κ=1 H n κ=1 H 1 κ 1, H κ 1, H 1 ν+1 d = H1 H ν+1 d = H { K ν d = 1 n K 0 + π } K 0L 1 + K 1 L 0 ] + K ν+1 d = 1 n+1 K 0 + About the functions Φ Y, Φ 1 H, Φ H see page 7 Further on, holds 0 0 0 0 t J ν+1 t dt = ν + 1Λ 0 J 0 + ] ν 1 t J ν t dt = J 1 + J κ+1 κ=1 t I ν+1 t dt = 1 ν+1 ν + 1Λ 0 I 0 κ=1 κ=1 κ=1 0 n κ=1 0 n κ=1 H 1 κ 1 H κ 1 n 1 n+κ K κ 1, κ=1 n 1 n+κ+1 K κ κ=1 ] ν J κ κ=1 ν 1 4 κ=0 ν 1 + ν1 J 0 ] 4 κ=1 ν κj κ+1 ν κj κ ] ν ν 1 1 κ I κ 4 1 κ ν κi κ+1 ] ν 1 ν 1 t I ν t dt = 1 I ν+1 1 + 1 κ I κ+1 + ν1 I 0 ] 4 1 κ ν κi κ Some of the previous sums may cause numerical problems, if is located near 0 For instance, the sum 0 gives with = 0 t I 6 t dt = J 1 J + J 5 + 6 6J 0 + 8J 4J 4 0045 508 15 001 0000 9 40 714 + 0000 000 81 114 + 6 615 761 76 110 + 0090 676 901 88 0000 084 755 400 = 616 185 44 40 616 185 44 4 = 0000 000 000 179, κ=1 κ=0 κ=1

which means the loss of 10 decimal digits For that reason the value of such integrals should be computed by the power series or other formulas See also the following remark In the following the integrals are epressed by Z 0 and Z 1 Integrals with n 4 are written eplicitely: at first n = 0, 1,,, 4, after them n = 1, In the other cases the functions P ν n, Q n ν and the coefficients R n ν, S ν n describe the integral n J ν d = P ν n J 0 + Q n ν J 1 + R n ν Λ 0 + S ν n J0 d Furthermore, let n I ν d = P n, ν I 0 + Q n, ν I 1 + R n, ν Λ 0 + S ν n, I0 d Concerning 1 Z 0 d see 11, page 1 Simple recurrence formula: n J ν+1 d = ν n 1 J ν d n J ν 1 d n I ν+1 d = ν n 1 J ν d + n J ν 1 d The integrals of n Z 0 and n Z 1 to start this recurrences are already described Remark: Let F ν m denote the antiderivative of m Z ν as given in the following tables They do not eist in the point = 0 in the case ν + m < 0 However, even if ν + m 0 the value of F ν m 0 sometimes turns out to be a limit of the type For instance, holds J d = J 0 J 1 = F with lim F = 1 0 8 With L ν,m = lim 0 F ν m for the Bessel functions J ν and L ν,m for the modified Bessel functions I ν one has the following limits in the tables of integrals The values L ν,m = 0 are omitted: L, 1 = 1/, L, 1 = 1/ L,0 = 1, L, = 1/8; L,0 = 1, L, = 1/8 L 4,1 = 4, L 4, 1 = 1/4, L 4, = 1/48; L 4,1 = 4, L 4, 1 = 1/4, L 4, = 1/48 L 5, = 4, L 5,0 = 1, L 5, = 1/4, L 5, 4 = 1/84; L 5, = 4, L 5,0 = 1, L 5, = 1/4, L 5, 4 = 1/84 L 6, = 19, L 6,1 = 6, L 6, 1 = 1/6, L 6, = 1/19, L 6, 5 = 1/840; L 6, = 19, L 6,1 = 6, L 6, 1 = 1/6, L 6, = 1/19, L 6, 5 = 1/840 L 7,4 = 190, L 7, = 48, L 7,0 = 1, L 7, = 1/48, L 7, 4 = 1/190, L 7, 6 = 1/46080; L 7,4 = 190, L 7, = 48, L 7,0 = 1, L 7, = 1/48, L 7, 4 = 1/190, L 7, 6 = 1/46080 L 8,5 = 040, L 8, = 480, L 8,1 = 8, L 8, 1 = 1/8, L 8, = 1/480, L 8, 5 = 1/040; L 8,5 = 040, L 8, = 480, L 8,1 = 8, L 8, 1 = 1/8, L 8, = 1/480, L 8, 5 = 1/040 L 9,6 = 560, L 9,4 = 5760, L 9, = 80, L 9,0 = 1, L 9, = 1/80, L 9, 4 = 1/5760, L 9, 6 = 1/560; L 9,6 = 560, L 9,4 = 5760, L 9, = 80, L 9,0 = 1, L 9, = 1/80, L 9, 4 = 1/5760, L 9, 6 = 1/560 L 10,7 = 5160960, L 10,5 = 80640, L 10, = 960, L 10,1 = 10, L 10, 1 = 1/10, L 10, = 1/960, L 10, 5 = 1/80640; L 10,7 = 5160960, L 10,5 = 80640, L 10, = 960, L 10,1 = 10, L 10, 1 = 1/10, L 10, = 1/960, L 10, 5 = 1/80640

In the described cases of limits of the type the numerical computation of F ν m causes difficulties, if 0 < << 1 Then it is preferable to use the power series, which has a fast convergengence for such values of With m + ν 0 holds 0 t m J ν t dt = m+ν+1 ν 1 k k k! ν + k! 4 k m + ν + 1 + k k=0 and From this one has For instance, 0 t m I ν t dt = m+ν+1 ν F m ν = L ν,m + 0 000 k=0 k k! ν + k! 4 k m + ν + 1 + k t m J ν t dt and F,m ν = L ν,m + J d = J 0 J 1 000 = 0 t m I ν t dt = 00889466165577080 0051154784098666 4999975000006500 499998750000084 = = 00540101400650990086 0149999584 = 007098981869 It was a loss of seven decimal digits at = 000 This value may be found without problems by the power series: F 000 = = 1 8 +5 10 7 0085 104166666666666667 10 8 +694444444444444445 10 16 ] = = 1 8 + 416666614586806 10 8 = 014999958854 In the previous value, signed by *, the last digit should be instead of 4 and the result had to finish with 8 The integrals with I ν may be computed in the same way This method can be used even if ν + m < 0 For instance, 000 000 J 4 1 J 4 J 4 7 d = 000 7 d + 1 7 d and the second integral is given in the following tables For the first one holds with the power series of the function J 4 1 J 4 000 7 d = 1 1 1 = 000 7 84 4 1 1 1 1 1 7680 6 + 68640 8 0965760 10 + 9661780 1 71451110400 14 + d = 1 1 = 84 1 7680 + 1 68640 1 1 1 0965760 + 9661780 5 71451110400 7 + d = = 1 768 ln 7680 + 1 7780 1 186040 4 + 1 78170680 6 1 57076088800 8 + = 0001008 00 + 156 10 6 8074 10 9 + 40491 10 11 01750 10 1 + 5508+0000809197681589549+54547 10 1 1917 10 19 +06911 10 7 = = 00010075080871678 550041956509 = 5518740457006 Here are no differences of nearly the same values 1 000 = 4

Z : J d = J 1 + Λ 0 I d = I 1 Λ 0 J d = J 0 J 1 I d = I 0 + I 1 J d = J 0 J 1 + Λ 0 I d = I 0 + I 1 + Λ 0 J d = 4 J 0 8 J 1 I d = 4 I 0 + + 8 I 1 4 J d = 5 J 0 15 J 1 15Λ 0 4 I d = 5 + I 0 + + 15 I 1 + 15Λ 0 J d = J 1 I d = I 1 J d = 1 J 0 + J 1 + 1 Λ 0 I d = 1 I 0 I 1 + 1 Λ 0 P 5 = 6 8, Q 5 = 4 4 + 96, R 5 = 0, S 5 = 0 P 5, = 6 + 8, Q 5, = 5 + 4 + 96, R 5, = 0, S 5, = 0 P 6 = 7 4 15 + 45, Q 6 = 4 5 + 15, R 6 = 15, S 6 = 0 P 6, = 7 5 + 15 + 45, Q 6, = 6 + 5 4 + 15, R 6, = 15, S 6, = 0 P 7 = 8 4 4 + 19, Q 7 = 6 48 4 + 768 07, R 7 = 0, S 7 = 0 P 7, = 8 4 +19 +156, Q 7, = 7 +48 5 +768 +07, R 7, = 0, S 7, = 0 P 8 = 9 6 5 4 + 55 1575, Q 8 = 6 6 4 + 1575 14175, R 8 = 14175, S 8 = 0 P 8, = 9 7 + 15 5 + 475 + 14175, Q 8, = 8 + 6 6 + 1575 4 + 14175, R 8, = 14175, S 8, = 0 P 9 = 10 6 48 4 + 115 916, Q 9 = 8 80 6 + 880 4 46080 + 1840, R 9 = 0, S 9 = 0 5

P 9, = 10 8 +480 6 +1150 4 +9160, Q 9, = 9 +80 7 +880 5 +46080 +1840, R 9, = 0, S 9, = 0 P 10 = 11 8 6 6 + 05 4 075 + 995, Q 10 = 8 99 6 + 4851 4 1175 + 1091475, R 10 = 1091475, S 10 = 0 P 10, = 11 9 + 69 7 + 455 5 + 685 + 1091475, Q 10, = 10 + 99 8 + 4851 6 + 1175 4 + 1091475, R 10, = 1091475, S 10, = 0 P = 1 4, Q = + 4 8, R = 0, S = 1 8 P, = 1 4, Q, = 4 8, R, = 0, S, = 1 8 P 4 = 15, Q 4 = 4 6 15 4, R 4 = 1 15, S 4 = 0 P 4, = + 15, Q 4, = 4 + 6 15 4, R 4, = 1 15, S 4, = 0 P 5 = 8 48 4, Q 5 = 4 4 96 5, R 5 = 0, S 5 = 1 96 P 5, = + 8 48 4, Q 5, = 4 + 4 96 5, R 5, = 0, S 5, = 1 96 P 6 = 4 + 45 15 5, Q 6 = 6 4 + 9 + 90 15 6, R 6 = 1 15, S 6 = 0 P 6, = 4 + + 45 15 5, Q 6, = 6 + 4 + 9 90 15 6, R 6, = 1 15, S 6, = 0 Z : J d = J 0 4 J 1 I d = I 0 4 I 1 J d = J 0 8J 1 + Λ 0 I d = I 0 8I 1 + Λ 0 J d = 8J 0 6J 1 I d = + 8I 0 6I 1 J d = 15 J 0 7 J 1 + 15Λ 0 I d = + 15 I 0 7 I 1 15Λ 0 4 J d = 4 J 0 8 6 J 1 4 I d = + 4 I 0 8 + 6 I 1 J d = 4 J 0 + 8 J 1 + 1 Λ 0 6

I d = 4 I 0 + 8 I 1 1 Λ 0 J d = J 0 J 1 I d = I 0 I 1 P 5 = 5 5 + 105, Q 5 = 9 4 105, R 5 = 105, S 5 = 0 P 5, = 5 + 5 + 105, Q 5, = 9 4 + 105, R 5, = 105, S 5, = 0 P 6 = 6 48 4 + 84, Q 6 = 10 5 19 + 768, R 6 = 0, S 6 = 0 P 6, = 6 + 48 4 + 84, Q 6, = 10 5 + 19 + 768, R 6, = 0, S 6, = 0 P 7 = 7 6 5 +945 85, Q 7 = 11 6 15 4 +85, R 7 = 85, S 7 = 0 P 7, = 7 +6 5 +945 +85, Q 7, = 11 6 +15 4 +85, R 7, = 85, S 7, = 0 P 8 = 8 80 6 + 190 4 1560, Q 8 = 1 7 480 5 + 7680 070, R 8 = 0, S 8 = 0 P 8, = 8 + 80 6 + 190 4 + 1560, Q 8, = 1 7 + 480 5 + 7680 + 070, R 8, = 0, S 8, = 0 P 9 = 9 99 7 + 465 5 51975 + 15595, Q 9 = 1 8 69 6 + 175 4 15595, R 9 = 15595, S 9 = 0 P 9, = 9 + 99 7 + 465 5 + 51975 + 15595, Q 9, = 1 8 + 69 6 + 175 4 + 15595, R 9, = 15595, S 9, = 0 P 10 = 10 10 8 + 5760 6 1840 4 + 110590, Q 10 = 14 9 960 7 + 4560 5 55960 + 11840, R 10 = 0, S 10 = 0 P 10, = 10 + 10 8 + 5760 6 + 1840 4 + 110590, Q 10, = 14 9 + 960 7 + 4560 5 + 55960 + 11840, R 10, = 0, S 10, = 0 P = + 1 15, Q = 4 + 4 15 4, R = 1 15, S = 0 P, = 1 15, Q, = 4 + + 4 15 4, R, = 1 15, S, = 0 P 4 = + 16 4 4, Q 4 = 4 4 + 64 48 5, R 4 = 0, S 4 = 1 48 P 4, = 16 4 4, Q 4, = 4 + 4 + 64 48 5, R 4, = 0, S 4, = 1 48 P 5 = 4 60 105 5, Q 5 = 6 4 + 9 10 105 6, R 5 = 1 105, S 5 = 0 P 5, = 4 + 60 105 5, Q 5, = 6 + 4 + 9 + 10 105 6, R 5, = 1 105, S 5, = 0 P 6 = 4 8 19 84 6, Q 6 = 6 4 4 + 64 768 768 7, R 6 = 0, S 6 = 1 768 P 6, = 4 + 8 19 84 6, Q 6, = 6 + 4 4 + 64 + 768 768 7, R 6, = 0, S 6, = 1 768 7

Z 4 : J 4 d = 8J 0 16J 1 + Λ 0 I 4 d = 8I 0 + 16I 1 + Λ 0 J 4 d = 8J 0 + 4 J 1 I 4 d = 8I 0 + + 4 I 1 J 4 d = 9J 0 + 48J 1 + 15Λ 0 I 4 d = 9I 0 + + 48I 1 15Λ 0 J 4 d = 10 48J 0 + 44 J 1 I 4 d = 10 + 48I 0 + + 44 I 1 4 J 4 d = 11 105 J 0 + 57 J 1 + 105Λ 0 4 I 4 d = 11 + 105 I 0 + + 57 I 1 + 105Λ 0 J4 d = 6J 0 + 1 J 1 I4 d = 6J 0 + + 1 J 1 J4 d = + 7 15 J 0 4 16 + 144 15 4 J 1 + 1 15 Λ 0 I4 d = 7 15 I 0 + 4 + 16 + 144 15 4 I 1 1 15 Λ 0 P 5 4 = 1 4 19, Q 5 4 = 5 7 + 84, R 5 4 = 0, S 5 4 = 0 P 5, 4 = 1 4 + 19, Q 5, 4 = 5 + 7 + 84, R 5, 4 = 0, S 5, 4 = 0 P 6 4 = 1 5 15 + 945, Q 6 4 = 6 89 4 + 945, R 6 4 = 945, S 6 4 = 0 P 6, 4 = 1 5 + 15 + 945, Q 6, 4 = 6 + 89 4 + 945, R 6, 4 = 945, S 6, 4 = 0 P 7 4 = 14 6 480 4 + 840, Q 7 4 = 7 108 5 + 190 7680, R 7 4 = 0, S 7 4 = 0 P 7, 4 = 14 6 + 480 4 + 840, Q 7, 4 = 7 + 108 5 + 190 + 7680, R 7, 4 = 0, S 7, 4 = 0 P 8 4 = 15 7 69 5 + 1095 1185, Q 8 4 = 8 19 6 + 465 4 1185, R 8 4 = 1185, S 8 4 = 0 8

P 8, 4 = 15 7 + 69 5 + 1095 + 1185, Q 8, 4 = 8 + 19 6 + 465 4 + 1185, R 8, 4 = 1185, S 8, 4 = 0 P 9 4 = 16 8 960 6 + 040 4 1840, Q 9 4 = 9 15 7 + 5760 5 9160 + 68640, R 9 4 = 0, S 9 4 = 0 P 9, 4 = 16 8 + 960 6 + 040 4 + 1840, Q 9, 4 = 9 + 15 7 + 5760 5 + 9160 + 68640, R 9, 4 = 0, S 9, 4 = 0 P 10 4 = 17 9 187 7 + 45045 5 675675 + 0705, Q 10 4 = 10 177 8 + 9009 6 55 4 + 0705, R 10 4 = 0705, S 10 4 = 0 P 10, 4 = 17 9 + 187 7 + 45045 5 + 675675 + 0705, Q 10, 4 = 10 + 177 8 + 9009 6 + 55 4 + 0705, R 10, 4 = 0705, S 10, 4 = 0 P 4 = 4 4, Q 4 = 8 5, R 4 = 0, S 4 = 0 P, 4 = 4 4, Q, 4 = + 8 5, R, 4 = 0, S, 4 = 0 P 4 4 = 4 + 60 105 5, Q 4 4 = 6 4 96 + 70 105 6, R 4 4 = 1 105, S 4 4 = 0 P 4, 4 = 4 + + 60 105 5, Q 4, 4 = 6 + 4 96 70 105 6, R 4, 4 = 1 105, S 4, 4 = 0 P 5 4 = 4 8 + 576 19 6, Q 5 4 = 6 4 4 0 + 04 84 7, R 5 4 = 0, S 5 4 = 1 84 P 5, 4 = 4 + 8 + 576 19 6, Q 5, 4 = 6 + 4 4 0 04 84 7, R 5, 4 = 0, S 5, 4 = 1 84 P 6 4 = 6 4 + 45 50 945 7, Q 6 4 = 8 6 + 9 4 + 70 5040 945 8, R 6 4 = 1 945, S 6 4 = 0 P 6, 4 = 6 + 4 + 45 + 50 945 7, Q 6, 4 = 8 + 6 + 9 4 70 5040 945 8, R 6, 4 = 1 945, S 6, 4 = 0 Z 5 : J 5 d = 48 J 0 + 1 96 J 1 9

I 5 d = + 48 I 0 1 + 96 I 1 J 5 d = 64 J 0 + 8 18 J 1 + 5Λ 0 I 5 d = + 64 I 0 8 + 18 I 1 5Λ 0 J 5 d = 7J 0 + 14 19 J 1 I 5 d = + 7I 0 14 + 19 I 1 J 5 d = 87 J 0 + 15 84J 1 + 105Λ 0 I 5 d = + 87 I 0 15 + 84I 1 + 105Λ 0 4 J 5 d = 4 104 + 84J 0 + 16 400 J 1 4 I 5 d = 4 + 104 + 84I 0 16 + 400 I 1 J5 d = 4 19 5 J 0 4 56 + 84 5 4 J 1 + 1 5 Λ 0 I5 d = 4 + 19 5 I 0 4 + 56 + 84 5 4 I 1 + 1 5 Λ 0 J5 d = 4 J 0 + 10 64 5 J 1 I5 d = + 4 I 0 10 + 64 5 I 1 P 5 5 = 5 1 + 945, Q 5 5 = 17 4 561, R 5 5 = 945, S 5 5 = 0 P 5, 5 = 5 + 1 + 945, Q 5, 5 = 17 4 + 561, R 5, 5 = 945, S 5, 5 = 0 P 6 5 = 6 144 4 + 190, Q 6 5 = 18 5 768 + 840, R 6 5 = 0, S 6 5 = 0 P 6, 5 = 6 + 144 4 + 190, Q 6, 5 = 18 5 + 768 + 840, R 6, 5 = 0, S 6, 5 = 0 P 7 5 = 7 167 5 + 465 1095, Q 7 5 = 19 6 107 4 + 1095, R 7 5 = 1095, S 7 5 = 0 P 7, 5 = 7 + 167 5 + 465 + 1095, Q 7, 5 = 19 6 + 107 4 + 1095, R 7, 5 = 1095, S 7, 5 = 0 P 8 5 = 8 19 6 + 5760 4 46080, Q 8 5 = 0 7 144 5 + 040 9160, R 8 5 = 0, S 8 5 = 0 P 8, 5 = 8 + 19 6 + 5760 4 + 46080, Q 8, 5 = 0 7 + 144 5 + 040 + 9160, R 8, 5 = 0, S 8, 5 = 0 P 9 5 = 9 19 7 + 9009 5 1515 + 405405, Q 9 5 = 1 8 175 6 + 45045 4 405405, R 9 5 = 405405, S 9 5 = 0 0

P 9, 5 = 9 + 19 7 + 9009 5 + 1515 + 405405, Q 9, 5 = 1 8 + 175 6 + 45045 4 + 405405, R 9, 5 = 405405, S 9, 5 = 0 P 10 5 = 10 48 8 + 1440 6 560 4 + 580480, Q 10 5 = 9 176 7 + 80640 5 19040 + 5160960, R 10 5 = 0, S 10 5 = 0 P 10, 5 = 10 + 48 8 + 1440 6 + 560 4 + 580480, Q 10, 5 = 9 + 176 7 + 80640 5 + 19040 + 5160960, R 10, 5 = 0, S 10, 5 = 0 P 5 = 4 108 + 880 105 5, Q 5 = 6 4 96 + 5760 105 6, R 5 = 1 105, S 5 = 0 P, 5 = 4 + 108 + 880 105 5, Q, 5 = 6 + 4 96 5760 105 6, R, 5 = 1 105, S, 5 = 0 P 4 5 = 4 6, Q 4 5 = 8 48 7, R 4 5 = 0, S 4 5 = 0 P 4, 5 = + 4 6, Q 4, 5 = 8 + 48 7, R 4, 5 = 0, S 4, 5 = 0 P 5 5 = 6 4 900 + 0160 945 7, Q 5 5 = 8 6 + 9 4 6840 + 400 945 8, R 5 5 = 1 945, S 5 5 = 0 P 5, 5 = 6 + 4 900 0160 945 7, Q 5, 5 = 8 + 6 + 9 4 + 6840 + 400 945 8, R 5, 5 = 1 945, S 5, 5 = 0 P 6 5 = 6 8 4 178 + 6864 190 8, Q 6 5 = 8 4 6 + 64 4 544 + 147456 840 9, R 6 5 = 0, S 6 5 = 1 840 P 6, 5 = 6 + 8 4 178 6864 190 8, Q 6, 5 = 8 + 4 6 + 64 4 + 544 + 147456 840 9, R 6, 5 = 0, S 6, 5 = 1 840 Z 6 : J 6 d = 16 84 J 0 4 18 + 768 4 J 1 + Λ 0 I 6 d = 16 + 84 I 0 + 4 + 18 + 768 4 I 1 Λ 0 J 6 d = 18 480 J 0 4 144 + 960 J 1 I 6 d = 18 + 480 I 0 + 4 + 144 + 960 I 1 J 6 d = 19 640 J 0 4 18 + 180 J 1 + 5Λ 0 I 6 d = 19 + 640 I 0 + 4 + 18 + 180 I 1 + 5Λ 0 J 6 d = 0 768J 0 4 184 + 190 J 1 1

I 6 d = 0 + 768I 0 + 4 + 184 + 190 I 1 4 J 6 d = 1 975 J 0 4 07 + 840J 1 + 945Λ 0 4 I 6 d = 1 + 975 I 0 + 4 + 07 + 840I 1 945Λ 0 J6 d = 16 0 4 J 0 4 11 + 640 5 J 1 I6 d = 16 + 0 4 I 0 + 4 + 11 + 640 5 I 1 J6 d = 4 58 + 9600 5 5 J 0 6 + 4 4 456 + 1900 5 6 J 1 + 1 5 Λ 0 I6 d = 4 + 58 + 9600 5 5 I 0 6 4 4 456 1900 5 6 I 1 + 1 5 Λ 0 P 5 6 = 4 1 + 840, Q 5 6 = 5 + 484, R 5 6 = 0, S 5 6 = 0 P 5, 6 = 4 + 1 + 840, Q 5, 6 = 4 + 1 + 840, R 5, 6 = 0, S 5, 6 = 0 P 6 6 = 5 1545 + 1095, Q 6 6 = 6 59 4 + 6555, R 6 6 = 1095, S 6 6 = 0 P 6, 6 = 5 + 1545 + 1095, Q 6, 6 = 6 + 59 4 + 6555, R 6, 6 = 1095, S 6, 6 = 0 P 7 6 = 4 6 190 4 + 040, Q 7 6 = 7 88 5 + 9600 46080, R 7 6 = 0, S 7 6 = 0 P 7, 6 = 4 6 + 190 4 + 040, Q 7, 6 = 7 + 88 5 + 9600 + 46080, R 7, 6 = 0, S 7, 6 = 0 P 8 6 = 5 7 6 5 + 45045 1515, Q 8 6 = 8 19 6 + 175 4 1515, R 8 6 = 1515, S 8 6 = 0 P 8, 6 = 5 7 + 6 5 + 45045 + 1515, Q 8, 6 = 8 + 19 6 + 175 4 + 1515, R 8, 6 = 1515, S 8, 6 = 0 P 9 6 = 6 8 880 6 + 80640 4 64510, Q 9 6 = 9 5 7 + 1900 5 560 + 19040, R 9 6 = 0, S 9 6 = 0 P 9, 6 = 6 8 + 880 6 + 80640 4 + 64510, Q 9, 6 = 9 + 5 7 + 1900 5 + 560 + 19040, R 9, 6 = 0, S 9, 6 = 0 P 10 6 = 7 9 477 7 + 1515 5 0705 + 6081075, Q 10 6 = 10 87 8 + 659 6 675675 4 + 6081075, R 10 6 = 6081075, S 10 6 = 0 P 10, 6 = 7 9 + 477 7 + 1515 5 + 0705 + 6081075, Q 10, 6 = 10 + 87 8 + 659 6 + 675675 4 + 6081075, R 10, 6 = 6081075, S 10, 6 = 0

P 6 = 14 40 6, Q 6 = 4 88 + 480 7, R 6 = 0, S 6 = 0 P, 6 = 14 + 40 6, Q, 6 = 4 + 88 + 480 7, R, 6 = 0, S, 6 = 0 P 4 6 = 6 4 140 + 01600 945 7, Q 4 6 = 8 6 + 954 4 74880 + 4000 945 8, R 4 6 = 1 945, S 4 6 = 0 P 4, 6 = 6 + 4 140 01600 945 7, Q 4, 6 = 8 + 6 + 954 4 + 74880 + 4000 945 8, R 4, 6 = 1 945, S 4, 6 = 0 P 5 6 = 1 19 8, Q 5 6 = 4 7 + 84 9, R 5 6 = 0, S 5 6 = 0 P 5, 6 = 1 + 19 8, Q 5, 6 = 4 + 7 + 84 9, R 5, 6 = 0, S 5, 6 = 0 P 6 6 = 8 6 + 45 4 11590 + 1814400 1095 9, Q 6 6 = 10 8 + 9 6 + 10170 4 685440 + 68800 1095 10, R 6 6 = 1 1095, S 6 6 = 0 P 6, 6 = 8 + 6 + 45 4 + 11590 + 1814400 1095 9, Q 6, 6 = 10 + 8 + 9 6 10170 4 685440 68800 1095 10, R 6, 6 = 1 1095, S 6, 6 = 0 Z 7 : J 7 d = 4 40 + 840 4 J 0 4 4 1440 + 7680 5 J 1 I 7 d = 4 + 40 + 840 4 I 0 4 4 + 1440 + 7680 5 I 1 J 7 d = 4 56 + 4608 J 0 4 1664 + 916 4 J 1 + 7Λ 0 I 7 d = 4 + 56 + 4608 I 0 4 + 1664 + 916 4 I 1 + 7Λ 0 J 7 d = 4 88 + 5760 J 0 6 4 190 + 1150 J 1 I 7 d = 4 + 88 + 5760 I 0 6 4 + 190 + 1150 I 1 J 7 d = 4 15 + 7680 J 0 7 4 190 + 1560 J 1 + 15Λ 0 I 7 d = 4 + 15 + 7680 I 0 7 4 + 190 + 1560 I 1 15Λ 0 4 J 7 d = 4 44 + 9600J 0 8 4 608 + 040 J 1

4 I 7 d = 4 + 44 + 9600I 0 8 4 + 608 + 040 I 1 J7 d = 8 4 156 + 040 7 5 J 0 6 + 160 4 88 + 46080 7 6 J 1 + 1 7 Λ 0 I7 d = 8 4 + 156 + 040 7 5 I 0 + 6 160 4 88 46080 7 6 I 1 1 7 Λ 0 J7 d = 4 00 + 880 6 J 0 4 110 + 5760 7 J 1 I7 d = 4 + 00 + 880 6 I 0 4 + 110 + 5760 7 I 1 P 5 7 = 5 75 + 1645, Q 5 7 = 9 4 045 + 46080, R 5 7 = 1095, S 5 7 = 0 P 5, 7 = 5 + 75 + 1645, Q 5, 7 = 9 4 + 045 + 46080, R 5, 7 = 1095, S 5, 7 = 0 P 6 7 = 6 408 4 + 16704 46080, Q 6 7 = 0 5 55 + 56448, R 6 7 = 0, S 6 7 = 0 P 6, 7 = 6 + 408 4 + 16704 + 46080, Q 6, 7 = 0 5 + 55 + 56448, R 6, 7 = 0, S 6, 7 = 0 P 7 7 = 7 44 5 + 005 1515, Q 7 7 = 1 6 415 4 + 89055, R 7 7 = 1515, S 7 7 = 0 P 7, 7 = 7 + 44 5 + 005 + 1515, Q 7, 7 = 1 6 + 415 4 + 89055, R 7, 7 = 1515, S 7, 7 = 0 P 8 7 = 8 480 6 + 8800 4 560, Q 8 7 = 7 4800 5 + 1840 64510, R 8 7 = 0, S 8 7 = 0 P 8, 7 = 8 + 480 6 + 8800 4 + 560, Q 8, 7 = 7 + 4800 5 + 1840 + 64510, R 8, 7 = 0, S 8, 7 = 0 P 9 7 = 9 519 7 + 765 5 675675 + 0705, Q 9 7 = 8 555 6 + 09865 4 0705, R 9 7 = 0705, S 9 7 = 0 P 9, 7 = 9 + 519 7 + 765 5 + 675675 + 0705, Q 9, 7 = 8 + 555 6 + 09865 4 + 0705, R 9, 7 = 0705, S 9, 7 = 0 P 10 7 = 10 560 8 + 48000 6 19040 4 + 10190, Q 10 7 = 4 9 6400 7 + 11040 5 5160960 + 064840, R 10 7 = 0, S 10 7 = 0 P 10, 7 = 10 + 560 8 + 48000 6 + 19040 4 + 10190, Q 10, 7 = 4 9 + 6400 7 + 11040 5 + 5160960 + 064840, R 10, 7 = 0, S 10, 7 = 0 P 7 = 6 + 1 4 57600 + 806400 15 7, Q 7 = 8 6 + 664 4 16800 + 161800 15 8, R 7 = 1 15, S 7 = 0 4

P, 7 = 6 1 4 57600 806400 15 7, Q, 7 = 8 + 6 + 664 4 + 16800 + 161800 15 8, R, 7 = 1 15, S, 7 = 0 P 4 7 = 4 168 + 04 8, Q 4 7 = 0 4 91 + 4608 9, R 4 7 = 0, S 4 7 = 0 P 4, 7 = 4 + 168 + 04 8, Q 4, 7 = 0 4 + 91 + 4608 9, R 4, 7 = 0, S 4, 7 = 0 P 5 7 = 8 6 + 10440 4 161800 + 177800 1095 9, Q 5 7 = 10 8 + 9 6 + 19780 4 8668800 + 4545600 1095 10, R 5 7 = 1 1095, S 5 7 = 0 P 5, 7 = 8 + 6 + 10440 4 + 161800 + 177800 1095 9, Q 5, 7 = 10 + 8 + 9 6 19780 4 8668800 4545600 1095 10, R 5, 7 = 1 1095, S 5, 7 = 0 P 6 7 = 4 144 + 190 10, Q 6 7 = 18 4 768 + 840 11, R 6 7 = 0, S 6 7 = 0 P 6, 7 = 4 + 144 + 190 10, Q 6, 7 = 18 4 + 768 + 840 11, R 6, 7 = 0, S 6, 7 = 0 Z 8 : J 8 d = 4 456 + 46080 5 J 0 448 4 184 + 9160 6 J 1 + Λ 0 I 8 d = 4 + 456 + 46080 5 I 0 + 448 4 + 184 + 9160 6 I 1 + Λ 0 J 8 d = 4 840 + 5760 4 J 0 + 6 480 4 + 110 10750 5 J 1 I 8 d = 4 + 840 + 5760 4 I 0 + 6 + 480 4 + 110 + 10750 5 I 1 J 8 d = 4 44 + 6451 J 0 + 6 576 4 + 4576 1904 4 J 1 + 6Λ 0 I 8 d = 4 + 44 + 6451 I 0 + 6 + 576 4 + 4576 + 1904 4 I 1 6Λ 0 J 8 d = 4 4 4800 + 80640 J 0 + 6 548 4 + 8800 16180 J 1 I 8 d = 4 4 + 4800 + 80640 I 0 + 6 + 548 4 + 8800 + 16180 I 1 4 J 8 d = 5 4 585 + 10750 J 0 + 6 585 4 + 070 15040 J 1 + 465Λ 0 4 I 8 d = 5 4 + 585 + 10750 I 0 + 6 + 585 4 + 070 + 15040 I 1 + 465Λ 0 J8 d = 0 4 10 + 400 6 J 0 + 6 40 4 + 160 80640 7 J 1 I8 d = 0 4 + 10 + 400 6 I 0 + 6 + 40 4 + 160 + 80640 7 I 1 J8 d = 6 + 184 4 178560 + 5790 6 7 J 0 5

8 64 6 + 4768 4 91600 + 4515840 6 8 J 1 + 1 6 Λ 0 I8 d = 6 184 4 178560 5790 6 7 I 0 + + 8 + 64 6 + 4768 4 + 91600 + 4515840 6 8 I 1 1 6 Λ 0 P 5 8 = 6 4 6048 + 1840, Q 5 8 = 6 64 4 + 40896 560, R 5 8 = 0, S 5 8 = 0 P 5, 8 = 6 4 + 6048 + 1840, Q 5, 8 = 6 + 64 4 + 40896 + 560, R 5, 8 = 0, S 5, 8 = 0 P 6 8 = 7 5 6795 + 18745, Q 6 8 = 6 665 4 + 49185 64510, R 6 8 = 1515, S 6 8 = 0 P 6, 8 = 7 5 + 6795 + 18745, Q 6, 8 = 6 + 665 4 + 49185 + 64510, R 6, 8 = 1515, S 6, 8 = 0 P 7 8 = 8 6 76 4 + 56896 64510, Q 7 8 = 7 708 5 + 598 865, R 7 8 = 0, S 7 8 = 0 P 7, 8 = 8 6 + 76 4 + 56896 + 64510, Q 7, 8 = 7 + 708 5 + 598 + 865, R 7, 8 = 0, S 7, 8 = 0 P 8 8 = 9 7 8565 5 + 5115 0705, Q 8 8 = 8 75 6 + 7165 4 181905, R 8 8 = 0705, S 8 8 = 0 P 8, 8 = 9 7 +8565 5 +5115 +0705, Q 8, 8 = 8 +75 6 +7165 4 +181905, R 8, 8 = 0705, S 8, 8 = 0 P 9 8 = 40 8 9600 6 + 48840 4 5160960, Q 9 8 = 9 800 7 + 86400 5 5790 + 10190, R 9 8 = 0, S 9 8 = 0 P 9, 8 = 40 8 + 9600 6 + 48840 4 + 5160960, Q 9, 8 = 9 + 800 7 + 86400 5 + 5790 + 10190, R 9, 8 = 0, S 9, 8 = 0 P 10 8 = 41 9 1074 7 + 65845 5 11486475 + 445945, Q 10 8 = 10 849 8 + 104001 6 61785 4 + 445945, R 10 8 = 445945, S 10 8 = 0 P 10, 8 = 41 9 + 1074 7 + 65845 5 + 11486475 + 445945, Q 10, 8 = 10 + 849 8 + 104001 6 + 61785 4 + 445945, R 10, 8 = 445945, S 10, 8 = 0 P 8 = 8 4 59 + 56 8, Q 8 = 6 68 4 + 148 6451 9, R 8 = 0, S 8 = 0 P, 8 = 8 4 + 59 + 56 8, Q, 8 = 6 + 68 4 + 148 + 6451 9, R, 8 = 0, S, 8 = 0 P 4 8 = 8 6 + 9600 4 865600 + 101606400 465 9, 6

Q 4 8 = 10 8 456 6 + 119500 4 419800 + 01800 465 10, R 4 8 = 1 465, S 4 8 = 0 P 4, 8 = 8 + 6 + 9600 4 + 865600 + 101606400 465 9, Q 4, 8 = 10 + 8 456 6 119500 4 419800 01800 465 10, R 4, 8 = 1 465, S 4, 8 = 0 P 5 8 = 6 4 08 + 6880 10, Q 5 8 = 6 4 4 + 1116 5760 11, R 5 8 = 0, S 5 8 = 0 P 5, 8 = 6 4 + 08 + 6880 10, Q 5, 8 = 6 + 4 4 + 1116 + 5760 11, R 5, 8 = 0, S 5, 8 = 0 P 6 8 = 10 8 + 45 6 + 76800 4 776000 + 501100 1515 11, Q 6 8 = 1 10 + 9 8 1560 6 + 41700 4 1945900 + 67060400 1515 1, R 6 1 8 = 1515, S 6 8 = 0 P 6, 8 = 10 + 8 + 45 6 76800 4 776000 501100 1515 11, Q 6, 8 = 1 + 10 + 9 8 + 1560 6 + 41700 4 + 1945900 + 67060400 1515 1, R 6, 8 = 1 1515, S 6, 8 = 0 Z 9 : J 9 d = 6 70 4 + 5760 64510 6 J 0 + 40 6 8160 4 + 68800 19040 7 J 1 I 9 d = 6 + 70 4 + 5760 + 64510 6 I 0 40 6 + 8160 4 + 68800 + 19040 7 I 1 J 9 d = = 6 768 4 + 59904 7780 5 J 0 + 6 88 4 + 0418 1474560 6 J 1 + 9Λ 0 I 9 d = = 6 + 768 4 + 59904 + 7780 5 I 0 6 + 88 4 + 0418 + 1474560 6 I 1 9Λ 0 J 9 d = 6 800 4 + 6700 860160 4 J 0 + 4 6 9600 4 + 49440 1700 5 J 1 I 9 d = 6 + 800 4 + 6700 + 860160 4 I 0 4 6 + 9600 4 + 49440 + 1700 5 I 1 J 9 d = 6 84 4 + 7564 1019 J 0 + 7

+ 4 6 1116 4 + 408576 06484 J 1 + 69Λ 0 4 I 9 d = 6 + 84 4 + 7564 + 1019 I 0 4 6 + 1116 4 + 408576 + 06484 4 I 1 + 69Λ 0 4 J 9 d = 6 888 4 + 86400 19040 J 0 + 44 6 1176 4 + 48840 580480 J 1 4 I 9 d = 6 + 888 4 + 86400 + 19040 I 0 44 6 + 1176 4 + 48840 + 580480 I 1 J9 d = 8 6 6144 4 + 47760 5160960 9 7 J 0 8 5 6 + 67968 4 165760 + 10190 9 8 J 1 + 1 9 Λ 0 I9 d = 8 6 + 6144 4 + 47760 + 5160960 9 7 I 0 8 + 5 6 + 67968 4 + 165760 + 10190 9 8 I 1 + 1 9 Λ 0 J9 d = 6 648 4 + 445 516096 8 J 0 + 8 6 7008 4 + 1778 1019 9 J 1 I9 d = 6 + 648 4 + 445 + 516096 8 I 0 8 6 + 7008 4 + 1778 + 1019 9 I 1 P 5 9 = 95 4 + 98805 1700 6, Q 5 9 = 45 6 1405 4 + 57600 440640, R 5 9 = 45045, S 5 9 = 0 P 5, 9 = 6 + 95 4 + 98805 + 1700, Q 5, 9 = 45 6 + 1405 4 + 57600 + 440640, R 5, 9 = 45045, S 5, 9 = 0 P 6 9 = 6 984 4 + 1147 5790, Q 6 9 = 46 6 156 4 + 710784 5160960, R 6 9 = 0, S 6 9 = 0 P 6, 9 = 6 + 984 4 + 1147 + 5790, Q 6, 9 = 46 6 + 156 4 + 710784 + 5160960, R 6, 9 = 0, S 6, 9 = 0 P 7 9 = 7 105 5 + 1075 195, Q 7 9 = 47 6 14775 4 + 876015 10190, R 7 9 = 0705, S 7 9 = 0 P 7, 9 = 7 +105 5 +1075 +195, Q 7, 9 = 47 6 +14775 4 +876015 +10190, R 7, 9 = 0705, S 7, 9 = 0 P 8 9 = 8 1088 6 + 15091 4 44896 + 10190, Q 8 9 = 48 7 1618 5 + 1087488 140675, R 8 9 = 0, S 8 9 = 0 P 8, 9 = 8 + 1088 6 + 15091 4 + 44896 + 10190, Q 8, 9 = 48 7 + 1618 5 + 1087488 + 140675, R 8, 9 = 0, S 8, 9 = 0 P 9 9 = 9 114 7 + 174405 5 65515 + 445945, 8

Q 9 9 = 49 8 17601 6 + 155865 4 417505, R 9 9 = 445945, S 9 9 = 0 P 9, 9 = 9 + 114 7 + 174405 5 + 65515 + 445945, Q 9, 9 = 49 8 + 17601 6 + 155865 4 + 417505, R 9, 9 = 445945, S 9, 9 = 0 P 10 9 = 10 100 8 + 01600 6 901680 4 + 989780, Q 10 9 = 50 9 1900 7 + 169440 5 4187680 + 185794560, R 10 9 = 0, S 10 9 = 0 P 10, 9 = 10 + 100 8 + 01600 6 + 901680 4 + 989780, Q 10, 9 = 50 9 + 1900 7 + 169440 5 + 4187680 + 185794560, R 10, 9 = 0, S 10, 9 = 0 P 9 = 8 696 6 + 4640 4 84000 + 5140480 69 9, Q 9 = 10 8 56 6 + 451600 4 17710 + 65080960 69 10, R 9 = 1 69, S 9 = 0 P, 9 = 8 + 696 6 + 4640 4 + 84000 + 5140480 69 9, Q, 9 = 10 + 8 56 6 451600 4 17710 65080960 69 10, R, 9 = 1 69, S, 9 = 0 P 4 9 = 6 584 4 + 76 40080 10, Q 4 9 = 6 6 6096 4 + 18784 860160 11, R 4 9 = 0, S 4 9 = 0 P 4, 9 = 6 + 584 4 + 76 + 40080 10, Q 4, 9 = 6 6 + 6096 4 + 18784 + 860160 11, R 4, 9 = 0, S 4, 9 = 0 P 5 9 = 10 8 45000 6 + 4998400 4 157489900 + 178876400 45045 11, Q 5 9 = 1 10 + 9 8 1576800 6 + 574400 4 760480000 + 576545800 45045 1, R 5 9 = 1 45045, S 5 9 = 0 P 5, 9 = 10 + 8 45000 6 4998400 4 157489900 178876400 45045 11, Q 5, 9 = 1 + 10 + 9 8 + 1576800 6 + 574400 4 + 760480000 + 576545800 45045 1, R 5, 9 = 1 45045, S 5, 9 = 0 P 6 9 = 6 58 4 + 640 68640 1, Q 6 9 = 4 6 576 4 + 157440 7780 1, R 6 9 = 0, S 6 9 = 0 9

P 6, 9 = 6 + 58 4 + 640 + 68640 1, Q 6, 9 = 4 6 + 576 4 + 157440 + 7780 1, R 6, 9 = 0, S 6, 9 = 0 Z 10 : J 10 d = 48 6 15744 4 + 91600 10190 7 J 0 8 115 6 + 15468 4 44680 + 064840 J 1 + Λ 0 8 I 10 d = 48 6 + 15744 4 + 91600 + 10190 7 I 0 + + 8 + 115 6 + 15468 4 + 44680 + 064840 I 1 Λ 0 8 J 10 d = 50 6 16800 4 + 101440 1161160 6 J 0 8 100 6 + 168000 4 494590 + 40 7 J 1 I 10 d = 50 6 + 16800 4 + 101440 + 1161160 6 I 0 + + 8 + 100 6 + 168000 4 + 494590 + 40 7 I 1 J 10 d = 51 6 18048 4 + 114784 171040 5 J 0 8 115 6 + 1855 4 5608 + 654080 J 1 + 99Λ 0 6 I 10 d = 51 6 + 18048 4 + 114784 + 171040 5 I 0 + + 8 + 115 6 + 1855 4 + 5608 + 654080 I 1 + 99Λ 0 6 J 10 d = 5 6 1900 4 + 19040 1548880 4 J 0 8 104 6 + 01600 4 645100 + 0965760 5 J 1 I 10 d = 5 6 + 1900 4 + 19040 + 1548880 4 I 0 + + 8 + 104 6 + 01600 4 + 645100 + 0965760 5 I 1 4 J 10 d = 5 6 0559 4 + 1467 18579456 J 0 8 159 6 + 1168 4 7569408 + 715891 J 1 + 9009Λ 0 4 4 I 10 d = 5 6 + 0559 4 + 1467 + 18579456 I 0 + + 8 + 159 6 + 1168 4 + 7569408 + 715891 I 1 9009Λ 0 J10 d 4 = 48 6 14784 4 + 88656 98978 8 J 0 40

8 1104 6 + 14464 4 999744 + 18579456 J 1 I10 d 9 = 48 6 + 14784 4 + 88656 + 98978 8 I 0 + + 8 + 1104 6 + 14464 4 + 999744 + 18579456 I 1 9 J10 d = 8 4656 6 + 176640 4 7614160 + 8607550 99 9 J 0 10 + 98 8 1048 6 + 107500 4 616700 + 167151040 99 10 J 1 + 1 99 Λ 0 I10 d = 8 + 4656 6 + 176640 4 + 7614160 + 8607550 99 9 I 0 10 98 8 1048 6 107500 4 616700 167151040 99 10 I 1 + 1 99 Λ 0 P 5 10 = 54 6 0 4 + 169440 40, Q 5 10 = 8 1416 6 + 45664 4 901680 + 46448640, R 5 10 = 0, S5 10 = 0 P 5, 10 = 54 6 + 0 4 + 169440 + 40, Q 5, 10 = 8 + 1416 6 + 45664 4 + 901680 + 46448640, R 5, 10 = 0, S 5, 10 = 0 P 6 10 = 55 6 65 4 + 1965915 0965760, Q 6 10 = 8 1475 6 + 7475 4 10190 + 619150, R 6 10 = 675675, S6 10 = 0 P 6, 10 = 55 6 + 65 4 + 1965915 + 0965760, Q 6, 10 = 8 + 1475 6 + 7475 4 + 10190 + 619150, R 6, 10 = 675675, S 6, 10 = 0 P 7 10 = 56 6 544 4 + 999 4187680, Q 7 10 = 156 6 + 0976 4 160464 + 989780 8, R 7 10 = 0, S7 10 = 0 P 7, 10 = 56 6 + 544 4 + 999 + 4187680, Q 7, 10 = 8 + 156 6 + 0976 4 + 160464 + 989780, R 7, 10 = 0, S 7, 10 = 0 P 8 10 = 57 7 7195 5 + 706165 5847855, Q 8 10 = 8 1599 6 + 7575 4 17150175 + 185794560, R 8 10 = 445945, S8 10 = 0 P 8, 10 = 57 7 + 7195 5 + 706165 + 5847855, Q 8, 10 = 8 + 1599 6 + 7575 4 + 17150175 + 185794560, R 8, 10 = 445945, S 8, 10 = 0 41

P 9 10 = 58 8 9184 6 + 0056 4 8495088 + 185794560, Q 9 10 = 9 1664 7 + 76704 5 18704 + 680456, R 9 10 = 0, S9 10 = 0 P 9, 10 = 58 8 + 9184 6 + 0056 4 + 8495088 + 185794560, Q 9, 10 = 9 + 1664 7 + 76704 5 + 18704 + 680456, R 9, 10 = 0, S 9, 10 = 0 P 10 10 = 59 9 117 7 + 79755 5 1545745 + 65479075, Q 10 10 = 10 171 8 + 40819 6 801955 4 + 46894515, R 10 10 = 65479075, S 10 10 = 0 P 10, 10 = 59 9 + 117 7 + 79755 5 + 1545745 + 65479075, Q 10, 10 = 10 + 171 8 + 40819 6 + 801955 4 + 46894515, R 10, 10 = 65479075, S 10, 10 = 0 P 10 = 46 6 1104 4 + 7096 7741440 10, Q 10 = 8 1016 6 + 1976 4 5464 + 1548880 11, R 10 = 0, S 10 = 0 P, 10 = 46 6 + 1104 4 + 7096 + 7741440 10, Q, 10 = 8 + 1016 6 + 1976 4 + 5464 + 1548880 11, R, 10 = 0, S, 10 = 0 P 4 10 = 10 8 40560 6 + 111484800 4 5981760 + 6477815040 9009 11, Q 4 10 = 1 10 + 9018 8 8784000 6 + 10580800 4 79608180 + 1875560080 9009 1, R 4 10 = 1 9009, S 4 10 = 0 P 4, 10 = 10 + 8 40560 6 111484800 4 5981760 6477815040 9009 11, Q 4, 10 = 1 + 10 + 9018 8 + 8784000 6 + 10580800 4 + 79608180 + 1875560080 9009 1, R 4, 10 = 1 9009, S 4, 10 = 0 P 5 10 = 44 6 1171 4 + 614400 66550 1, Q 5 10 = 8 96 6 + 107904 4 887680 + 171040 1, R 5 10 = 0, S 5 10 = 0 P 5, 10 = 44 6 + 1171 4 + 614400 + 66550 1, Q 5, 10 = 8 + 96 6 + 107904 4 + 887680 + 171040 1, R 5, 10 = 0, S 5, 10 = 0 P 6 10 = 1 10 + 45 8 9055600 6 + 750617800 4 889499900 + 4184557977600 675675 1, Q 6 10 = 4

14 1 + 9 10 + 675450 8 60740800 6 + 6866054800 4 1840809800 + 86911595500 675675 14, R 6 1 10 = 675675, S 6 10 = 0 P 6, 10 = 1 + 10 + 45 8 + 9055600 6 + 750617800 4 + 889499900 + 4184557977600 675675 1, Q 6, 10 = 14 + 1 + 9 10 675450 8 60740800 6 6866054800 4 1840809800 86911595500 675675 14, R 6, 1 10 = 675675, S 6, 10 = 0 4

118 Higher antiderivatives: Φ, Ψ and Ψ K are the same as in I, page 7 a n+1 Z 0 : With the functions Φ, Ψ and Ψ K as defined on page??? holds: J 0 = d Φ d, I 0 = d Ψ d, K 0 = d Ψ K d J 0 = d d J 0 + 5 J 1 9 Φ ] I 0 = d d I 0 5 I 1 + 9 Ψ ] K 0 = d d K 0 + 5 K 1 9 Ψ K ] 5 J 0 = d d 5 + 4 J 0 + 9 4 161 J 1 + 5Φ ] 5 I 0 = d d 5 + 4 I 0 9 4 + 161 I 1 + 5 Ψ ] 5 K 0 = d d 5 + 4 K 0 + 9 4 + 161 K 1 5 Ψ K ] 7 J 0 = d d 7 + 101 5 5 J 0 + 1 6 649 4 + 871 J 1 1105 Φ ] 7 I 0 = d d 7 + 101 5 + 5 I 0 1 6 + 649 4 + 871 I 1 + 1105 Ψ ] 7 K 0 = d d 7 + 101 5 + 5 K 0 + 1 6 + 649 4 + 871 K 1 1105 Ψ K ] The formulas for I 1 and K 1 vary in two signs 9 J 0 = d d 9 + 18 7 1069 5 + 947 J 0 + +17 8 1665 6 + 661 4 745569 J 1 + 8905 Φ ] 9 I 0 = d d 9 + 18 7 + 1069 5 + 947 I 0 17 8 + 1665 6 + 661 4 + 745569 I 1 + 8905 Ψ ] 11 J 0 = d d 11 + 89 9 007 7 + 1479645 5 8645875 J 0 + +1 10 401 8 + 49849 6 81985 4 + 91045 J 1 10805605 Φ ] 11 I 0 = d 11 d + 89 9 + 007 7 + 1479645 5 + 8645875 I 0 1 10 + 401 8 + 49849 6 + 81985 4 + 91045 I 1 + 10805605 Ψ ] 1 J 0 = d d 1 + 419 11 68841 9 + 606498 7 7100005 5 + 50547875 J 0 + +5 1 6049 10 + 74769 8 47984481 6 + 14981045 4 161810185 J 1 + 18614685 Φ ] 1 I 0 = d d 1 + 419 11 + 68841 9 + 606498 7 + 7100005 5 + 50547875 I 0 5 1 + 6049 10 + 74769 8 + 47984481 6 + 14981045 4 + 161810185 I 1 + 18614685 Ψ ] 15 J 0 = d d 15 + 57 1 1605 11 + 188005 9 154979575 7 + 65961075 5 44