28.3. Orthogonal Curvilinear Coordinates. Introduction. Prerequisites. Learning Outcomes

Σχετικά έγγραφα
28.3. Orthogonal Curvilinear Coordinates. Introduction. Prerequisites. Learning Outcomes

Spherical Coordinates

CURVILINEAR COORDINATES

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

derivation of the Laplacian from rectangular to spherical coordinates

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Homework 8 Model Solution Section

Approximation of distance between locations on earth given by latitude and longitude

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates

Parametrized Surfaces

Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B

Reminders: linear functions

Section 8.3 Trigonometric Equations

Strain gauge and rosettes

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

2 Composition. Invertible Mappings

EE512: Error Control Coding

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Answer sheet: Third Midterm for Math 2339

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Solutions to Exercise Sheet 5

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

( ) 2 and compare to M.

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

CYLINDRICAL & SPHERICAL COORDINATES

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Second Order Partial Differential Equations

Matrices and Determinants

Numerical Analysis FMN011

4.6 Autoregressive Moving Average Model ARMA(1,1)

Section 7.6 Double and Half Angle Formulas

Example Sheet 3 Solutions

Math221: HW# 1 solutions

Section 8.2 Graphs of Polar Equations

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Section 9.2 Polar Equations and Graphs

The Simply Typed Lambda Calculus

Homework 3 Solutions

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

ST5224: Advanced Statistical Theory II

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

1 String with massive end-points

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Jackson 2.25 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

D Alembert s Solution to the Wave Equation

Trigonometric Formula Sheet

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

w o = R 1 p. (1) R = p =. = 1

Orbital angular momentum and the spherical harmonics

CRASH COURSE IN PRECALCULUS

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Finite Field Problems: Solutions

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Inverse trigonometric functions & General Solution of Trigonometric Equations

Other Test Constructions: Likelihood Ratio & Bayes Tests

Lecture 6 Mohr s Circle for Plane Stress

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

Srednicki Chapter 55

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Derivations of Useful Trigonometric Identities

6.3 Forecasting ARMA processes

Notes on the Open Economy

If we restrict the domain of y = sin x to [ π 2, π 2

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

[1] P Q. Fig. 3.1

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Second Order RLC Filters

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

TMA4115 Matematikk 3

(As on April 16, 2002 no changes since Dec 24.)

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

Chapter 7 Transformations of Stress and Strain

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

PARTIAL NOTES for 6.1 Trigonometric Identities

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Chapter 6: Systems of Linear Differential. be continuous functions on the interval


Durbin-Levinson recursive method

A Note on Intuitionistic Fuzzy. Equivalence Relation

New bounds for spherical two-distance sets and equiangular lines

Forced Pendulum Numerical approach

Transcript:

Orthogonal Curvilinear Coordinates 28.3 Introduction The derivatives div, grad and curl from Section 29.2 can be carried out using coordinate systems other than the rectangular cartesian coordinates. This Section shows how to calculate these derivatives in other coordinate systems. Two coordinate systems - cylindrical polar coordinates and spherical polar coordinates - will be illustrated. Prerequisites Before starting this Section you should... Learning Outcomes After completing this Section you should be able to... 1 be able to find the gradient, divergence and curl of a field in cartesian coordinates. 2 be familiar with polar coordinates be able to find the divergence, gradient or curl of a vector or scalar field expressed in terms of orthogonal curvilinear coordinates.

1. Orthogonal Curvilinear Coordinates The results shown in Section 29.2 have been given in terms of the familiar cartesian (x, y, z) coordinate system. However, other coordinate systems can be used to better describe some physical situations. A set of coordinates u u(x, y, z), v v(x, y, z) and w w(x, y, z) where the directions at any point indicated by u, v and w are orthogonal (perpendicular) to each other is referred to as a set of orthogonal curvilinear coordinates. With each coordinate is associated ( a scale factor h u, h v or h w respectively where h u x ) 2 ( u + y ) 2 ( u + z 2 u) (with similar expressions for h v and h w ). The scale factor gives a measure of how a change in the coordinate changes the position of a point. Two commonly-used sets of orthogonal curvilinear coordinates are cylindrical polar coordinates and spherical polar coordinates. These are similar to the plane polar coordinates introduced in Section 17.2 but represent extensions to three dimensions. Cylindrical Polar Coordinates This corresponds to plane polar (, φ) coordinates with an added z coordinate directed out of the xy plane. Normally the variables and φ are used instead of r and θ to give the three coordinates, φ and z. A cylinder has equation constant. The relationship between the coordinate systems is given by x cos φ y sin φ z z (i.e. the same z is used by the two coordinate systems). See Figure 1. z (x, y, z) φ y x, Figure 1 The scale factors h, h φ and h z are given as follows (x ) 2 ( ) 2 ( ) 2 y z h + + (cos φ) 2 +(sin φ) 2 + 01 (x ) 2 ( ) 2 ( ) 2 y z h φ + + ( sin φ) φ φ φ 2 +(cos φ) 2 +0 HELM (VERSION 1: April 14, 2004): Workbook Level 1 2

(x ) 2 h z + z ( ) 2 y + z ( ) 2 z (0 z 2 +0 2 +1 2 )1 Spherical Polar Coordinates In this system a point is referred to by its distance from the origin r and two angles φ and θ. The angle θ is the angle between the positive z-axis and the line from the origin to the point. The angle φ is the angle from the x-axis to the projection of the point in the xy plane. A useful analogy is of latitude, longitude and height on Earth. The variable r plays the role of height (but height measured above the centre of Earth rather than from the surface). The variable θ plays the role of latitude but is modified so that θ 0represents the North Pole, θ 90 π 2 represents the equator and θ 180 π represents the South Pole. The variable φ plays the role of longitude. A sphere has equation r constant. The relationship between the coordinate systems is given by x r sin θ cos φ y r sin θ sin φ z r cos θ. See Figure 2. z (x, y, z) θ r φ y x, Figure 2 The scale factors h r, h θ and h φ are given by (x ) 2 ( ) 2 ( ) 2 y z h r + + (sin θ cos φ) r r r 2 +(sin θ sin φ) 2 + (cos θ) 2 1 (x ) 2 ( ) 2 ( ) 2 y z h θ + + (r cos θ cos φ) θ θ θ 2 +(rcos θ sin φ) 2 +( rsin θ) 2 r (x ) 2 ( ) 2 ( ) 2 y z h φ + + ( r sin θ sin φ) φ φ φ 2 +(rsin θ sin φ) 2 +0rsin θ 3 HELM (VERSION 1: April 14, 2004): Workbook Level 1

2. Vector Derivatives in Orthogonal Coordinates Given an orthogonal coordinate system u, v, w with unit vectors û, ˆv and ŵ and scale factors, h u, h v and h w,itispossible to find the derivatives f, F and F. It is found that grad f f f h u uû + f h v v ˆv + f h w wŵ If F F u û + F vˆv + F w ŵ then div F F h u h v h w u (F uh v h w )+ v (F vh u h w )+ ] w (F wh u h v ) Also if F F u û + F vˆv + F w ŵ then h u û h vˆv h w ŵ 1 curl F F h u h v h w u v w h u F u h v F v h w F w Key Point In orthogonal curvilinear coordinates, the vector derivatives f, F and F are influenced by the scale factors h u, h v and h w. 3. Cylindrical Polar Coordinates In cylindrical polar coordinates (, φ, z), the 3 unit vectors are ˆ, ˆφ and ẑ with scale factors h 1,h φ, h z 1. The quantities and φ are related to x and y by x cos φ and y sin φ. The unit vectors are ˆ cos φi + sin φj and ˆφ sin φi + cos φj. Incylindrical polar coordinates, grad f f f ˆ + f φ ˆφ + f z ẑ The scale factor is necessary in the φ-component because the derivatives with respect to φ are distorted by the distance from the axis 0. If F F ˆ + F φ ˆφ + Fz ẑ then div F F 1 (F )+ φ (F φ)+ ] z (F z) HELM (VERSION 1: April 14, 2004): Workbook Level 1 4

curl F F 1 ˆ ˆφ ẑ φ z F F φ F z. Example In cylindrical polar coordinates, find f for (a) f 2 + z 2 (b) f 3 sin φ (c) Show that the result for (b) is consistent with that found working in cartesian coordinates. Solution (a) If f 2 + z 2 then f 2,f φ 0andf 2z so f 2ˆ +2zẑ. z (b) If f 3 sin φ then f 32 sin φ, f φ 3 cos φ and f 0and hence, z f 3 2 sin φˆ + 2 cos φ ˆφ. (c) f 3 sin φ 2 sin φ (x 2 + y 2 )y x 2 y + y 3 so f 2xyi +(x 2 +3y 2 )j. Using cylindrical polar coordinates, from (b) we have f 3 2 sin φˆ + 3 cos φ ˆφ 3 2 sin φ(cos φi + sin φj)+ 2 cos φ( sin φi + cos φj) 3 2 sin φ cos φ 2 sin φ cos φ ] i + 3 2 sin 2 φ + 2 cos 2 φ ] j 2 2 sin φ cos φ ] i + 3 2 sin 2 φ + 2 cos 2 φ ] j 2xyi +(3y 2 + x 2 )j So the results using cartesian and cylindrical polar coordinates are consistent. Example Find F for F F ˆ + F φ ˆφ + Fz ẑ 3 ˆ + z ˆφ + z sin φẑ. Show that the results are consistent with those found using cartesian coordinates. 5 HELM (VERSION 1: April 14, 2004): Workbook Level 1

Solution Here, F 3, F φ z and F z z sin φ so F 1 (F )+ φ (F φ)+ ] z (F z) 1 (4 )+ φ (z)+ ] z (2 z sin φ) 1 4 3 +0+ 2 sin φ ] 4 2 + sin φ Converting to cartesian coordinates, F F ˆ + F φ ˆφ + Fz ẑ 3 ˆ + z ˆφ + z sin φẑ 3 (cos φi + sin φj)+z( sin φi + cos φj)+z sin φk ( 3 cos φ z sin φ)i +( 3 sin φ + z cos φ)+zk 2 ( cos φ) sin φz ] i + 2 ( sin φ)+ cos φz ] j + sin φzk (x 2 + y 2 )x yz ] i + (x 2 + y 2 )y + xz ] j + yzk (x 3 + xy 2 yz)i +(x 2 y + y 3 + xz)j + yzk So F x (x3 + xy 2 yz)+ y (x2 y + y 3 + xz)+ z (yz) (3x 2 + y 2 )+(x 2 +3y 2 )+y 4x 2 +4y 2 + y 4(x 2 + y 2 )+y 4 2 + sin φ So F is the same in both coordinate systems Example Find F for F 2 ˆ + z sin φ ˆφ +2z cos φẑ HELM (VERSION 1: April 14, 2004): Workbook Level 1 6

Solution F ˆ ˆφ ẑ φ z 1 F F φ F z ˆ 1 1 φ 2z cos φ z sin φ z ˆ ˆφ ẑ φ z 2 z sin φ 2z cos φ ] + ˆφ ˆ( 2z sin φ sin φ)+ ˆφ(0) + ẑ(z sin φ) (2z sin φ) ˆ + z sin φ ẑ z 2 2z cos φ ] ] +ẑ ]] z sin φ φ 2 Example A magnetic field B is given by B 2 ˆφ + kz. Find B and B. Solution B 1 0+ φ 2 + ] z k 1 0 + 0 +0]0 ˆ ˆφ ẑ ˆ ˆφ ẑ B φ z φ z B B φ B z 2 0 k 0 All magnetic fields satisfy B 0i.e. an absence of magnetic monopoles. There is a class of magnetic fields known as potential fields that satisfy B O (a) Using cylindrical polar coordinates, find f for f r 2 z sin θ (b) Using cylindrical polar coordinates, find f for f z sin 2θ 7 HELM (VERSION 1: April 14, 2004): Workbook Level 1

(a) 2z sin θˆ + z cos θ ˆφ + 2 sin θẑ (b) 2 z cos 2θ ˆφ + sin 2θẑ Find F for F cos φˆ sin φˆ + zẑ (a) Find the derivatives F ], (b) Combine these to find F φ F φ], z F z] HELM (VERSION 1: April 14, 2004): Workbook Level 1 8

(a) 2 cos φ, cos φ, 2 (b) F 1 1 1 (F )+ φ (F φ)+ ] z (F z) (2 cos φ)+ φ ( sin φ)+ z (2 z) ] 2 cos φ cos φ + 2 ] cos φ + 2 Find F for F F ˆ + F φ ˆφ + Fz ẑ 3 ˆ + z ˆφ + z sin φẑ. Show that the results are consistent with those found using cartesian coordinates. (a) Find the curl F (b) Find F in cartesian coordinates. (c) Hence find F in cartesian coordinates. (d) Using ˆr cos φi + sin φj and ˆθ sin φi + cos φj show that the solution to part (a) is equal to the solution for part (c). (a) (z cos φ )ˆ 2 sin φ ˆφ +2zẑ (b) (x 3 + xy 2 yz)i +(x 2 y + y 3 + xz)+yzk (c) (z x)i yj +2zk 9 HELM (VERSION 1: April 14, 2004): Workbook Level 1

(a) For F ˆ +(sin θ + z) ˆφ + zẑ, find F and F. (b) For f r 2 z 2 cos2φ, find ( f). (a) 1+cos θ +, ˆ z cos θ ˆφ +(2 sin φ + z)ẑ (b) 0 4. Spherical Polar Coordinates In spherical polar coordinates (r, θ, φ), the 3 unit vectors are ˆr, ˆθ and ˆφ with scale factors h r 1, h θ r, h φ r sin θ. The quantities r, θ and φ are related to x, y and z by x r sin θ cos φ, y r sin θ sin φ and z r cos θ. Inspherical polar coordinates, grad f f f r ˆr + f r θ ˆθ + f φ ˆφ If F F rˆr + F θ ˆθ + Fφ ˆφ then div F F r (r2 sin θf r )+ θ (r sin θf θ)+ ] φ (rf φ) HELM (VERSION 1: April 14, 2004): Workbook Level 1 10

curl F F 1 ˆr rˆθ ˆφ r θ φ F r rf θ F φ Example In spherical polar coordinates, find f for (a) f r (b) f 1 r (c) f r 2 sin(φ + θ) Solution (a) (b) (c) f f r ˆr + f r θ ˆθ + 1 (r) r ˆr + 1 r 1ˆr ˆr f φ ˆφ (r) θ ˆθ + 1 f f r ˆr + f r θ ˆθ + 1 ( 1 r ) r ˆr + 1 r 1 r 2 ˆr f f r ˆr + f r θ ˆθ + 1 (r2 sin(φ + θ) ˆr + r r f φ ˆφ ( 1) r θ ˆθ + 1 (r) φ ˆφ ( 1 r ) φ ˆφ f φ ˆφ (r 2 sin(φ + θ) ˆθ + 1 θ (r 2 sin(φ + θ) φ 2r sin(φ + θ)ˆr + 1 r r2 cos(φ + θ)ˆθ + 1 r2 cos(φ + θ) ˆφ 2r sin(φ + θ)ˆr + r cos(φ + θ)ˆθ + cos(φ + θ) sin θ ˆφ ˆφ 11 HELM (VERSION 1: April 14, 2004): Workbook Level 1

Example Using spherical polar coordinates, find F for the following vector functions. (a) F rˆr (b) F ˆr (c) F r sin θ ˆr +r 2 sin φ ˆθ +r cos θ ˆφ Solution (a) F r (r2 sin θf r )+ θ (r sin θf θ)+ ] φ (rf φ) r (r2 sin θ r)+ ] (r sin θ 0) + (r 0) θ φ r (r3 sin θ)+ θ (0) + ] φ (0) 1 3 +0+0 ] 3 Note :- in cartesian coordinates, the corresponding vector is F xi + yj + zk with F 1 + 1 + 1 3(hence consistency). (b) F r (r2 sin θf r )+ θ (r sin θf θ)+ ] φ (rf φ) r (r2 sin θ)+ ] (r sin θ 0) + (r 0) θ φ r (r4 sin 2 θ)+ θ (0) + ] φ (0) 1 4r 3 sin 2 θ +0+0 ] 4rsin θ (c) F r (r2 sin θf r )+ θ (r sin θf θ)+ ] φ (rf φ) r (r2 sin θrsin θ)+ θ (r sin θ r2 sin φ)+ ] (r r cos θ) φ r (r3 sin 2 θ)+ θ (r3 sin θ sin φ)+ ] φ (r2 cos φ) 1 3r 2 sin 2 θ + r 3 cos θ sin φ +0 ] 3sin θ + r cot θ sin φ Example Find F for the following vector fields F. (a) F r kˆr, where k is a constant (b) F r 2 cos θ ˆr + sin θ ˆθ + sin 2 θ ˆφ HELM (VERSION 1: April 14, 2004): Workbook Level 1 12

Solution (a) F ˆr rˆθ ˆφ 1 r θ φ F r rf θ F φ ˆr rˆθ ˆφ 1 r θ φ r k r 0 0 ( θ (0) ) ( φ (0) ˆr + φ (rk ) ) r (0) rˆθ ( + r (0) ) ] θ (rk ) ˆφ 0 ˆr +0 ˆθ +0 ˆφ 0 (b) ˆr rˆθ ˆφ ˆr rˆθ ˆφ 1 F 1 r θ φ r θ φ F r rf θ F φ r 2 cos θ r sin θ sin 2 θ ( θ (r2 sin 3 θ) ) ( (r sin θ) ˆr + φ φ (r2 cos θ) ) r (r2 sin 3 θ) rˆθ ( + r (r sin θ) ) ] θ (r2 cos θ) ˆφ 1 (3r 2 sin 2 θ cos θ +0 ) ˆr + ( 0 2r sin 3 θ ) rˆθ + ( sin θ + ) ˆφ] 3sin θ cos θ ˆr 2 sin 2 ˆθ +(1+r 2 ) sin θ ˆφ 13 HELM (VERSION 1: April 14, 2004): Workbook Level 1

(a) Using spherical polar coordinates, find f for i. f r 4 ii. f r r 2 +1 iii. f r 2 sin 2θ cos φ (b) For F r sin θˆr + r cos φˆθ + r sin φ ˆφ, find F and F. (c) For F r 4 cos θˆr + r 4 sin θˆθ, find F and F. (d) For F r 2 cos θˆr + cos φˆθ find ( F ). (a) (i) 4r 3ˆr, (ii) 1 r 2 (1 + r 2 ) ˆr, (iii) 2r sin 2θ cos φˆr +2rcos 2θ cos φˆθ 2r cos θ sin φ ˆφ 2 (b) cos φ(cot θ + cosechθ)+3sin θ,cot θ 2 sin φˆr 2 sin φˆθ +(2cos φ cos θ) ˆφ HELM (VERSION 1: April 14, 2004): Workbook Level 1 14

(c) 0, 2r 5 sin θ ˆφ (d) 0 15 HELM (VERSION 1: April 14, 2004): Workbook Level 1