DIFFERENTIATION OF TRIGONOMETRIC FUNCTIONS

Σχετικά έγγραφα
Section 8.3 Trigonometric Equations

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

2 Composition. Invertible Mappings

Trigonometry 1.TRIGONOMETRIC RATIOS

Inverse trigonometric functions & General Solution of Trigonometric Equations

Section 7.6 Double and Half Angle Formulas

MathCity.org Merging man and maths

PARTIAL NOTES for 6.1 Trigonometric Identities

Matrices and Determinants

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Areas and Lengths in Polar Coordinates

CRASH COURSE IN PRECALCULUS

If we restrict the domain of y = sin x to [ π 2, π 2

Areas and Lengths in Polar Coordinates

Homework 3 Solutions

C.S. 430 Assignment 6, Sample Solutions

derivation of the Laplacian from rectangular to spherical coordinates

Example Sheet 3 Solutions

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

EE512: Error Control Coding

4.6 Autoregressive Moving Average Model ARMA(1,1)

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Solutions to Exercise Sheet 5

Differential equations

F19MC2 Solutions 9 Complex Analysis

Trigonometric Formula Sheet

ST5224: Advanced Statistical Theory II

Differentiation exercise show differential equation

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Finite Field Problems: Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Math221: HW# 1 solutions

Concrete Mathematics Exercises from 30 September 2016

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Other Test Constructions: Likelihood Ratio & Bayes Tests

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Lecture 26: Circular domains

Section 9.2 Polar Equations and Graphs

Solution to Review Problems for Midterm III

The Simply Typed Lambda Calculus

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Section 7.7 Product-to-Sum and Sum-to-Product Formulas

A Note on Intuitionistic Fuzzy. Equivalence Relation

Homework 8 Model Solution Section

Statistical Inference I Locally most powerful tests

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

IIT JEE (2013) (Trigonomtery 1) Solutions

Solution Series 9. i=1 x i and i=1 x i.

D Alembert s Solution to the Wave Equation

TRIGONOMETRIC FUNCTIONS

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Strain gauge and rosettes

Second Order RLC Filters

Fractional Colorings and Zykov Products of graphs

Second Order Partial Differential Equations

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

TMA4115 Matematikk 3

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Srednicki Chapter 55

( ) 2 and compare to M.

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

Uniform Convergence of Fourier Series Michael Taylor

Logsine integrals. Notes by G.J.O. Jameson. log sin θ dθ = π log 2,

w o = R 1 p. (1) R = p =. = 1

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

Quadratic Expressions

Space-Time Symmetries

Partial Differential Equations in Biology The boundary element method. March 26, 2013

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

Lecture 2. Soundness and completeness of propositional logic

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Paper Reference. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced. Thursday 11 June 2009 Morning Time: 1 hour 30 minutes

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

F-TF Sum and Difference angle

1. For each of the following power series, find the interval of convergence and the radius of convergence:

( y) Partial Differential Equations

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Transcript:

Differentiation of Trigonometric Functions MODULE - V DIFFERENTIATION OF TRIGONOMETRIC FUNCTIONS Trigonometry is the branch of Mathematics that has mae itself inispensable for other branches of higher Mathematics may it be calculus, vectors, three imensional geometry, functions-harmonic an simple an otherwise just cannot be processe without encountering trigonometric functions. Further within the specific limit, trigonometric functions give us the inverses as well. The question now arises : Are all the rules of fining the erivatives stuie by us so far appliacable to trigonometric functions? This is what we propose to eplore in this lesson an in the process, evelop the formulae or results for fining the erivatives of trigonometric functions an their inverses. In all iscussions involving the trignometric functions an their inverses, raian measure is use, unless otherwise specifically mentione.. OBJECTIVES After stuing this lesson, you will be able to : fin the erivative of trigonometric functions from first principle; fin the erivative of inverse trigonometric functions from first principle; apply prouct, quotient an chain rule in fining erivatives of trigonometric an inverse trigonometric functions; an fin secon orer erivative of a function. EXPECTED BACKGROUND KNOWLEDGE Knowlege of trigonometric ratios as functions of angles. Stanar limits of trigonometric functions namely. (i) tan lim 0 (ii) lim (iii) limcos (iv) lim 0 0 0 0 Definition of erivative, an rules of fining erivatives of function. MATHEMATICS 5

MODULE - V Differentiation of Trigonometric Functions. DERIVATIVE OF TRIGONOMETRIC FUNCTIONS FROM FIRST PRINCIPLE (i) Let y For a small increment δ in, let the corresponing increment in y be δ y. y+δ y ( +δ) an δ y (+δ) δ δ cos + C+ D C D C D cos δ δy δ cos + δ δ δ δy δ lim lim cos + lim δ δ cos. δ 0 δ 0 δ 0 δ 0 δ lim δ Thus, cos i.e., () cos (ii) Let y cos For a small increment δ y+δ y cos( +δ) an δ y cos( +δ) cos in, let the corresponing increment in y be δ y. δ δ + δ δy δ + δ δ δ δy lim lim + lim δ δ δ 0 δ 0 δ 0 Thus, 5 MATHEMATICS

Differentiation of Trigonometric Functions i.e., ( cos ) (iii) Let y tan For a small increament δ y+ δ y tan( +δ ) in, let the corresponing increament in y be δ y. an δ y tan( +δ) tan (+δ) cos(+δ) cos MODULE - V (+δ) cos.cos(+δ) cos(+δ)cos [(+δ) ] cos(+δ)cos δ cos(+δ) cos δy δ δ δ cos(+δ)cos Thus, or sec δy δ lim lim lim δ δ cos(+δ)cos δ 0 δ 0 δ 0 cos sec δ lim δ δ 0 i.e. (tan) sec y sec (iv) Let For a small increament δ y+δ y sec( +δ) an δ y sec(+δ) sec in, let the corresponing increament in y be δ y. cos(+δ) cos cos cos(+δ) cos(+δ)cos δ δ + cos(+δ)cos MATHEMATICS 53

MODULE - V δ + δ δy lim lim δ cos(+δ)cos δ δ 0 δ 0 δ + δ δy lim lim lim δ cos( +δ)cos δ δ 0 δ 0 δ 0 Differentiation of Trigonometric Functions Thus, cos tan.sec cos cos sec.tan i.e. (sec) sec tan Similarly, we can show that (cot) cosec an (cosec) cosec cot Eample. Fin the erivative of Solution : y cot For a small increament δ y+δ y cot( +δ) cot from first principle. in, let the corresponing increament in y be δ y. an δ y cot(+δ) cot cos(+δ) cos ( +δ) cos(+δ) cos (+δ) ( +δ) [ ( +δ) ] ( +δ) [ δ () δ ] ( +δ) 54 MATHEMATICS

Differentiation of Trigonometric Functions [( +δ) δ] ( +δ) MODULE - V δy [( +δ) δ] δ δ ( +δ) δ y [(+δ) δ ] +δ an lim lim lim δ 0δ δ 0 δ (+δ ) δ 0 ( +δ) or Hence. ( ).cosec (cot ) cosec [(+δ) δ] lim δ (+δ) δ 0 Eample. Fin the erivative of cosec from first principle. Solution : Let y cosec an y+δ y cosec( +δ) δ y cosec(+δ) cosec cosec( +δ ) + cosec cosec(+δ ) + cosec cosec(+δ) cosec cosec(+δ ) + cosec ( +δ) cosec(+δ ) + cosec (+δ) cosec(+δ ) + cosec [ ( +δ ) ] cos δ δ + cosec( ) cosec ( +δ + ) ( +δ) [ ] δ cos + δy lim lim δ cosec(+δ ) + cosec] δ 0 δ 0 δ/ δ/ [( +δ).] cos or ( (cosec)() MATHEMATICS 55

MODULE - V (cosec) (coseccot) Thus, ( cosec) ( cosec) ( coseccot) Eample.3 Fin the erivative of Solution : Let y sec an y+δ y sec ( +δ) then, δ y sec ( +δ) sec Differentiation of Trigonometric Functions sec from first principle. cos cos ( +δ) cos (+δ)cos [( +δ + ][( +δ )] cos ( +δ)cos (+δ)δ cos (+δ)cos δ y (+δ)δ δ cos ( +δ)cos. δ Now, δ y ( +δ)δ lim lim δ 0δ δ 0 cos (+δ)cos. δ cos cos cos tan.sec cos cos sec(sec.tan) sec (sec tan ) CHECK YOUR PROGRESS.. Fin the erivative from first principle of the following functions with respect to : (a) cosec (b) cot (c) cos () cot (e) cosec (f). Fin the erivative of each of the following functions : (a) (b) cosec (c) tan 56 MATHEMATICS

Differentiation of Trigonometric Functions. DERIVATIVES OF TRIGONOMETRIC FUNCTIONS You have learnt how we can fin the erivative of a trigonometric function from first principle an also how to eal with these functions as a function of a function as shown in the alternative metho. Now we consier some more eamples of these erivatives. Eample.4 Fin the erivative of each of the following functions : (i) (ii) tan (iii) 3 cosec(5 ) MODULE - V Solution : (i) Let y, t, where t By chain Rule, Hence, cost t t, we have t () cos (ii) Let y tan an t cos t (). cos t cos By chain rule, tan t where t sec t t an t, we have t sec t t sec sec Hence, ( tan ) Alternatively : Let y tan (iii) Let 3 y cosec(5 ) sec sec 3 3 3 cosec(5 )cot(5 ) [5 ] 3 3 5 cosec(5 )cot(5 ) or you may solve it by substituting 3 t 5 MATHEMATICS 57

MODULE - V Differentiation of Trigonometric Functions Eample.5 Fin the erivative of each of the following functions : (i) 4 y (ii) y + cos Solution : 4 y (i) (ii) 4 4 () + ( ) (Ug prouct rule) 4 3 (cos) + (4 ) 4 3 cos+ 4 3 [cos+ ] y + cos cos cos tan sec sec Alternatively : You may fin the erivative by ug quotient rule Let y + cos (+ cos) () + cos (+ cos) ( ) (+ cos)(cos) (+ cos) ( ) 58 cos + cos + (+ cos ) cos+ (+ cos) (+ cos) sec cos MATHEMATICS

Differentiation of Trigonometric Functions Eample.6 Fin the erivative of each of the following functions w.r.t. : (i) cos (ii) 3 MODULE - V Solution : (i) Let y cos t where t cos Ug chain rule t t an t, we have t cos. ( ) t (ii) Let 3 y cos 3 / 3 ( ) ( ) 3 cos 3 3 cos Thus, 3 3 cos Eample.7 Fin, when (i) y + (ii) y a( cost), a(t + t) Solution : We have, (i) y + + + MATHEMATICS 59

MODULE - V Differentiation of Trigonometric Functions + ( cos)(+ ) ( )(cos) (+ ) + cos (+ ) + (+ ) Thus, / + + (+ ) + + Alternatively, it is more convenient to fin the erivative of such square root function by rationalig the enominator. y + cos sec tan sectan sec cos cos + (ii) a(t+ t), y a( cost) Ug chain rule, a(+ cost), a(t) t t t, we have t a(t) a(+ cost) t t cos t tan t cos 60 MATHEMATICS

Differentiation of Trigonometric Functions Eample.8 Fin the erivative of each of the following functions at the inicate points : (i) y + ( 5) at π (ii) y cot+ sec + 5 at π/6 Solution : (i) y + ( 5) π At, cos () + ( 5) ( 5) cos+ 4( 5) cosπ+ 4( π 5) + 4π 0 4π (ii) y cot+ sec + 5 π At, 6 cosec sec(sectan) + cosec + sec tan π π π cosec + sec tan 6 6 6 4 4+ 3 3 MODULE - V 8 4 + 3 3 Eample.9 If y (a+y), prove that ( + ) a y a Solution : It is given that y y (a+y) or (a+ y) Differentiating w.r.t. on both sies of () we get...() (a+ y)cosy ycos(a+ y) (a+ y) (a+ y y) or (a+ y) MATHEMATICS 6

MODULE - V or ( + ) a y a Differentiation of Trigonometric Functions Eample.0 If y + +...to infinity, prove that Solution : We are given that cos y y + +...toinfinity or y + y or y + y Differentiating with respect to, we get y cos+ or cos Thus, y (y ) cos CHECK YOUR PROGRESS.. Fin the erivative of each of the following functions w.r.t : (a) y 34 (b) y cos5 (c) y tan () y (e) y (f) y tan (g) y π cot3 (h) y sec0 (i) y cosec. Fin the erivative of each of the following functions : sec (a) f() sec + () ( ) + cos (b) f() cos (c) f() f() + cos(e) f() cosec (f) f() cos3 (g) f() 3 3. Fin the erivative of each of the following functions : (a) 3 y (b) y cos (c) 4 y tan () 4 y cot (e) 5 y sec (f) 3 y cosec (g) y sec (h) y sec+ tan sec tan 6 MATHEMATICS

Differentiation of Trigonometric Functions 4. Fin the erivative of the following functions at the inicate points : π + π (a) y cos( +π /), (b) y, 3 cos 4 MODULE - V 5. If y tan+ tan+ tan +..., to infinity Show that (y ) sec. 6. If cosy cos(a + y), prove that cos (a+ y). a.3 DERIVATIVES OF INVERSE TRIGONOMETRIC FUNCTIONS FROM FIRST PRINCIPLE We now fin erivatives of stanar inverse trignometric functions, first principle. (i) We will show that by first principle the erivative of ( ) ( ) w.r.t. is given by cos, tan, by Let y. Then y an so +δ (y+δy) Asδ 0, δy 0. Now, δ (y+δy) y or (y+δy) y δ (y+δy) y δy δy δ (y+δy) y δy lim lim δy 0 δy δ 0δ [On iviing both sies by δ ] [ δy 0when δ 0] cos y+ δy δy lim δy 0 δy ( cosy) cos y ( y) ( ) MATHEMATICS 63

MODULE - V ( ) ( ) ( cos ) (ii) ( ) For proof procee eactly as in the case of (iii) Now we show that, ( tan ) Differentiation of Trigonometric Functions +. Let y tan.then tany an so +δ tan(y+δy) Asδ 0, alsoδy 0 Now, δ tan(y+δy) tany tan(y+δy) tany δy δy δ tan(y+δy) tany δy lim lim δy 0 y δ 0 δ δ [ δy 0when δ 0] (y+δy) y lim δy δy 0 cos(y+δy) cosy (y+δy)cosy cos(y+δy)y lim δy 0 δ y.cos(y+δy)cosy (y+δy y) lim δy 0δ y.cos(y+δy)cosy δy lim δy 0 δ y cos(y+δy)cosy sec y cos y sec y + tan y + + ( tan ) + (iv) ( cot ) For proof procee eactly as in the case of tan. 64 MATHEMATICS

Differentiation of Trigonometric Functions (v) We have by first principle - (sec ) ( - ) Let y sec. Then sec y an so +δ sec(y+δy). As δ 0,also δy 0. Now δ sec(y+δy) secy. sec(y+δy) secy δy δy δ MODULE - V sec(y+δy) secy δy lim lim δy 0 y δ 0 δ δ [ δy 0when δ 0] y y y + δ δ lim ( ) δy 0 δ y.cosycos y+δy y y y + δ δ lim δy 0 cosycos( y+δy) δy y secytany cosycosy secytany secy sec y ( ) ( ) ( ) - (vi) ( ) sec cosec. ( - ) For proof procee as in the case of sec. Eample. Fin erivative of ( ) Solution : Let y from first principle. y Now, ( +δ ) (y +δy) ( ) ( ) +δ y+δy y δ δ MATHEMATICS 65

MODULE - V δy ( ) y cos y+ δ +δ δy lim lim lim (+δ) δy δ δ 0 δy 0 δ 0 Differentiation of Trigonometric Functions cosy cosy y 4. Eample. Fin erivative of Solution : Let y w.r.t. by elta metho. y..() Also (y+δ y) +δ..() From () an (), we get or or (y+δy) y +δ ( +δ )( +δ + ) δy δy cos y+ +δ + δ +δ + δy δ y cos y+ δ +δ + δy δy δy cos y + δ δy +δ + δy δy δy lim lim cos y lim + δ δy δ 0 δy 0 δy 0 or lim +δ + δ 0 cosy or ( δy 0 as δ 0) y cosy 66 MATHEMATICS

Differentiation of Trigonometric Functions CHECK YOUR PROGRESS.3. Fin by first principle that erivative of each of the following : (i) cos (iv) tan cos (ii) tan (v) (iii) cos (vi) tan MODULE - V.4 DERIVATIVES OF INVERSE TRIGONOMETRIC FUNCTIONS In the previous section, we have learnt to fin erivatives of inverse trignometric functions by first principle. Now we learn to fin erivatives of inverse trigonometric functions by alternative methos. We start with stanar inverse trignometric functions,cos,... (i) Derivative of Solution : Let y y (i) Differentiating w.r.t. y cosy or y y...[ug (i) ] y Hence, [ ] Similarly we can show that (ii) Derivative of [cos ] tan Solution : Let tan y tany Differentiating w.r.t. y, sec y MATHEMATICS 67

MODULE - V Differentiation of Trigonometric Functions an sec y [ We have written tan y in terms of ] + tan y Hence, ( tan ) + +. + Similarly, ( cot ) (iii) Derivative of sec Solution : Let sec y sec y an secytany sec ytan y secy[ ± sec y] ± sec y sec y sec y π Note : (i) When >, sec y is + ve an tan y is + ve, y 0, π (ii) When <, sec y is ve an tan y is ve, y, π Hence, (sec ) Similarly (cosec ) Eample.3 Fin the erivative of each of the following : (i) (ii) cos Solution : (i) Let y (iii) (cosec ) 68 MATHEMATICS

Differentiation of Trigonometric Functions ( ) ( ) MODULE - V / (ii) Let y cos ( ) ( ) (iii) Let ( ) cos y (cosec ) () 4 4 ( ) (cosec ) cosec (cosec ) cosec (cosec ) cosec Eample.4 Fin the erivative of each of the following : (i) Solution : Let (i) cos tan + cos y tan + tan π π + cos (ii) ( ) MATHEMATICS 69

MODULE - V π tan tan 4 π 4 / (ii) y ( ) Let y ( ) Differentiation of Trigonometric Functions cos( ) ( ) cos( ) cos( ) Eample.5 Show that the erivative of tan w.r.t + is. Solution : Let Let tan θ y tan an z + tanθ y tan tan θ an z tan (tan θ) an z ( θ) θ an z θ θ an z θ tanθ + tan θ θ (By chain rule) θ z 70 CHECK YOUR PROGRESS.4 Fin the erivative of each of the following functions w.r.t. an epress the result in the simplest form (-3) :. (a) (b) cos (c) cos cos. (a) tan (cosec cot) (b) cot (sec + tan) (c) tan cos+ MATHEMATICS

Differentiation of Trigonometric Functions 3. (a) (cos ) (b) sec(tan ) 3 () cos (4 3) (e) cot + + 4. Fin the erivative of : tan + tan w.r.t. tan. (c) ( ) MODULE - V.5 SECOND ORDER DERIVATIVES We know that the secon orer erivative of a function is the erivative of the first erivative of that function. In this section, we shall fin the secon orer erivatives of trigonometric an inverse trigonometric functions. In the process, we shall be ug prouct rule, quotient rule an chain rule. Let us take some eamples. Eample.6 Fin the secon orer erivative of (i) (ii) cos (iii) cos Solution : (i) Let y Differentiating w.r.t. both sies, we get cos Differentiating w.r.t both sies again, we get (ii) Let y cos y (cos) y Differentiating w.r.t. both sies, we get ( ) cos. + cos + Differentiating w.r.t. both sies again, we get y ( cos) + (.cos+ ).cos y (.cos ) + MATHEMATICS 7

MODULE - V Differentiation of Trigonometric Functions (iii) Let y cos Differentiating w.r.t. both sies, we get Differentiating w.r.t. both sies, we get / ( ) ( ) ( ) ( ) 3/ y y Eample.7 If y ( ) 3/ ( ) 3/, show that ( ) y y 0 enote the secon an first, orer erivatives of y w.r.t.. Solution : We have, y Differentiating w.r.t. both sies, we get, where y an y respectively or or ( ) y 0 (squaring both sies) Differentiating w.r.t. both sies, we get ( ) ( ) ( ) y y + y 0 or ( ) y y y 0 or ( ) y y 0 7 CHECK YOUR PROGRESS.5. Fin the secon orer erivative of each of the following : (a) (cos) (b) tan MATHEMATICS

Differentiation of Trigonometric Functions. If y ( ), show that ( ) 3. If y (), prove that 4. If y + tan, show that y y. y tan ycos 0 + +. y cos y 0 + MODULE - V (i) (iii) LET US SUM UP () cos (ii) (tan) sec (iv) (cos) (cot) cosec (v) (sec) sectan (vi) If u is a erivabale function of, then (i) (iii) (v) (i) u (u) cosu (ii) u (tanu) sec u (iv) u (secu) secutanu (vi) ( ) (ii) (cosec) coseccot u (cosu) u u (cotu) cosec u u (coseu) cosecucotu (cos ) (iii) (tan ) (iv) + (cot ) + (v) (sec ) If u is a erivable function of, then u (i) ( u) u (vi) (ii) (cosec ) u (cos u) u (iii) u (tan u) + u (iv) u (cot u) + u (v) u (sec u) u u (vi) u (cosec u) u u The secon orer erivative of a trignometric function is the erivative of their first orer erivatives. MATHEMATICS 73

MODULE - V SUPPORTIVE WEB SITES Differentiation of Trigonometric Functions http://www.wikipeia.org http://mathworl.wolfram.com TERMINAL EXERCISE. If. Evaluate, 3. If 3 y tan, fin. 4 4 π + cos at an 0. 5 y + cos (+ ) 3 ( ), fin. 4. If + y sec +, then show that + 0 5. If 3 3 acos θ,y a θ, then fin +. 6. If y + + +..., fin. 7. Fin the erivative of 8. If y cos(cos), prove that y cot y. 0 +. 9. If y tan show that (+ ) y + y 0. w.r.t. cos 0. If y (cos ), show that. ( )y y 0 74 MATHEMATICS

Differentiation of Trigonometric Functions ANSWERS MODULE - V CHECK YOUR PROGRESS. () (a) coseccot (b) cosec (c) cos () cosec (e) cosec cot (f). (a) (b) cosec cot (c) tansec CHECK YOUR PROGRESS.. (a)cos4 (b) 55 sec (c) (e) cos (f) sec (g) 3πcosec 3 (h)0sec0tan0 (i) coseccot () cos sectan. (a) (sec + ) () cos (+ ) (b) ( cos) (c) cos+ (e) cosec( cot) (f) coscos3 33 3. (a) 3 cos (g) 3cos3 3 (b) (c) 3 4tan sec () 3 4cot cosec (e) 5 5sec tan (f) 3 3cosec cot (g) (h) sec( sec + tan) 4. (a) (b) + CHECK YOUR PROGRESS.3. (i) 4 cos (ii) sec tan (iii) ( ) (iv) 4 + tan (v) (+ ) (vi) ( + ) CHECK YOUR PROGRESS.4. (a) 4 (b) 4 (c) MATHEMATICS 75

MODULE - V. (a) ( ) cos cos 3. (a) (b) Differentiation of Trigonometric Functions (c) (b) ( sec tan ) + (c) 3 () (e) (+ ) 4. ( ) + tan CHECK YOUR PROGRESS.5. (a) coscos(cos) (cos) (b) (+ ) + tan (+ ) TERMINAL EXERCISE. 3 tan sec + 3 tan. 0, 0 5(3 ) 3. 5 3( ) 3 (4+ ) 5. secθ 6. y 7. 76 MATHEMATICS