1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these
|
|
- Φίλων Γερμανού
- 8 χρόνια πριν
- Προβολές:
Transcript
1 1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x 3] x / y 4] none of these
2 1. If log x 2 y 2 = a, then x 2 + y 2 Solution : Take y /x = k y = k x dy/dx = k dy/dx = y / x Answer : 2] y / x
3 2. If f is an even function and f 1 exists, then f 1 (e) + f 1 (-e) = 1] 0 2] 1 3] -1 4] e
4 2. Solution :Given that f is an even function then f (-x) = f (x) Diff. w.r.t x f 1 (-x)(-1) = f 1 (x) Substitute x = e f 1 (-e)(-1) = f 1 (e) f 1 (e) + f 1 (-e) =0 Answer 1] 0
5 3.If f (x) = e x g (x), g(0) = 2, g 1 (0) =1, then f 1 (0) is equal to 1]1 2] 3 3] 2 4] 0
6 3.Solution :Given that f (x) = e x g (x), g(0) = 2, g 1 (0) =1, Since f (x) = e x g (x), Diff. w.r.t x f 1 (x) = e x g 1 (x) + g(x) e x Substitute, x = 0 f 1 (0) = e 0 g 1 (0) + g(0) e 0 = 1(1) + 2 (1) = = 3 Answer : 2] 3
7 4. The derivative of an even function is always 1] an odd function 2] an even function 3] does not exist 4] none of these
8 4. Solution : The derivative of an even function is always an odd function Answer : 1] odd function
9 5. Let f and g be differentiable functions satisfying g 1 (a) =2,g(a) =b and fog = i (identity function).then f 1 (b) is equal to 1] ½ 2] 2 3] 2/3 4] -½
10 5. Solution : Given that Let f and g be differentiable functions satisfying g 1 (a) =2,g(a) =b and fog = i (identity function).then f 1 (b) is equal to Since : fog = I (fog ) x = x f [g(x)] = x Diff.w.r.t x f 1 [ g (x)]. g 1 (x) = 1 Substitute : x = a f 1 [g(a)]. g 1 (a) = 1 f 1 (b). 2 = 1 f 1 (b) = 1/2 Answer 1] 1/ 2
11 6.If y = Tan -1 4x + Tan x 1 + 5x 2 3 2x then dy/dxis equal to 1] 1 2] x x 2 3] 1 4] x 2
12 6.Solution : y =Tan -1 4x + Tan x 1 + 5x 2 3 2x Since: Tan -1 x ±Tan -1 y = Tan x ±y 1 + xy Y = Tan -1 5x + x + Tan -1 2/3 +x 1 5x.x 1 (2/3)x Y = Tan -1 5x Tan -1 x + Tan -1 2/3 + Tan -1 x
13 Y = Tan -1 5x +Tan -1 2/3 diff.w.r.t x dy/dx= x 2 Answer 2] x 2
14 (sin x).. 7. If y = (sinx) (sin x) then dy/dx= 1] y 2 2] y 2 sin x sinx(1-logy) 1 logy 3] y 2 cot x 4] y 2 tanx 1 -logy 1 logy
15 7. Solution: Given that y = (sinx) (sin x).. (sin x) Y = [f(x)] y then dy = y 2 f 1 (x) dx f(x) (1 log y ) Y = ( sin x ) y dy = y 2 cosx y 2 cot x dx (1 log y ) sin x 1 log y Answer : 3] y cot x 1-logy
16 8. If x y = e x y, then dy / dx is equal to 1] y 2] x (1 + log x) 2 (1 + logx) 2 3] log x 4] none of these ( 1 + logx ) 2
17 8. Solution : Given that : x y = e x y y log x = (x y) log e e y log x + y = x y ( 1 + log x ) = x y = x 1 + log x Diff. y w.r.t x dy log x dx (1 + logx) 2 Answer : 3] log x (1 + logx) 2
18 9. If 3 sin (xy) + 4 cos( xy) = 5, then dy/ dx 1] -y / x 2] 3 sin (xy) + 4 cos(xy) 3 cos(xy) 4 sin ( xy) 3] 3cos (xy) + 4 sin (xy) 4 cos(xy) 3 sin (xy) 4] none of these
19 9. Solution: Given that 3 sin (xy) + 4 cos( xy) = 5, Take xy= k Diff. w.r.t x x dy+ y = 0 dx dy = -y dx x Answer : 1] y/x
20 10. If f (x)=cos -1 1 ( log x ) 2,then f 1 (e) is 1 + ( log x ) 2 1] 1 / e 2] 1 3] 2 / e 4] 2e
21 10. (x)=cos -1 1 ( log x ) ( log x ) 2 cos -1 1 f 2 ( x ) 2 Tan -1 [f(x)] 1 + f 2 (x) f (x) = 2 Tan -1 ( log x) Diff. w.r.t x f 1 ( x ) = ( logx) 2 x
22 f 1 ( x ) = ( logx) 2 x Substitute : x = e f 1 (e) ( log e e) 2 e 2e e Answer : 1] 1 e
23 11. If 2x 2 + 4xy + 3y 2 = 0, then d 2 y / dx 2 = 1] 0 2] ½ 3] 1 4] ¾ (2x+y) 2
24 11. Solution :Given that 2x 2 + 4xy + 3y 2 = 0, ax 2 + 2hxy + by 2 = 0 then d 2 y = 0 dx 2 Answer : 1] 0
25 12. ltf (x + y) = f(x). f(y) for all x and y. suppose f(5) = 2, f 1 (0) =3, then f 1 (5)= 1] 3 2] 2 3] 6 4]-1
26 12. Solution:Given that f (x + y) = f(x). f(y) f(5) = 2, f 1 (0) =3, then f 1 (5)= consider f ( x + 5 ) = f (x) f (5) Diff. w.r.t x f 1 ( x + 5) = f 1 ( x) f (5) Sub x = 0 f 1 ( ) = f 1 (0) f (5) f 1 (5) = 3 (2) = 6 Answer : 3] 6
27 13. The differential co-efficient of f(sinx) w.r.tx where f (x) = logxis 1] tan x 2] cotx 3] (cosx) 4] 1/x
28 13. Solution: The differential co-efficient of f (sinx) w.r.tx where f (x) = logxis Diff. f (sinx) w.r.t x f 1 ( sinx) cosx since f (x) = log x 1 cosx = cot x f 1 (x) = 1 sinx x Answer: 2] cotx
29 14. If y = 1 + x + x to dy/ dx = [ x < ] 1] x/y 2] x 2 / y 2 3] -y 2 4] y 2
30 14. Solution : Given that : y = 1 + x + x to [ x < ] which represents a geometric series S = a, where r < 1 r y = 1 1 -x Diff. y.w.r.t x dy/dy = -1 (-1) = 1 (1-x) 2 (1-x) 2 = y 2 Answer : 4] y 2
31 15.If f (x) = ( 1 + x ) ( 1 + x 2 ) ( 1 + x 3 ) (1+x n ) then f 1 (o) = 1] 0 2] 1 3] -1 4] 2
32 15. Solution: Given that : f (x) = ( 1 + x ) ( 1 + x 2 ) ( 1 + x 3 ) (1+x n ) log f (x) = log ( 1+x) + log (1+x 2 ) + log (1+x n ) Diff. w.r.t x f 1 (x) = 1 2x n x n-1 f(x) 1 + x 1 + x x n f 1 (0) = 1 2(0) n(0) f(0) f 1 (0) = 1 Answer : 2] 1
33 16. If y = Tan -1 log (e/x 2 ) + Tan 4 +2logx log (ex 2 ) 1-8 logx then d 2 y/dx 2 = 1] 2 1] 2 2] 1 3] 0 4] -1
34 16.y = Tan -1 log (e/x 2 ) +Tan logx log (ex 2 ) 1-8 logx y = Tan logx + Tan log x log x 1 4(2 logx) Y= Tan -1 1-Tan -1 (2logx ) + Tan Tan -1 (2logx ) diff. w.r.t x dy/dx= 0 d 2 y = 0 Answer : 3] 0 dx 2 Answer : 3] 0
35 17.If y = (Tanx-x)+ (Tanx-x)+ (Tanx-x)+.to terms then dy/dx = 1] sec 2 x 2] sec 2 x 2y-1 1-2y 3] Tanx 4] Tan x 2y-1 2y-1
36 17. y = (Tanx-x)+ (Tanx-x)+ (Tanx-x)+.to y = f(x) + f(x) + to dy f 1 (x) dx 2y 1 dy sec 2 x -1 Tan x dx 2y-1 2y-1 Answer : 3] Tan x 2y-1
37 18. Let f be a function defined for all x Є.R If f is differentiable and f (x 3 ) = x 5 ( x 0 ) then the value of f 1 ( 27) is 1]15 2] 45 3] 0 4] 10
38 18. Solution: Given that f (x 3 ) = x 5 ( x 0 ) Diff. w.r.t x f 1 (x 3 ) 3x 2 = 5x 4 f 1 ( 3 3 ) = f 1 (27 ) = 5 (3) = 15 Answer: 1] 15
39 19. If log sinx y = cosx then dy/ dx= 1] [ cosx cotx sinxlog sinx] 2] y [ cosxcotx+ sin x log sinx] 3] [cosx cotx sinxlog sinx] 4] y [cosxcotx sinxlog sinx]
40 19. Solution: log sinx y = cosx then = Y = (sinx) cosx y = [f (x)] g(x) dy= [ f(x)] g(x) g (x) f 1 (x) + g 1 (x) log f (x) dx f(x) dy= ( sinx) cosx cosx cosx -sinx log sin x dx sinx = y [cosx cotx sinxlog sinx] Answer: 4] y [cosx cotx sinxlog sinx]
41 20. If y = sinx. Sin2x. sin3x.. Sinnx then dy/dx= n 1] y k cot kx 2] y k cot kx k=1 k=1 n 3] y k TAnkx 4] y k Tan kx k=1 k=1 n n
42 20. Solution : If y = sinx. Sin2x sin3x.. Sinnx log y = log sinx+ log sin 2x +. + log sinnx y 1 cosx 2 cos2x 3 cos3x +..+ n cosnx y sinx sin2x sin3x sinnx Y 1 = y [ cotx+ 2cot 2x +. + k cot k x] n Y 1 = y k cot kx K=1 Answer : 1] n y k cot k x K=1
43 21. If y = 1+ logx+ (logx) 2 + ( logx) ! terms then d 2 y /dx 2.. to 1] 1 / x 1] 1 / x 2] 2 / x 3] 1 4] 0
44 21. Solution: y = 1+ logx+ (logx) 2 + ( logx)3 +.. to 2 3! e x = 1 + x + x 2 + x 3 +. to 2! 3! y = e log x y = x dy/dx = 1 d 2 y dx 2 = 0 Answer: 4] 0
45 22. If y = sec x + Tanx and o < x < π. then dy secx Tanx dx 1] sec x [ secx Tanx ] 1] sec x [ secx Tanx ] 2] Tan x [ secx + tanx ] 3] secx [secx + Tanx] 4] Tan x [ secx Tanx]
46 22. Solution : If y = sec x + Tanx and o < x < π. secx Tanx y = (sec x + Tanx) 2 sec 2 x Tan 2 x y = secx + Tan x dy = secx Tan x + sec 2 x dx = secx [Tan x + secx] Answer: 3] secx [ Tan x + secx]
47 23. If g is the inverse function of f and f 1 (x) = 1 then g 1 (x) is equal to 1 + x n, 1] 1+(g (x)) n 2] 1 g (x) 3] 1 + g (x) 4] 1 (g(x)) n
48 23. Solution : Given that: g is the inverse function of f and f` (x) = x n, and also f = g -1 (fog) = I ( identity function) (fog) x = x f ( g (x)] = x diff. w.r.t x f 1 [g(x)] g 1 (x) = 1 1 g 1 (x) = 1 1+ (g(x) n g (x) = 1+ [g(x) n Answer 1] 1 + [ g (x)] n
49 24. If f (x) is an odd differentiable function defined on (-, ) such that f 1 (3) = 2, then f 1 (-3) equals : 1] 0 1] 0 2] 1 3] 2 4] 4
50 24. Solution : Given that f (x) is an odd differentiable function : f (-x) = -f (x) Diff w.r.t x f 1 (-x) (-1) = - f 1 (x) f 1 (-x) = f 1 (x) since f 1 (3) = 2 f 1 (-3) = f 1 (3) f 1 (-3) = 2 Answer: 3] 2
51 25.A differentiable function f(x) is such that f (1) = 7 and f 1 (1) = 1/7. If f -1 exists and f -1 = g, then 1] g 1 (7) = 1/7 2] g 1 (7) = 7 3] g 1 (1) = 1/7 4] g 1 (1) = 8
52 25.Solution : Given that : f -1 = g, f(1) = 7, and f 1 (1) = 1/7 go f = I ( gof) x = x g [ f (x)] = x g 1 [(f(x)]. f 1 (x) =1 g 1 [f(1)]. f 1 (1) = 1 g 1 (7). 1/7 = 1 g 1 (7) = 7 Answer 2] g (7) = 7
53 If x = e Tan [y x x] then dy/dx= 1] 2x [1 + Tan x (log x )] + x sec 2 ( logx) 2] 2 x [ 1 + Tan ( log x) ] + sec 2 ( log x ) 3] 2 x [ 1 + Tan ( logx) ] + x 2 sec 2 ( logx) 4] 2x [ 1 + tan ( logx) ] + sec 2 ( logx)
54 Solution : Given that x = e Tan [y x x ] Tan (logx) = y x 2 x 2 x 2 Tan (logx) = y x 2 Y = x 2 + x 2 Tan ( logx) dy/dx=2x + x 2 sec 2 (logx) + Tan ( logx) ( 2x) x Answer :3] 2 x [ 1 + Tan ( logx) ] + x 2 sec 2 ( logx)
55 . 27. If x = a [θ-sinθ], y = a[1-cosθ].then dy/dx = 1] cotθ/2 2] Tan θ/2 3] ½ coesec 2 θ/2 4] -½ cosec 2 θ/2
56 . 27. Solution : Given that If x = a [θ-sinθ], y = a[1-cosθ]. dy/dx = a [1-cosθ] a sinθ = 2sin 2 θ/2 2 sin θ/2 cosθ/2 =Tan θ/2 Answer 2] Tan θ/2
57 . 28. If log y = m tan -1 x, then 1] (1 +x 2 ) y 2 + (2x + m ) y 1 = 0 2] (1 +x 2 ) y 2 + (2x - m ) y 1 = 0 3] (1 +x 2 ) y 2 - (2x + m ) y 1 = 0 4] (1 +x 2 ) y 2 - (2x - m ) y 1 = 0
58 . 28. Solution : Given that log y = m tan -1 x, y 1 = m y 1+x 2 (1+x 2 ) y 1 = my (1 + x 2 ) y 2 + y 1 2x = my 1 ( 1 + x 2 ) y xy 1 my 1 = 0 ( 1 + x 2 ) y 2 + ( 2 x m ) y 1 = 0 Answer : 2] ( 1 + x) y + ( 2x m) y = 0
59 . 29. If y2 2x 2 = y, then dy/dxat (1, -1 ) is 1] -4/3 2] 4/3 3] ¾ 4] -3/4
60 . 29. Solution: Given that y 2-2x 2 - y = 0 dy/dx = - (diff. w.r.t x keeping y as constant) = - (-4x) (diff. w.r.t y keeping x as constant) (2y-1) dy/dx = 4x 2y-1 dy 4(1) (4) -4 dx (1,-1) 2(-1) Answer : 1] -4/3
61 . 30. Derivative of f (logx) w.r.t x where f (x) = e x 1] e x 2] log x 3] 1/x 4] 1
62 . 30. Solution :diff f (logx) w.r.t x = f 1 ( log x ) 1 f (x) = e x x f 1 (x) = e x = x 1 f 1 ( logx) = e logx = 1 x =x Answer: 4] 1
63 . 31. If f (x) = sin [π / 2 [x]-x 5 ], 1 <x<2, where[x] denotes the greatest integer.less than or equal to x, then f 1 (5π/2) = 1] 5 (π /2) 4/5 2] -5 (π /2) 4/5 3] 0 4] none of these
64 . 31. Solution : Given that f (x) = sin [π/2 [x]-x 5 ], 1 < x < 2, [x]=1 f (x) = sin [π/2 (1) x 5 ], f 1 (x) = cos [π/2 x 5 ]. [-5x 4 ] f 1 (5π/2) = cos [π/2 5π/2 ) 5 ].(-5)(5π/2 ) 4 = - 5 (π/2) 4/5 Answer 2] - 5 (π/2) 4/5
65 . 32. If y = cos -1 2cosx -3sinx then dy = 1] 2 2] -2 3] -1 4] 1 13 dx
66 . 32. Solution : y = cos -1 2cosx -3sinx 13 y = cos -1 2 cosx - 3 sinx cosα = 2/ 13 sinα3/ 13 y = cos -1 [cosα cosx sinα sinx] y = cos -1 [cos(α + x)] y = α + x dy/dx = 1 Answer: 4] 1
67 . 33. If y = cos 2 3x/2 sin 2 3x/2, then d 2 y/dx 2 is 1] 9y 2] -3 1 y 2 3] 3 1 y 2 4] -9y
68 . 33. Solution : Given that y = cos 2 3x/2 sin 2 3x/2 y= cos 3x dy/dx = - 3 sin 3x d 2 y/dx 2 = -9 cos 3x = -9y Answer: 4]-9y
69 . 34. If y = log 5 ( log 5 x ) then dy/dx = 1] 1 x log 5 x 2] 1 x log 5 x.log 5 x 3] 1 x log 5 x.(log5) 2 4] none of these
70 . 34. Solution : Given that: y = log 5 ( log 5 x ) dy 1 dx (log5) (log 5 x) x (log5) 1 = x (log 5 x) (log5) 2 Answer:3] 1 x (log 5 x) (log5) 2
71 . 35. If f (x ) =1+nx+ n (n-1) x 2 + n ( n-1) (n-2) x x n then f (1) = 1] n ( n-1 ) 2 n-1 2] (n-1)2 n-1 3] n (n-1)2 n-2 4] n (n-1)2 n
72 . 35. Solution : Given that: f (x ) = 1 + nx+ n (n-1) x+ n ( n-1) (n-2) x x n f (x) = ( 1+x) n f 1 (x) = x ( 1 + x ) n-1 f 11 (x) = n ( n-1) ( 1+x) n-2 f 11 (1) = n ( n-1) ( 1+1) n-2 = n ( n-1) 2 n (by binomial theorem) Answer : 3]n ( n-1) 2 n-2
73 36. If y = sec -1 x+1 + sin -1 x - 1, then dy = 1] x - 1 x + 1 ` 2] x + 1 3] 0 4] 1 x - 1 x-1 x+1 dx
74 . 36. Solution : Given that: y = sec -1 x+1 + sin -1 x - 1 x -1 x +1 y = cos -1 x sin -1 x - 1 y = π / 2 dy/dx = 0 x +1 x +1 Answer :3] 0
75 . 37.If y = tan -1 1+sinx+ 1 sinx, 0 <x< π/2 Then dy/dx = 1] ½ 2] -½ 3] x/2 4] x/2 1+sinx 1 sinx
76 . 37. Solution : Given that: y = tan -1 1+sinx+ 1 sinx 1+sinx 1 sinx 0 <x< π/2 0 <x/2< π/4 y = tan -1 Cos x/2 > sin x/2 cosx/2 + sin x/2+ cos x/2-sinx/2 cosx/2 + sin x/2- cos x/2+sinx/2 y = tan -1 [cotx/2] y = π/2 x/2 dy/dx = - ½ Answer :2] - ½
77 y = sin -1 (3x 4x 3 ), then dy/dx at x = 1/3, is 1] ] 9 2 3] ] 9/8
78 Solution : Given that: y = sin -1 (3x 4x 3 ) y = 3 sin -1 x dy/dx = x dy/dx = /9 8 4 Answer :3] 9 2 4
79 If y = tan tan tan x+x 2 x 2 +3x+3 x 2 +5x+7. to n terms then y 1 (0) = 1] -1/n ] n 2 /(n 2 +1) 1] -1/n ] n 2 /(n 2 +1) 3] n 2 /n ] n / n+1
80 If y = tan tan tan x+x 2 x 2 +3x+3 x 2 +5x to n terms y = tan -1 (x+1)-x tan -1 (x+2) (x+1) 1+ (x+1)x 1+ ( x+2) ( x + 1) tan -1 (x+n)-(x+n-1) 1 + ( x + n) ( x + n-1) Y= tan -1 (x+1)-tan 1 x + tan -1 (x+2) tan -1 (x+1).+ tan -1 (x+n) tan -1 (x+n-1) Y=tan -1 (x+n) tan -1 x y 1 = 1/1+(x+n) 2 1/1+x 2 y 1 (0)=1/(1+n 2 )-1 Answer: 2] n 2 /(n 2 +1)
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Διαβάστε περισσότεραSection 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Διαβάστε περισσότεραCHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD
CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.
Διαβάστε περισσότεραPARTIAL NOTES for 6.1 Trigonometric Identities
PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot
Διαβάστε περισσότεραReview Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -
Διαβάστε περισσότεραPractice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
Διαβάστε περισσότεραReview-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)
. Trigonometric Integrls. ( sin m (x cos n (x Cse-: m is odd let u cos(x Exmple: sin 3 (x cos (x Review- nd Prctice problems sin 3 (x cos (x Cse-: n is odd let u sin(x Exmple: cos 5 (x cos 5 (x sin (x
Διαβάστε περισσότεραSecond Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
Διαβάστε περισσότερα3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Διαβάστε περισσότεραDifferential equations
Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential
Διαβάστε περισσότεραCOMPLEX NUMBERS. 1. A number of the form.
COMPLEX NUMBERS SYNOPSIS 1. A number of the form. z = x + iy is said to be complex number x,yєr and i= -1 imaginary number. 2. i 4n =1, n is an integer. 3. In z= x +iy, x is called real part and y is called
Διαβάστε περισσότεραCRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
Διαβάστε περισσότεραFourier Analysis of Waves
Exercises for the Feynman Lectures on Physics by Richard Feynman, Et Al. Chapter 36 Fourier Analysis of Waves Detailed Work by James Pate Williams, Jr. BA, BS, MSwE, PhD From Exercises for the Feynman
Διαβάστε περισσότεραAquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET
Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical
Διαβάστε περισσότεραTrigonometric Formula Sheet
Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ
Διαβάστε περισσότεραSolution to Review Problems for Midterm III
Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5
Διαβάστε περισσότεραHomework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Διαβάστε περισσότεραDifferentiation exercise show differential equation
Differentiation exercise show differential equation 1. If y x sin 2x, prove that x d2 y 2 2 + 2y x + 4xy 0 y x sin 2x sin 2x + 2x cos 2x 2 2cos 2x + (2 cos 2x 4x sin 2x) x d2 y 2 2 + 2y x + 4xy (2x cos
Διαβάστε περισσότεραFourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
Διαβάστε περισσότεραChapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Διαβάστε περισσότεραIf we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2
Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the
Διαβάστε περισσότεραPg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is
Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =
Διαβάστε περισσότερα2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Διαβάστε περισσότεραIf we restrict the domain of y = sin x to [ π 2, π 2
Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the
Διαβάστε περισσότεραANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
Διαβάστε περισσότεραMATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81
1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then
Διαβάστε περισσότεραTRIGONOMETRIC FUNCTIONS
Chapter TRIGONOMETRIC FUNCTIONS. Overview.. The word trigonometry is derived from the Greek words trigon and metron which means measuring the sides of a triangle. An angle is the amount of rotation of
Διαβάστε περισσότεραSection 7.6 Double and Half Angle Formulas
09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)
Διαβάστε περισσότεραTrigonometry 1.TRIGONOMETRIC RATIOS
Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y
Διαβάστε περισσότεραHomework#13 Trigonometry Honors Study Guide for Final Test#3
Homework#13 Trigonometry Honors Study Guide for Final Test#3 1. Στο παρακάτω σχήμα δίνεται ο μοναδιαίος κύκλος: Να γράψετε τις συντεταγμένες του σημείου ή το όνομα του άξονα: 1. (ε 1) είναι ο άξονας 11.
Διαβάστε περισσότεραQuadratic Expressions
Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots
Διαβάστε περισσότεραEE1. Solutions of Problems 4. : a) f(x) = x 2 +x. = (x+ǫ)2 +(x+ǫ) (x 2 +x) ǫ
EE Solutions of Problems 4 ) Differentiation from first principles: f (x) = lim f(x+) f(x) : a) f(x) = x +x f(x+) f(x) = (x+) +(x+) (x +x) = x+ + = x++ f(x+) f(x) Thus lim = lim x++ = x+. b) f(x) = cos(ax),
Διαβάστε περισσότεραChapter 6 BLM Answers
Chapter 6 BLM Answers BLM 6 Chapter 6 Prerequisite Skills. a) i) II ii) IV iii) III i) 5 ii) 7 iii) 7. a) 0, c) 88.,.6, 59.6 d). a) 5 + 60 n; 7 + n, c). rad + n rad; 7 9,. a) 5 6 c) 69. d) 0.88 5. a) negative
Διαβάστε περισσότεραMathCity.org Merging man and maths
MathCity.org Merging man and maths Exercise 10. (s) Page Textbook of Algebra and Trigonometry for Class XI Available online @, Version:.0 Question # 1 Find the values of sin, and tan when: 1 π (i) (ii)
Διαβάστε περισσότεραChapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Διαβάστε περισσότερα*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6)
C3 past papers 009 to 01 physicsandmathstutor.comthis paper: January 009 If you don't find enough space in this booklet for your working for a question, then pleasecuse some loose-leaf paper and glue it
Διαβάστε περισσότεραAreas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Διαβάστε περισσότεραMath221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
Διαβάστε περισσότεραDiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation
DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values
Διαβάστε περισσότεραPartial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
Διαβάστε περισσότεραCHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Διαβάστε περισσότεραL.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:
Διαβάστε περισσότεραSection 7.7 Product-to-Sum and Sum-to-Product Formulas
Section 7.7 Product-to-Sum and Sum-to-Product Fmulas Objective 1: Express Products as Sums To derive the Product-to-Sum Fmulas will begin by writing down the difference and sum fmulas of the cosine function:
Διαβάστε περισσότερα298 Appendix A Selected Answers
A Selected Answers 1.1.1. (/3)x +(1/3) 1.1.. y = x 1.1.3. ( /3)x +(1/3) 1.1.4. y = x+,, 1.1.5. y = x+6, 6, 6 1.1.6. y = x/+1/, 1/, 1.1.7. y = 3/, y-intercept: 3/, no x-intercept 1.1.8. y = ( /3)x,, 3 1.1.9.
Διαβάστε περισσότεραExample Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Διαβάστε περισσότεραCBC MATHEMATICS DIVISION MATH 2412-PreCalculus Exam Formula Sheets
System of Equations and Matrices 3 Matrix Row Operations: MATH 41-PreCalculus Switch any two rows. Multiply any row by a nonzero constant. Add any constant-multiple row to another Even and Odd functions
Διαβάστε περισσότεραSolution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
Διαβάστε περισσότερα2x 2 y x 4 +y 2 J (x, y) (0, 0) 0 J (x, y) = (0, 0) I ϕ(t) = (t, at), ψ(t) = (t, t 2 ), a ÑL<ÝÉ b, ½-? A? 2t 2 at t 4 +a 2 t 2 = lim
9çB$ø`çü5 (-ç ) Ch.Ch4 b. è. [a] #8ƒb f(x, y) = { x y x 4 +y J (x, y) (, ) J (x, y) = (, ) I ϕ(t) = (t, at), ψ(t) = (t, t ), a ÑL
Διαβάστε περισσότεραStatistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Διαβάστε περισσότεραD Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
Διαβάστε περισσότεραMock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =
Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n
Διαβάστε περισσότεραSection 9.2 Polar Equations and Graphs
180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify
Διαβάστε περισσότεραProbability and Random Processes (Part II)
Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation
Διαβάστε περισσότεραAnswers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =
C ALGEBRA Answers - Worksheet A a 7 b c d e 0. f 0. g h 0 i j k 6 8 or 0. l or 8 a 7 b 0 c 7 d 6 e f g 6 h 8 8 i 6 j k 6 l a 9 b c d 9 7 e 00 0 f 8 9 a b 7 7 c 6 d 9 e 6 6 f 6 8 g 9 h 0 0 i j 6 7 7 k 9
Διαβάστε περισσότεραF19MC2 Solutions 9 Complex Analysis
F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at
Διαβάστε περισσότεραProblem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.
Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +
Διαβάστε περισσότεραd dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n1 x dx = 1 2 b2 1 2 a2 a b b x 2 dx = 1 a 3 b3 1 3 a3 b x n dx = 1 a n +1 bn +1 1 n +1 an +1 d dx d dx f (x) = 0 f (ax) = a f (ax) lim d dx f (ax) = lim 0 =
Διαβάστε περισσότεραST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Διαβάστε περισσότεραΑπόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
Διαβάστε περισσότεραAnswer sheet: Third Midterm for Math 2339
Answer sheet: Third Midterm for Math 339 November 3, Problem. Calculate the iterated integrals (Simplify as much as possible) (a) e sin(x) dydx y e sin(x) dydx y sin(x) ln y ( cos(x)) ye y dx sin(x)(lne
Διαβάστε περισσότεραSolutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
Διαβάστε περισσότεραOrdinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
Διαβάστε περισσότεραΤίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.6: Τριγωνομετρικά Ολοκληρώματα Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Γεώργιος Νικ. Μπροδήμας Κεφάλαιο Γ.6:
Διαβάστε περισσότεραEE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Διαβάστε περισσότεραb. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
Διαβάστε περισσότεραMatrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Διαβάστε περισσότεραAreas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Διαβάστε περισσότεραSCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
Διαβάστε περισσότεραFinite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
Διαβάστε περισσότερα4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
Διαβάστε περισσότεραΕκπαιδευτικός Οµιλος ΒΙΤΑΛΗ
Παράγωγος - ιαφόριση ρ. Κωνσταντίνος Κυρίτσης Μακράς Στοάς 7 & Εθνικής Αντιστάσεως Πειραιάς 185 31 05 Μαρτίου 2009 Περίληψη Οι παρούσες σηµειώσεις αποτελούν µια σύνοψη της ϑεωρίας των πα- ϱαγώγων πραγµατικών
Διαβάστε περισσότεραProblem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x.
Appendix B: Solutions to Problems Problem 1.1 For y a + bx, y 4 when x, hence a 4. When x increases by 4, y increases by 4b, hence b 5 and y 4 + 5x. Problem 1. The plus sign indicates that y increases
Διαβάστε περισσότερα1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint
1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,
Διαβάστε περισσότερα3 }t. (1) (f + g) = f + g, (f g) = f g. (f g) = f g + fg, ( f g ) = f g fg g 2. (2) [f(g(x))] = f (g(x)) g (x) (3) d. = nv dx.
3 }t! t : () (f + g) f + g, (f g) f g (f g) f g + fg, ( f g ) f g fg g () [f(g(x))] f (g(x)) g (x) [f(g(h(x)))] f (g(h(x))) g (h(x)) h (x) (3) d vn n dv nv (4) dy dy, w v u x íªƒb N úb5} : () (e x ) e
Διαβάστε περισσότεραSolved Examples. JEE Main/Boards. Similarly, Example 1: If x y 2x 3x + y 3z + 4w = 5 25, find x, y, z, w.
6.6 Matrices Solved Examples JEE Main/Boards Example : If x y x + z x + y z + 4w 5 5 5, find x, y, z, w. Sol. We know that in equal matrices the corresponding elements are equal. Therefore, by equating
Διαβάστε περισσότεραUniform Convergence of Fourier Series Michael Taylor
Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula
Διαβάστε περισσότεραLocal Approximation with Kernels
Local Approximation with Kernels Thomas Hangelbroek University of Hawaii at Manoa 5th International Conference Approximation Theory, 26 work supported by: NSF DMS-43726 A cubic spline example Consider
Διαβάστε περισσότεραEquations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da
BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1 Equations r(t) = x(t) î + y(t) ĵ + z(t) k r = r (t) t s = r = r (t) t r(u, v) = x(u, v) î + y(u, v) ĵ + z(u, v) k S = ( ( ) r r u r v = u
Διαβάστε περισσότεραSection 8.2 Graphs of Polar Equations
Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation
Διαβάστε περισσότεραPhys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Διαβάστε περισσότερα26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section
SECTION 5. THE NATURAL LOGARITHMIC FUNCTION 5. THE NATURAL LOGARITHMIC FUNCTION A Click here for answers. S Click here for solutions. 4 Use the Laws of Logarithms to epand the quantit.. ln ab. ln c. ln
Διαβάστε περισσότεραReminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
Διαβάστε περισσότεραEcon 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
Διαβάστε περισσότεραC.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
Διαβάστε περισσότεραParametrized Surfaces
Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some
Διαβάστε περισσότεραHomework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Διαβάστε περισσότερα2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.
EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.
Διαβάστε περισσότεραSCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018
Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals
Διαβάστε περισσότεραPaper Reference. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced. Thursday 11 June 2009 Morning Time: 1 hour 30 minutes
Centre No. Candidate No. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced Thursday 11 June 2009 Morning Time: 1 hour 30 minutes Materials required for examination Mathematical Formulae
Διαβάστε περισσότεραΕνότητα 3: Ακρότατα συναρτήσεων μίας ή πολλών μεταβλητών. Νίκος Καραμπετάκης Τμήμα Μαθηματικών
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 3: Ακρότατα συναρτήσεων μίας ή πολλών μεταβλητών Νίκος Καραμπετάκης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Διαβάστε περισσότεραk A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
Διαβάστε περισσότεραIIT JEE (2013) (Trigonomtery 1) Solutions
L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE
Διαβάστε περισσότεραStatistics 104: Quantitative Methods for Economics Formula and Theorem Review
Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample
Διαβάστε περισσότεραMath 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.
Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:
Διαβάστε περισσότεραTrigonometry Functions (5B) Young Won Lim 7/24/14
Trigonometry Functions (5B 7/4/14 Copyright (c 011-014 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version
Διαβάστε περισσότεραderivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Διαβάστε περισσότεραSPECIAL FUNCTIONS and POLYNOMIALS
SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195
Διαβάστε περισσότεραSOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max
Διαβάστε περισσότεραCHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES
CHAPTER 3 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES EXERCISE 364 Page 76. Determie the Fourier series for the fuctio defied by: f(x), x, x, x which is periodic outside of this rage of period.
Διαβάστε περισσότεραLifting Entry (continued)
ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu
Διαβάστε περισσότερα