Το BJT ως Διακόπτης Οταν το transistor χρησιμοποιείται σαν διακόπτης ευρίσκεται είτε στην κατάσταση αποκοπής είτε σε αυτή του κορεσμού. Η βασική αρχή αυτής της χρήσης έγκειται στην διακριτή μεταβολή της κατάστασής τους (δηλ. της τάσης, του ρεύματος ή και των δύο). Αυτή η βασική έννοια της αλλαγής κατάστασης αν συσχετισθεί με την μαθηματική λογική τότε κάνει προφανές το τεράστιο εύρος χρήσης αυτού του διακόπτη. Αυτή η αρχή χρησιμοποιείται στους μεταλλάκτες DC σε AC, σε οδηγούς μεταβλητής συχνότητας, σε σωληνοειδείς επενεργητές, σε ρελέ και σε ψηφιακά λογικά κυκλώματα. Η ισχύς λειτουργίας εκτείνεται από λίγα mw, στα λογικά κυκλώματα, σε kw στα συστήματα ελέγχου κινητήρων. 1
Το BJT ως Διακόπτης Η οδήγηση των transistor στην αποκοπή ή κορεσμό γίνεται μέσω του V BB. V = 0 Οταν BB τοτε I το transistor είναι στην B = 0 αποκοπή, δηλ. ο «διακόπτης» είναι ανοικτός και V V ( ) CC CE cutoff Στο κορεσμό, αν θεωρήσουμε V οπότε I C sat ( ) 0 CE sat ( )!V R CC C Οπότε το ελάχιστο ρεύμα I B που απαιτείται για κορεσμό είναι I και ισχύει άρα ( ) = I B min C( sat) β V DC BB VBE IB( min) R V R B BB VBE + RC V β CC B 2 DC
Βιοµηχανικές Εφαρµογές των BJT Οι ενισχυτές Darlington αποτελούνται από 2 «εν σειρά» ενισχυτικές βαθμίδες CC. Θυμίζουμε ότι για τη διάταξη ενίσχυσης CC ισχύουν Είσοδος στη Βάση. Εξοδος στον Εκπομπό. Ιδια φάση εισόδου- εξόδου. Μεγάλη εμπέδιση εισόδου, μικρή εξόδου. Μέγιστο κέρδος τάσης=1 Ο συλλέκτης είναι γειωμένος στα AC σήματα. Ολοι οι πυκνωτές πρέπει να έχουν χαμηλή εμπέδηση στη συχνότητα λειτουργίας. Επομένως οι Darlington: έχουν υψηλές αντιστάσεις εισόδου, εξόδου και κέρδος ρεύματος, απαιτούν χαμηλά σήματα εισόδου (λόγω της υψηλής αντίστασης εισόδου), και το κέρδος ρεύματός τους είναι το γινόμενο των δύο CC ενισχυτικών βαθμίδων Χρησιμοποιούνται ευρέως στις βιομηχανικές εφαρμογές λόγω του μεγάλου κέρδους ρεύματος που έχουν. Το σχήμα δείχνει έναν Darlington με πόλωση μέσω διαιρέτη τάσης. Το σήμα εισόδου ισούται με την πτώση τάσεως στις δύο ενώσεις ΒΕ των transistors συν την πτώση στο φορτίο. Επομένως, η τάση εξόδου αυτού του ενισχυτή είναι μικρότερη από αυτήν της εισόδου. Οταν το σήμα εισόδου γίνεται θετικό η βάση του 1ου transistor γίνεται θετική και ο εκπομπός του ακολουθεί την βάση, οπότε είναι θετικές και η βάση και ο εκπομπός του 2ου transistor. Επομένως η τάση εξόδου βρίσκεται σε φάση με αυτήν της εισόδου. 3 V in V in R 1 R 2 V out V CC R E t V out t
Βιοµηχανικές Εφαρµογές των BJT συνεχ. Οι Darlington χρησιμοποιούνται για σερβοκινητήρες και ρυθμιστές τάσης. Επίσης, σε κυκλώματα αισθητήρων τους χρησιμοποιούν γιά ενίσχυση εξαιρετικά ασθενών σημάτων. Το σχήμα δείχνει την χρήση σε έλεγχο κινητήρα DC. Η μεταβλητή αντίσταση ελέγχει την μικρή τιμή του ρεύματος εισόδου που μετά τα δύο ενισχυτικά στάδια μεγαλώνει και αποδίδεται στον κινητήρα. R 1 V CC Κινητήρας DC 4
Βιοµηχανικές Εφαρµογές των BJT συνεχ. Ο μεταλλάκτης (inverter) μετατρέπει DC ισχύ σε AC ισχύ. Δηλαδή είναι το αντίστροφο του ανορθωτή. Το σχήμα δείχνει έναν μεταλλάκτη τροφοδοτούμενο από μία πηγή 12-14 V (DC) που αποδίδει 120 V, 60 Hz (AC). Η βασική ιδέα βρίσκεται στην διάταξη των transistors που είναι τοποθετημένα έτσι ώστε να σχηματίζουν ένα ταλαντωτή (oscillator). O μετασχηματιστής όταν φθάνει σε κορεσμό αποκόπτει το transistor που τον φορτίζει και ενεργοποιεί έτσι το άλλο transistor παρέχοντας έτσι ένα τετραγωνικής μορφή σήμα στο φίλτρο που το λειαίνει δίδοντάς του μορφή τραπεζοειδούς κύματος. R 1 =100 Ω 2N3614 UTC FT-10 R 3 R 4 12-14 V L 1 =10 µη C 1 =3 µf C 2 =0.25 µf Outlet 120 V AC 60 Hz 2N3616 24V 2A R 2 =100 Ω R 3 =R 4 =15 Ω 5
Βιοµηχανικές Εφαρµογές των BJT συνεχ. Ο μετατροπέας (converter) είναι μία συσκευή που μετατρέπει ένα επίπεδο τάσης DC σε άλλο. Δηλαδή είναι σαν ένας μετασχηματιστής - DC. Αν ένα transistor εναλάσσεται ταχέως μεταξύ των καταστάσεων ON - OFF τότε είναι δυνατός ο έλεγχος της τάσης που παρέχεται σε ένα φορτίο. Αυτή η μορφή ελέγχου της τάσεως ονομάζεται διαμορφωση εύρους παλμού (pulse width modulajon - PWM) και είναι πολύ χρήσιμη σε βιομηχανικά κυκλώματα ελέγχου κινητήρων, πηγών τροφοδοσίας και συσκευών που λειτουργούν με μπαταρίες (όπως π.χ. ορισμένα περονοφόρα οχήματα) και χρειάζεται οικονομία ισχύος. Στο σχήμα φαίνεται ένα τέτοιο κύκλωμα που παρέχει ένα ορθογώνιο Τάση Εισόδου (DC) µε διαταραχές παλμό χωρίς να απαιτείτα ένα αντίστοιχο σήμα εισόδου. Αυτό το κύκλωμα ονομάζεται ασταθής πολυδονητής (astable muljvibrator). 6 R 1 Μηχανική Σύζευξη R 3 V CC R 1 C 1 R 2 C 2 Οι μεταλλάκτες και οι μετατροπείς χρησιμοποιούνται σε πολλά βιομηχανικά κυκλώματα όπως σε έλεγχο κινητήρων AC, DC ψαλιδιστές (choppers) κλπ. Πλέον δεν κατασκευάζονται τόσο από transistors όσο από thyristors (ειδικές ημιαγωγές συσκευές που μπορούν να χειρίζονται μεγάλες ποσότητες ρεύματος). Το πιο απλό είδος ρυθμιστή τάσεως είναι αυτό τύπου ακολουθητή εκπομπού (emiper- follower) που φαίνεται στο σχήμα. R4 V out R L
Βιοµηχανικές Εφαρµογές των BJT συνεχ. Μία από τις πιο συνήθεις βιομηχανικές εφαρμογές του transistor - διακόπτη είναι σε κυκλώματα ελέγχου σερβο- κινητήρων (servomotors) και βηματικών κινητήρων (stepper motors). Το σχήμα δείχνει μια απλή μορφή ενός τέτοιου κυκλώματος που είναι γνωστή σαν οδηγός ενισχυτής. Η αντίσταση R s χρησιμοποιείται για περιορισμό του ρεύματος ενώ η δίοδος χρησιμοποιείται για την απόδοση της ενέργειας του περιτυλίγματος όταν το transistor είναι σε αποκοπή. Δίοδοι χρησιμοποιούνται σε τέτοιες διατάξεις με επαγωγικές συσκευές (ρελέ, κινητήρες κ.λ.π.) και ονομάζονται δίοδοι εκτόνωσης (freewheeling diodes). Οταν το transistor αποκοπεί, η τάση στη περιέλιξη είναι αντίστροφη σε σχέση με την εφαρμοζόμενη τάση και πολώνει ορθά την δίοδο επιτρέποντας την αποφόρτιση του πηνίου μέσω της διόδου, που είναι ορθά πολωμένη μέχρι τελικής αποφορτίσεώς της. V in R Β +V CC R S Περιέληξη Κινητήρα 7
Βιοµηχανικές Εφαρµογές των BJT συνεχ. Τα transistor- διακόπτες μαζί με ενισχυτές χρησιμοποιούνται σε βιομηχανικά κυκλώματα σε εφαρμογές ελέγχου, μετρήσεων και παρακολούθησης (monitoring). Η μέτρηση αντίστασης συχνά έχει χρησιμοποιηθεί σε κυκλώματα ελέγχου. Στο σχήμα βλέπουμε ένα βιομηχανικό κύκλωμα που συνδυάζει έναν Darlington ( Q και έναν διακόπτη για την 1, Q 2) ( Q 3 ) ενεργοποίηση ενός συναγερμού όταν το υγρό φτάσει σε κάποιο επίπεδο οπότε άγεται ικανοποιητικό ρεύμα στα ηλεκτρόδια. (, ) Q Q ( ) Τα είναι χαμηλής στάθμης - υψηλού κέρδους ενώ το είναι υψηλού ρεύματος. 1 2 Οταν υπάρχει αγώγιμο υγρό μεταξύ των ηλεκτροδίων διέρχεται ρεύμα που διαιρείται και ένα τμήμα του διαρρέει την βάση και το υπόλοιπο πηγαίνει προς το ποτενσιόμετρο που χρησιμοποιείται για ρύθμιση. Οταν η στάθμη είναι χαμηλή, η αντίσταση μεταξύ των ηλεκτροδίων είναι υψηλή και το ρεύμα προς το ( Q 1 ) τόσο χαμηλό που, παρόλη την ενίσχυση στον Darlington, δεν μπορεί να μεταβάλει την κατάσταση αποκοπής του. Επομένως δεν υπάρχει ρεύμα προς Relay τον συλλέκτη του ( Q 3 ) και κατά συνέπεια το πηνίο είναι αποκομμένο. Οταν η στάθμη υγρού ανέβει τότε Q 1 μειώνεται η αντίσταση μεταξύ των ηλεκτροδίων και Q 2 κατά συνέπεια αυξάνεται το ρεύμα που αποδίδει ο Darlington. Οταν αυτό είναι ικανοποιητικό για να R Q 3 1 διεγείρει το ( Q 3 ), θα αποδώσει ισχυρό ρεύμα στο ρελέ το οποίο θα ενεργοποιήσει τον συναγερμό. 8 Q 3 V out
Το Φωτοτρανζίστορ Φακός Είναι ένα διπολικό transistor με φωτοευαίσθητη ένωση CB που όταν εκτίθεται σε φως μέσω φακού που είναι στη συσκευασία του transistor άγει ρεύμα ανάλογο της φωτεινής ισχύος. B C E Εχει δηλαδή παρόμοια λειτουργία με αυτή ενός κλασσικού BJT με ορθά πολωμένη την BE. Η σχέσημεταξύ του ρεύματος συλλέκτη και του ρεύματος βάσης (που δημιουργείται από το φώς) είναι: I C =β DC I λ Από τις χαρακτηριστικές I C V CE (διπλ. Σχήμα) με παράμετρο τη φωτεινή ένταση Η φαίνεται ότι όταν δεν υπάρχει φως υπάρχει κάποιο μικρό ρεύμα διαρροής που διαρρέει την CE Τα φωτοτραζίστορ είναι πιο ευαίσθητα σε συγκεκριμένα μήκη κύματος όπως φαίνεται στο σχήμα Η διάταξη «φωτο- Darlington» (διπλ.σχήμα) χρησιμοποιείται για την επίτευξη (σε σχέση με το απλό φωτο- transistor) υψηλότερων: ρεύματος συλλέκτη και φωτοευασθησίας ένεκα του υψηλότερου κέρδους ρεύματος. V CC R C H V CC 3/22/13 9 Βιομηχανικά Ηλεκτρονικά - Κ.Ι.Κυριακόπουλος
Transistors Επιδράσεως Πεδίου - FET Στο BJT η ροή ρεύματος προς και από την βάση ελέγχει την ροή ρεύματος μεταξύ εκπομπού και συλλέκτη. Επομένως χρειάζεται σημαντική ισχύς γιά να οδηγηθεί. Τα FET σχεδιάσθηκαν γι αυτό ακριβώς το λόγο, γιά να μειώ- σουν την ισχύ οδήγησης, αλλά και γιά να αυξήσουν την ταχύ- τητα αλλαγής κατάστασης (switching) σε σχέση με το BJT. Εχουν 3 ακροδέκτες που ονομάζονται υποδοχή (drain), πηγή (source) και πύλη (gate). Συνήθως η πύλη χρησιμοποιείται ως είσοδος, και το συντριπτικά μέγιστο ποσοστό ρεύμα- τος διαρρέει το δίαυλο, δηλ. μεταξύ πηγής και υποδοχής. Γιά να λειτουργήσουν χρειάζονται εξωτερική τάση πόλωσης που όταν αυξηθεί, τα περισσότερα FET, τελικά αποκόπτονται μιάς και η εσωτερική αντίσταση αυξάνει. Οι διαφορές μεταξύ FET και BJT είναι Στο FET το ρεύμα εξόδου ελέγχεται με ένα ηλεκτρικό πεδίο που δημιουργείται από την τάση πόλωσης, ενώ το BJT είναι ελεγχόμενο από ρεύμα. Το BJT διεγείρεται με αύξηση του ρεύματος εισόδου ενώ τα περισσότερα FET αποκόπτονται με αύξηση της τάσης πολώσεως. Η αντίσταση εισόδου του FET είναι τεράστια (~ΜΩ) ενώ του BJT μικρή. Τα FET παρέχουν καλλίτερη απομόνωση μεταξύ εισόδου και εξόδου, γι αυτό τα FET είναι κατάλληλα γιά ενισχυτές. Τα FET έχουν μικρότερο εσωτερικό θόρυβο και καλλίτερη συμπεριφορά σε υψηλότερες θερμοκρασίες. Τα FET είναι μονοπολικές συσκευές μιάς και το ρεύμα διαρρέει μόνο έναν τύπο ημιαγωγού υλικού, ενώ τα BJT είναι διπολικές. Τα FET έχουν μειονέκτημα το σχετικά μικρό γινόμενο «κέρδος εύρος ζώνης» σε σχέση με τα BJT. 10
Transistors Επιδράσεως Πεδίου Ενώσεως - JFET Υπάρχουν δύο ειδών FET. Τα Επιδράσεως Πεδίου Ενώσεως (JuncŒon Field Effect Transistors - JFET) και τα Οξειδίου Μετάλλου Ημιαγωγού (Metal Oxide Semiconductor FET - MOSFET). Θα ασχοληθούμε μόνο με τα JFET. Ανάλογα με το ημιαγωγό υλικό του διαύλου τα JFET μπορεί να είναι τύπου n ή p. Το άλλο υλικό αποτελεί την πύλη. Drain (Υποδοχή) Gate (Πύλη) Source (Πηγή) Drain (Υποδοχή) Gate (Πύλη) Source (Πηγή) Το ισχυρό ηλεκτροστατικό πεδίο που αναπτύσσεται στο μέσο του διαύλου από την τάση της πύλης αυξάνει την περιοχή ανάμιξης (depleœon layer) και αυξάνει την αντίσταση του διαύλου, δρώντας σαν βαλβίδα. 11
JFET συνεχ. Στην περίπτωση της συνδεσμολογίας του σχήματος έχουμε την περίπτωση ενός αυτοπολωμένου n- JFET ( V GS = 0). Αρχικά, όσο αυξάνει η τάση V αυξάνει και το ρεύμα I DS D αλλά επειδή αυξάνει και η περιοχή ανάμειξης για μία χαρακτηριστική τιμή VDS = Vp φτάνει σε ένα επίπεδο κορεσμού ID = IDSS, μέχρι βεβαίως να φτάσει η τάση σε κάποια μέγιστη τιμή VDS = Vbr. Το επίπεδο τμήμα της καμπύλης λέγεται περιοχή φραγής. Εδώ έγκειται και η σημαντική διαφορά μεταξύ JFET και MOSFET Τα JFET λειτουργούν πριν την τάση φραγής, ενώ τα MOSFET στην περιοχή φραγής. V p «χαρακτηριστική υποδοχής» G D S 3/22/13 V br Βιομηχανικά Ηλεκτρονικά - Κ.Ι.Κυριακόπουλος 12
JFET Στο σχήμα, βλέπουμε το κύκλωμα ενός n- JFET και τις αντίστοιχες καμπύλες γιά διάφορες τιμές της τάσεως πολώσεως. Το ρεύμα φραγής I για V δίδεται σε σχέση DS GS 0 με το I από την σχέση 2 DSS V GS IDS = IDSS 1 Ας σημειωθεί ότι: V GS ( off ) V GS(off) : Η τιμή της V GS(off) για την οποία Ι DS =0. V P : Η τιμή της V DS για την οποία Ι DS Ι DSS. V GS(off) = -V P συνεχ. Οικογένεια «χαρακτηριστικών υποδοχής» Ουσιαστικά δηλαδή, η τάση V GS ελέγχει το I D στη περιοχή φραγής (δηλ. καθορίζει το I DS οπότε είναι σημαντικό να δούμε και γραφικά τη παραπάνω σχέση τους μέσω της «χαρακτηριστικής μεταφοράς». Προφανώς, γιά: n- JFET : V GS(off) <0 p- JFET : V GS(off) >0 G D S 13
Στο σχήμα, βλέπουμε το συνδιασμό της χαρακτηριστικής μεταφοράς και της οικογένειας χαρακτηριστικών υποδοχής. Τόσο αυτό το σχήμα όσο και η αντιστοιχούσα σχέση: I DS V = IDSS V 1 GS GS ( off ) δείχνουν ότι το ρεύμα I DS μπορεί να ευρεθεί για κάθε τάση V GS εφόσον οι παράμετροι I DSS και V GS(off) είναι γνωστές. Αυτές δίνονται συνήθως απο τα φύλλα κατασκευαστή του JFET. Στο σχήμα παρατίθεται το κύκλωμα ενός ανιχνευτή στατικού φορτίου οιοδήποτε φορτισμένου αντικείμενου (π.χ. πλαστική βούρτσα) αποστάσεων μέχρι 30cm. Οταν το φορτισμένο αντικείμενο πλησιάσει την κεραία, το αρνητικό φορτίο της πύλης μειώνει το ρεύμα και την λάμψη της LED. 2 JFET συνεχ. 14
Άσκηση JFET Control Systems Laboratory Αν για το συγκεκριμένο transistor JFET ισχύει V GS(off) = -4 V και I DSS = 12 ma, να ευρεθούν: Λύση: Η ελάχιστη τιμή της V DD που απαιτείται για να μπεί το JFET στην περιοχή σταθερού ρεύματος Αν η V DD πάρει τη τιμή V DD = 15 V ποιό είναι τότε το ρεύμα I D? Αν γίνει V GS = -3 V να ευρεθεί το ρεύμα I D. Δεδομένου ότι V GS(off) = -4 V συνεπάγεται ότι V P = 4 V οπότε η ελάχιστη τιμή για είσοδο στη περιοχή σταθερού ρεύματος είναι V DS = V P = 4 V. Μας εδόθη ότι I DSS = 12 ma, άρα η περιοχή σταθερού ρεύματος είναι I DS = 12 ma για V GS = 0 V, όπως εδώ. Προφανώς V DD = V DS + I DS R D = 10.7 V και λαμβάνουμε την αντιστοιχούσα γραμμή φορτίου. Με άκρα (V DD /R D, V DD )=(10.7 V / 560 Ω, 10.7 V). Επειδή παραμένει V GS = 0 V, παρότι η γραμμή φορτίου τώρα γίνεται (V DD /R D, V DD )=(15 V / 560 Ω, 15 V), κινούμαστε στην ίδια χαρακτηριστική, οπότε παραμένει I DS = I DSS = 12 ma. 2 Προφανώς 2 V 3 I = I 1 = 12 1 = 0.75 ma συνεχ. GS DS DSS V GS ( off ) 4 +4 V 15 G D S
Διπολικά Transistor µονωµένης Θύρας - IGBT Control Systems Laboratory Τα IGBT είναι ένας τύπος υβριδικού transistor που δανείζεται χαρακτηριστικά από τα BJT : μικρή τάση μετάβασης στη κατάσταση ΟΝ, δυνατότητα χειρισμού ρεύματος μεγαλύτερη ακόμη και από τους Darlington και τα MOSFET : έλέγχος με τάση, πύλη μεγάλης φαινόμενης αντίστασης που απαιτεί μικρό ποσό ενέργειας για μετάβαση στην κατάσταση ΟΝ. Οι ακοδέκτες του είναι: Πύλη (G), Συλλέκτης (C) και Εκπομπός (Ε) και τα σύμβολά που το παριστούν φαίνονται στο διπλανό σχήμα. Τα IGBT έχουν χρόνο μετάβασης κατάστασης ~1μs και τάση V CE και ρεύμα I E που ξεπερνά τα 1200 V και 300 A. Τα IGBT χρησιμοποιούνται γιατί έχουν χαμηλό χρόνο αλλαγής κατάστασης και δυνατότητα χειρισμού μεγάλου ρεύματος. 16
Διπολικά Transistor µονωµένης Θύρας - IGBT Τα IGBT χρησιμοποιούνται όλο και πιο πολύ σε αναστροφείς και κόφτες κινητήρων, επαγωγικές θερμάστρες, ενεργά φίλτρα, πηγές αδιάλειπτου λειτουργίας (uninterrupœble power supplies - UPS) και συστήματα συγκολλήσεων υψηλής συχνότητας. Στο σχήμα φαίνεται ένα σύστημα συγκόλλησης που χρησιμοποιεί πηγή ισχύος υψηλής συχνότητας (10-500 khz). Το ρεύμα διέρχεται από την επιφάνεια του προς συγκόλληση μετάλλου. Η μεγάλη συχνότητα του επιτρέπει διείσδυση πολλών χιλιοστών της ίντσας και σε πολύ υψηλή ταχύτητα (π.χ. έως 500 œ/min σε λεπτούς μεταλλικούς σωλήνες). Στην πηγή ισχύος ο Μ/Σ υψηλής ισχύος παρέχει μόνωση. Η επαγωγή και ο πυκνωτής στην έξοδο, περιορίζουν τις διαταραχές ρεύματος. 17