Study of limit cycles for some non-smooth Liénard systems

Σχετικά έγγραφα
2 Composition. Invertible Mappings

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Example Sheet 3 Solutions

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Reminders: linear functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Every set of first-order formulas is equivalent to an independent set

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

4.6 Autoregressive Moving Average Model ARMA(1,1)

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Matrices and Determinants

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Second Order Partial Differential Equations

Homomorphism in Intuitionistic Fuzzy Automata

Congruence Classes of Invertible Matrices of Order 3 over F 2

Commutative Monoids in Intuitionistic Fuzzy Sets

Statistical Inference I Locally most powerful tests

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Other Test Constructions: Likelihood Ratio & Bayes Tests

C.S. 430 Assignment 6, Sample Solutions

ST5224: Advanced Statistical Theory II

6.3 Forecasting ARMA processes

Fractional Colorings and Zykov Products of graphs

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Solution Series 9. i=1 x i and i=1 x i.

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Uniform Convergence of Fourier Series Michael Taylor

EE512: Error Control Coding

Section 8.3 Trigonometric Equations

Homework 3 Solutions

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

D Alembert s Solution to the Wave Equation

Areas and Lengths in Polar Coordinates

Approximation of distance between locations on earth given by latitude and longitude

Second Order RLC Filters

Areas and Lengths in Polar Coordinates

Math221: HW# 1 solutions

Lecture 2. Soundness and completeness of propositional logic

CRASH COURSE IN PRECALCULUS

Inverse trigonometric functions & General Solution of Trigonometric Equations

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

The Simply Typed Lambda Calculus

Numerical Analysis FMN011

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

A Note on Intuitionistic Fuzzy. Equivalence Relation

Homework 8 Model Solution Section

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Tridiagonal matrices. Gérard MEURANT. October, 2008

Parametrized Surfaces

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008

Mean-Variance Analysis

Partial Differential Equations in Biology The boundary element method. March 26, 2013

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

SOME PROPERTIES OF FUZZY REAL NUMBERS

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Concrete Mathematics Exercises from 30 September 2016

Finite Field Problems: Solutions

derivation of the Laplacian from rectangular to spherical coordinates

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

5. Choice under Uncertainty

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

On the Galois Group of Linear Difference-Differential Equations

Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices

A summation formula ramified with hypergeometric function and involving recurrence relation

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Srednicki Chapter 55

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1)

Homomorphism of Intuitionistic Fuzzy Groups

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

High order interpolation function for surface contact problem

Section 9.2 Polar Equations and Graphs

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

The challenges of non-stable predicates

Section 7.6 Double and Half Angle Formulas

The ε-pseudospectrum of a Matrix

New bounds for spherical two-distance sets and equiangular lines

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MA 342N Assignment 1 Due 24 February 2016

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH LEAN PRODUCTION TOOLS

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

Lecture 21: Properties and robustness of LSE

Trigonometric Formula Sheet

Testing for Indeterminacy: An Application to U.S. Monetary Policy. Technical Appendix

On a four-dimensional hyperbolic manifold with finite volume

GÖKHAN ÇUVALCIOĞLU, KRASSIMIR T. ATANASSOV, AND SINEM TARSUSLU(YILMAZ)

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Strain gauge and rosettes

Solutions to Exercise Sheet 5

Generating Set of the Complete Semigroups of Binary Relations

Transcript:

3 011 5 ( ) Journal of East China Normal University (Natural Science) No. 3 May 011 Article ID: 1000-5641(011)03-0044-10 Study of limit cycles for some non-smooth Liénard systems YANG Lu, LIU Xia, XING Ye-peng (Department of Mathematics, Shanghai Normal University, Shanghai 0034, China) Abstract: Algebraic method was used to study the Hopf cyclicity of non-smooth Liénard systems on the plain. Some new formulas for computing focus values were presented. Based on the formulas, the number of limit cycles bifurcating from some non-smooth Liénard systems was obtained. The results improve the known results. Key words: Liénard systems; non-smooth; limit cycle; Hopf cyclicity CLC number: O19 Document code: A DOI: 10.3969/j.issn.1000-5641.011.03.007 Liénard,, (, 0034) : Liénard Hopf,, Liénard Hopf,. : Liénard ; ; ; Hopf 1 Introduction and preliminary Several papers have been concerned with the bifurcation problems of non-smooth systems, see [1-7] for example. In this paper, we consider a non-smooth Liénard system of the form ẋ = p(y) F(x, a), ẏ = g(x), (1) where a R n, F(x, a) = F (x, a), x 0, F (x, a), x 0, g(x) = g (x), x 0, g (x), x 0. : 010-5 : (10971139), (10YZ7) :,,,. :,,,. :,,,,. E-mail: ypxing@shnu.edu.cn.

3, : Liénard 45 Here, F ± and g ± are all C functions and satisfy F ± (0, a) = 0, p(0) = 0, g ± (0) = 0, (g ± ) (0) = g ± 1 > 0, p (0) = p 0 > 0, (F ± x (0, a 0 )) 4p 0 g ± 1 < 0, a 0 R n. () For s > 0 small, the Poincaré return maps h ± (s) were defined in a neighborhood of the origin of general non-smooth systems in [7] and a succession function d was introduced as follows Definition 1.1 [7] If there is a k 1 such that d(s) = h (h (s)) s = V k s k O(s k1 ), V k 0 for s > 0 close to the zero, then V k is called the kth Liapunov constant or focus value. The origin is called fine or weak focus of order k if k > 1. as follows In [1] the definition of succession function of non-smooth systems is presented for s 0 Definition 1. [1] Define h (h (s)) s, for s > 0, d(s) = 0, for s = 0, h (h (s)) s, for s < 0. The function d(s) is called a succession function or a displacement function. Let ( g ) x x 1 g (x), x > 0, G(x) = g(u)du = ( 0 g ) x 1 g (x), x 0, where g ± (0) = 0. Using the above definitions, for system (1), the authors obtained the following lemmas and theorems in [1] Lemma 1.1 [1] and only if Let (1) satisfy (). Then the origin is a fine or weak focus for a = a 0 if g1 F x (0, a 0) g 1 F x (0, a 0) = 0. (3) Lemma 1. [1] Let () and (3) hold. Suppose formally for 0 < x 1 F(α(x), a) F(x, a) = F (α(x), a) F (x, a) = i 1 B i (a)x i, (4) where α(x) = g 1 xo(x ) satisfies G(α(x)) G(x) for 0 < x 1. Then we have formally g 1 d(r 0, a) = i 1 d i (a)r i 0 for a a 0 small, where d 1 (a) = B 1 N 1 (a), d i(a) = B i N i (a) O( B 1, B 1,, B i 1 ),

46 ( ) 011 with N i C and N i (a 0) > 0 for i 1. Theorem 1.1 [1] Suppose () and (3) hold. If there exists k 1 such that B j (a 0 ) = 0, j = 1,, k, B k1 (a 0 ) < 0(> 0), then the origin is a stable (unstable) focus of order k 1 of system (1) for a = a 0 and there are at most k limit cycles near the origin for all a a 0 small and k limit cycles can appear if rank (B 1,, B k ) (a 1,, a n ) a=a 0 = k. Corollary 1.1 [1] Let () and (3) hold. If there exists k 1 such that F (α(x), a) F (x, a) when B j1 = 0, j = 0,, k (5) for all a R m, then the origin is a focus of order at most k 1 of system (1) unless it is a center. further Theorem 1. [1] Suppose () and (3) are satisfied. Let (5) hold for some k 1. If B j1 (a 0 ) = 0, j = 0,, k, rank (B 1,, B k1 ) a=a0 = k 1, (6) (a 1,, a n ) for some a 0 R m, then system (1) has Hopf cyclicity k at the origin for a a 0 small. Theorem 1.3 [1] Let () and (3) hold. Suppose there exists k 1 such that (5) holds for all a R m and (6) holds for some a 0 R m. If F is linear in a then for any constant N > a 0, system (1) has Hopf cyclicity k for all a N. For general system (1), let G G(x) = x G 3 x3 G 4 x4 G 5 x5, x > 0 G x G 3 x3 G 4 x4 G 5 x5, x 0, F(x, a) = F 1 x F x F 3 x3 F 4 x4 F 5 x5, x > 0 F 1 x F x F 3 x3 F 4 x4 F 5 x5, x 0. Suppose α(x) = α 1 x α x α 3 x 3 α 4 x 4 α 5 x 5 for 0 < x 1. By inserting α(x) into the equation G(α(x)) = G(x), it was obtained in [1] G α 1 =, α = G 3 α3 1G 3 G α 1 G, α 3 = G 4 G 4 α4 1 3G 3 α 1α G α α 1 G, α 4 = G 5 G 5 α5 1 4G 4 α3 1 α 3G 3 (α 1 α 3 α 1 α ) G α α 3 α 1 G, α 5 = G 6 G 6 α6 1 5G 5 α4 1 α G 4 (4α3 1 α 3 6α 1 α ) G 3 (3α 1 α 4 α 3 6α 1α α 3 ) α 1 G G (α α 4 α 3) α 1 G, (7)

3, : Liénard 47 α 6 = G 7 G 7 α7 1 6G 6 α5 1 α 5G 5 (α3 1 α α4 1 α 3) 4G 4 (3α 1 α α 3 α 1 α 3 α3 1 α 4) α 1 G 3G 3 (α 1α 5 α 1 α α 4 α 1 α 3 α α 3 ) G (α 3α 4 α α 5 ) α 1 G. Then by using (4), the following formulas were obtained in [1] B 1 (a) = α 1 F1 F 1, B (a) = α F1 α 1F F, B 3 (a) = α 3 F1 α 1α F α3 1F3 F 3, B 4 (a) = α 4 F1 (α 1α 3 α )F 3α 1 α F3 α4 1 F 4 F 4, B 5 (a) = α 5 F1 (α 1α 4 α α 3 )F 3(α 1 α 3 α 1 α )F 3 4α3 1 α F4 α5 1 F 5 F 5, B 6 (a) = α 6 F1 (α 1α 5 α α 4 α 3 )F (3α 1 α 4 6α 1 α α 3 α 3 )F 3 (6α 1α 4α 3 1α 3 )F4 5α4 1α F5 α6 1F6 F 6. (8) Applying Theorem 1.3 to the following system, ẋ = y F n (x, a), ẏ = g(x), (9) where F n (x, a) = n a i xi, x > 0, n a i xi, x 0, i=1 i=1 g(x) = x g x, x > 0, x g x, x 0, the authors in [1] proved that for n = 1, or 3 system (9) respectively has Hopf cyclicity 1, 3, 5 at the origin. In this paper we first give a formula for computing B i, i = 7, 8, 9, 10, and then apply Theorems 1.1-1.3 to study the Hopf bifurcation of some non-smooth Liénard systems. In particular, we found the Hopf cyclicity for system (9) in the case of n = 3 can be 4, which improve the result in [1], see Theorem. below. Main results and proofs For general system (1) we have Theorem.1 Let (7) and (8) hold. We can further obtain α 7 = [G 8 G 8 α8 1 7G 7 α6 1α G 6 (6α5 1α 3 15α 4 1α ) 5G 5 (α4 1α 4 4α 3 1α α 3 α 1α 3 ) G 4 (1α 1α α 4 6α 1α 3 4α 3 1α 5 1α 1 α α 3 α 4 ) 3G 3 (α 1α α 5 α 1 α 3 α 4 α 1α 6 α α 3 α α 4 ) G (α α 6 α 3 α 5 α 4 )]/(α 1G ),

48 ( ) 011 α 8 = [G 9 G 9 α9 1 8G 8 α7 1α 7G 7 (α6 1α 3 3α 5 1α ) G 6 (6α5 1α 4 30α 4 1α α 3 0α 3 1α 3 ) 5G 5 (α4 1α 5 4α 3 1α α 4 α 3 1α 3 6α 1α α 3 α 1 α 4 ) 4G 4 (3α 1 α 3α 4 3α 1 α α 5 3α α 1 α 3 α3 1 α 6 α 3 α 3 3α α 1α 4 ) G 3 (3α 1 α 7 3 α 1 α 4 6 α 1α 3 α 5 6 α 1 α α 6 α 3 3 6 α α 3 α 4 3 α α 5) G (α α 7 α 3 α 6 α 4 α 5 )]/(α 1 G ), α 9 = [ G 10 α10 1 G 10 9α8 1α G 9 4(7α6 1α α 7 1α 3 )G 8 7(α6 1α 4 5α 4 1α 3 6α 5 1α 3 α )G 7 (6α 5 1α 5 15α 4 1α 3 15α 4 α 1 30α 4 1α 4 α 60α 3 1α α 3 )G 6 (5α 6α 4 1 30α 1α α 3 0α 1 α 3 α 3 0α 3 1α α 5 0α 3 1α 3 α 4 30α 1α α 4 α 5 )G 5 (4α 3 α 4 4α 3 3α 1 4α 7 α 3 1 6α α 3 6α 1α 4 1α 1 α α 5 1α 1α 3 α 5 1α 6 α 1 α 4α 1 α α 4 α 3 )G 4 3(α 3 α 4 α α 6 α 1 α 8 α α 4 α 1α α 7 α 1 α 4 α 5 α 1 α 3 α 6 α α 3 α 5 )G 3 (α 3 α 7 α 4 α 6 α α 8 α 5 )G ]/( α 1G ), α 10 = [ G 11 α11 1 G 11 10α9 1α G 10 9(α8 1α 3 4α 7 1α )G 9 8(α7 1α 4 7α 5 1α 3 7α 6 1α α 3 )G 8 7(α 6 1α 5 5α 3 1α 4 3α 5 1α 3 15α 4 1α 3 α 6α 5 1α 4 α )G 7 6(α5 α 1 α 6 α 5 1 5α 4 1α 3 α 4 10α 1α 3 α 3 10α 3 1α 3α 10α 3 1α α 4 5α 4 1α 5 α )G 6 5(α4 α 3 α 7 α 4 1 α 3 3α 1 α 3 1 α 4 6α 1α α 3 6α 1 α α 5 4α 3 1 α 3α 5 4α 1 α 3 α 4 4α 6 α 3 1 α 1α 1 α α 4 α 3 )G 5 4(α3 3 α α 3 α 5 α 8 α 3 1 3α 7α 1 α 3α 6 α 1 α 3 3α 6 α 1 α 3α α 4α 3 3α 1 α α 4 3α 1α 3 α 4 3α 1 α 4α 5 6α 1 α α 3 α 5 )G 4 3(α 1α 5 α 3α 4 and α α 7 α 3α 5 α 1α 9 α α 4 α 5 α 1 α α 8 α 1 α 3 α 7 α 1 α 4 α 6 α α 3 α 6 )G 3 (α 4 α 7 α 5 α 6 α 3 α 8 α α 9 )G ]/( α 1G ) B 7 (a) = α 7 F 1 (α 1α 6 α α 5 α 3 α 4 )F 3(α 1 α 5 α 1 α α 4 α 1 α 3 α α 3)F 3 4(α 3 1α 4 3α 1α α 3 α 1 α 3 )F 4 5(α4 1α 3 α 3 1α )F 5 6α5 1α F 6 α7 1F 7 F 7, B 8 (a) = α 8 F 1 (α 1α 7 α α 6 α 3 α 5 α 4)F 3(α 1α 6 α 1 α α 5 α 1 α 3 α 4 α α 4 α α 3)F 3 (4α3 1α 5 1α 1α α 4 6α 1α 3 1α α 1 α 3 α 4 )F 4 5(α4 1α 4 4α 3 1 α α 3 α 1 α3 )F 5 3(α5 1 α 3 5α 4 1 α )F 6 7α6 1 α F 7 α8 1 F 8 F 8

3, : Liénard 49 B 9 (a) = α 9 F 1 (α α 7 α 4 α 5 α 1 α 8 α 3 α 6 )F (3α α 5 3α 1 α 4 3α 1α 7 6α 1 α α 6 6α 1 α 3 α 5 6α α 3 α 4 α 3 3)F 3 4(α3 α 3 α 6 α 3 1 3α 1α α 5 3α 1 α α 3 3α 1 α α 4 3α 1 α 3α 4 )F 4 5(α4 α 1 α 4 1 α 5 α 3 1 α 3 4α3 1 α α 4 6α 1 α α 3)F 5 (0α 3 1 α3 6α5 1 α 4 30α 4 1 α 3α )F 6 7(α6 1 α 3 3α 5 1 α )F 7 8α7 1 α F 8 α 9 1 F 9 F 9, B 10 (a) = α 10 F 1 (α 3α 7 α 1 α 9 α 4 α 6 α α 8 α 5 )F 3(α 1 α 8 α 3 α 4 α α 4 α α 6 α 1 α 4 α 5 α α 3 α 5 α 1 α α 7 α 1 α 3 α 6 )F 3 (4α 7α 3 1 4α3 α 4 6α α 3 4α 1α 3 3 6α 1 α 4 1α 1 α 3α 5 1α 6 α 1 α 1α 1 α α 5 4α 1 α α 3 α 4 )F 4 Then (5α 6 α 4 1 0α 3 1α 3 α 4 0α 1 α 3 α 3 30α 1α α 4 0α 3 1α α 5 30α 1α α 3 α 5 )F 5 3(5α 4 α 1 5α 4 1α 3 α 5 1α 5 10α 4 1α 4 α 0α 3 1α α 3 )F 6 [mm] 7(5α 4 1α 3 α 6 1α 4 6α 5 1α 3 α )F 7 (8α7 1α 3 8α 6 1α )F 8 9α8 1α F 9 α 10 1 F 10 F 10. Proof Let α(x) = α 1 x α x α 3 x 3 α 4 x 4 α 5 x 5, xα(x) < 0. G(α(x)) = G (α(x)) G 3 (α(x))3 G 4 (α(x))4 G 5 (α(x))5 G 6 (α(x))6 G 7 (α(x))7 G 8 (α(x))8, G(x) = G x G 3 x3 G 4 x4 G 5 x5 G 6 x6 G 7 x7 G 8 x8. Note that G(α(x)) = G(x). Comparing the coefficients of x 8 in the both sides, we obtain G 8 = G (α 1α 7 α α 6 α 3 α 5 α 4 ) G 3 (6α 1α α 5 6α 1 α 3 α 4 3α 1 α 6 3α α 3 3α α 4) G 4 (1α 1 α α 4 6α 1 α 3 4α3 1 α 5 1α 1 α α 3 α 4 ) G 5 (5α4 1 α 4 0α 3 1 α α 3 10α 1 α3 ) G 6 (6α5 1 α 3 15α 4 1 α ) 7G 7 α6 1 α G 8 α8 1. Then α 7 can be solved from the above. The coefficients α 8, α 9, α 10 can be obtained in the same way. By F (α(x), a) F (x, a) = F1 (α(x)) F (α(x)) F3 (α(x))3 F4 (α(x))4 F5 (α(x))5 F6 (α(x))6 F7 (α(x))7 F8 (α(x))8 (F 1 x F x F 3 x3 F 4 x4 F 5 x5 F 6 x6 F 7 x7 F 8 x8 ),

50 ( ) 011 and using (4), by combining the coefficients of x i, i = 7, 8, 9, 10 respectively, we can obtain the expressions of B i (a), i = 7, 8, 9, 10. The proof is completed. where Let Theorem. Consider the following system F n (x, a) = ẋ = y F n (x, a), ẏ = g(x), (10) n a i xi, x > 0, n a i xi, x 0, i=1 i=1 g(x) = x g x, x > 0, x g x, x 0. M 3 = 7 97 (g )6 7 34 (g )5 g 7 486 (g )4 (g ) 7 486 (g )3 (g )3 7 34 (g ) (g )4 7 97 (g )(g )5, M 4 = 77 19683 (g )5 (g )6 11 4374 (g )3 (g )8 11 4374 (g )9 (g ) 44 59049 (g )10 g 77 19683 (g )7 (g )4 11 118098 (g )11 44 59049 (g ) (g )9 88 19683 (g )4 (g )7 11 118098 (g )(g )10 88 19683 (g )8 (g )3, M 5 = 5115 41348516 (g )9 (g )9 505 95851 (g )14 (g 3935 )4 103311304 (g )4 (g )14 505 95851 (g )5 (g 715 715 )13 86497043 (g )18 86497043 g (g )17 3575 754990144 (g )17 g 455455 0664608 (g )6 (g )1 3535 103311304 (g )7 (g )11 3575 754990144 (g )16 ( ) 1045 344373768 (g )11 (g 995 )7 103311304 (g )16 (g ) 995 103311304 (g )3 (g )15 3535 103311304 (g )1 (g 3935 )6 103311304 (g )15 (g )3 455455 0664608 (g )13 (g )5 5115 41348516 (g )10 (g )8 1045 344373768 (g )8 (g )10. Then system (10) has Hopf cyclicity n at the origin if M n 0 for n = 3, 4 and 5 respectively. Proof In fact, for (10) we have G = G = 1, G 3 = g 3, G 3 = g 3, G± j By (7), (8) and Theorem.1, we can obtain = 0, j 4. α 1 = 1, α = g g, 3 α 3 = 9 g g 5 18 (g ) 1 18 (g ), α 4 = 5 18 (g ) g 8 7 (g )3 1 54 (g )3, α 5 = 77 16 (g )4 3 81 (g )3 g 5 108 (g ) (g ) 5 648 (g )4,

3, : Liénard 51 α 6 = 11 43 (g )5 7 1944 (g )5 385 648 (g )4 g 3 43 (g )3 (g ) 5 97 (g ) (g )3, α 7 = 431 3888 (g )6 7 3888 (g )6 4 43 (g )5 g 385 196 (g )4 (g ) 5 3888 (g ) (g )4, α 8 = 448 79 (g )5 (g ) 17017 11664 (g )6 (g ) 11 11664 (g )7 640 79 (g )7 385 11664 (g )4 (g )3 5 11664 (g ) (g )5, α 9 = 385 139968 (g )4 (g )4 85085 69984 (g )6 (g ) 35 0995 (g ) (g )6 510 187 (g )7 g 896 6561 (g )5 (g )3 143 79936 (g )8 106347 839808 (g )8, and α 10 = 85085 0995 (g )6 (g )3 5 69984 (g ) (g )7 77 139968 (g )4 (g )5 510 187 (g )7 (g ) 106347 79936 (g )8 g 36608 19683 (g )9 715 51944 (g )9, B 1 (a) = a 1 a 1, B (a) = α a 1 a a, B 3 (a) = α 3 a 1 α a a 3 a 3, B 4 (a) = α 4 a 1 ( α 3 α )a 3α a 3 a 4 a 4, B 5 (a) = α 5 a 1 ( α 4 α α 3 )a 3(α 3 α )a 3 4α a 4 a 5 a 5, B 6 (a) = α 6 a 1 ( α 5 α α 4 α 3)a (3α 4 6α α 3 α 3 )a 3 (6α 4α 3 )a 4 5α a 5, B 7 (a) = α 7 a 1 ( α 6 α α 5 α 3 α 4 )a 3(α 5 α α 4 α 3 α α 3 )a 3 4( α 4 3α α 3 α 3 )a 4 5(α 3 α )a 5, B 8 (a) = α 8 a 1 ( α 7 α α 6 α 3 α 5 α 4)a 3(α 6 α α 5 α 3 α 4 α α 4 α α 3)a 3 ( 4α 5 1α α 4 6α 3 1α α 3 α 4 )a 4 5(α3 α 4 4α α 3 )a 5, B 9 (a) = α 9 a 1 (α 3α 6 α 4 α 5 α α 7 α 8 )a (α3 3 6 α α 3 α 4 3 α α 5 3 α 7 3 α 4 6 α α 6 6 α 3 α 5 )a 3 4(3 α α 5 α 3 α 3 3 α 3 α 4 3 α α 4 3 α α 3 α 6 )a 4 5( α 3 α 5 α 4 4 α α 4 6 α α 3 )a 5, B 10 (a) =α 10 a 1 ( α 4α 6 α 5 α α 8 α 3 α 7 α 9 )a 3( α α 7 α 4 α 5 α α 4 α α 3 α 5 α 3 α 6 α 3 α 4 α α 6 α 8 )a 3 (α3 α 4 α 7 1α α 3 α 4 3α α 3 3α 4 6α α 6 6α 3 α 5 α 3 3 6α α 5)a 4 (5α 6 0α α 5 30α α 4 0α 3 α 3 0α 3 α 4 30α α 3 α5 )a 5. We take g, g as constants. For n = 3, take a = (a 1, a 1, a, a, a 3, a 3 ) R6, we have det (B 1, B, B 3, B 4, B 5, B 6 ) (a 1, a 1, a, a, a 3, a 3 ) = 0, and det (B 1, B, B 3, B 4, B 5 ) (a 1, a 1, a, a, a 3 ) = M 3.

5 ( ) 011 Then by Solving the equations B i (a) = 0, i = 1,, 3, 4, 5, we have and (11), we have a 1 = 0, a 1 = 0, a = 3 a 3, a = 3 a 3, a 3 = g a 3. (11) G (α(x)) = G (x) 1 α (x) g 3 α3 (x) = 1 x g 3 x3, F (α(x)) F (x) = a 1 α(x) a α (x) a 3 α3 (x) a 1 x a x a 3 x3 = a 3 3 g ( 1 α (x) g 3 α3 (x) 1 x g 3 x3 ) = 0. Hence, for i = 1,, 3, 4, 5, B i (a) = 0 implies F(α(x)) = F(x). Taking a 0 = ( 0, 0, 3 g the conclusion for n = 3 follows from Theorem 1.3. For n = 4, we have ) a 3, 3 a 3, g a 3, a 3, det (B 1, B, B 3, B 4, B 5, B 6, B 7, B 8 ) (a 1, a 1, a, a, a 3, a 3, a 4, a 4 ) = 0, Solve B i (a) = 0, i = 1,,, 7, we obtain det (B 1, B, B 3, B 4, B 5, B 6, B 7 ) (a 1, a 1, a, a, a 3, a 4, a 4 ) = M 4. a 1 = a 1 = a 4 = a 4 = 0, a = a = 3 a 3, a 3 = g a 3, which follows F (α(x)) = F (x) from G (α(x)) = G (x) using the discussion for the case n = 3. Thus, when B i (a) = 0, i = 1,,, 7, one has F(α(x)) = F(x). The conclusion follows for n = 4 by taking For n = 5, we have a 0 = ( 0, 0, 3 g ) a 3, 3 a 3, g a 3, a 3, 0, 0. det (B 1, B, B 3, B 4, B 5, B 6, B 7, B 8, B 9, B 10 ) (a 1, a 1, a, a, a 3, a 3, a 4, a 4, a 5, a 5 ) = 0, det (B 1, B, B 3, B 4, B 5, B 6, B 7, B 8, B 9 ) (a 1, a 1, a, a, a 3, a 4, a 4, a 5, a 5 ) = M 5. Solve B i (a) = 0, i = 1,,, 9, we obtain a 1 = a 1 = a 4 = a 4 = a 5 = a 5 = 0, a = a = 3 a 3, a 3 = g a 3.

3, : Liénard 53 As before, when B i (a) = 0, i = 1,,, 9, one has F(α(x)) = F(x). The conclusion follows for n = 5 by taking This ends the proof. a 0 = ( 0, 0, 3 g a 3, 3 a 3, g a 3, a 3 )., 0, 0, 0, 0 [ References ] [ 1 ] HAN Mao-an, LIU Xia. Hopf bifurcation for non-smooth Liénard systems[j]. Int J Bifurcation and Chaos, 009, 19(7): 401-415. [ ] COLL B, GASULL A, PROHENS R. Limit cycles for non smooth differential equations via schwarzian derivative [J]. J Diff Eqs, 1996, 13: 03-1. [ 3 ] LEINE R I, VAN CAMPEN D H. Bifurcation phenomena in non-smooth dynamical systems[j]. European Journal of Mechanics, 006, 5: 595-616. [ 4 ] LEINE R I. Bifurcation of equilibria in non-smooth continuous systems[j] Physica D, 006, 3: 11-137. [ 5 ] ZOU Y, KÜPPER T, BEYN W J. Generalized Hopf bifurcation for palnar Filippov systems continuous at the origin[j]. J. Nonlinear Sci, 006, 16: 159-177. [ 6 ] GASULL A, TORREGROSA J. Center-focus problem for discontinuous planar differ ential equations[j]. Int J Bifurcation and Chaos, 003, 13: 1755-1765. [ 7 ] KUNZE M. Non-Smooth Dynamical Systems[M]. Berlin: Springer-Verlag, 000. ( 0 ) [ ] [ 1 ] MERTON R C. Option pricing when underlying stock returns are discontinuous[j]. Journal of Financial Economics, 1976(3): 15-144. [ ] NAIK V, LEE M. General equilibrium prcing of options on the market portfolio with discontinuous returns[j]. Review of Financial Studies, 1990(3): 493-51. [ 3 ] AHN C M, CHO D C, PARK K. The pricing of foreign currency options under jump-diffusion processes[j]. Journal of Futures Markets, 007, 7: 669-695. [ 4 ] KOU S G. A jump diffusion model for option pricing[j]. Management Science, 00, 48: 1086-1101. [ 5 ] KOU S G., WANG H. Option pricing under a double exponential jump diffusion model[j]. Management Science, 004, 50: 1178-119. [ 6 ] BIGER N, HULL J. The valuation of currency options[j]. Financial Manage, 1983(1): 4-8. [ 7 ] COX J C, INGERSOLL J E, ROSS S A. A theory of the term structure of interest rates[j]. Ecomometrica, 1985, 53: 385-407. [ 8 ] AMIN K I, Jarrow R. Pricing foreign currency options under stochastic interest rates [J]. Journal of International Money and Finance, 1991(10): 310-39. [ 9 ] HULL J. Options, Futures, and Other Derivatives[M] 5th ed. New York: Prentice Hall International Inc, 003. [10] BLENMAN L P, Clark S P. Power exchange options[j]. Finance Research Letters, 005 (): 97-106. [11] JAIMUNGAL S, Wang T. Catastrophe options with stochastic interest rates and compound Poisson losses.[j]. Insurance: Mathematics and Economics, 006, 38: 469-483. [1] SHREVE. Stochatic Calculus for Finance II: Continuous time models[m]. New York: Springer, 000.