ΑΡΧΕΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ Διοδική Επαφή p- n

Σχετικά έγγραφα
/personalpages/papageorgas/ download/3/

ΑΡΧΕΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ Αγωγιμότητα σε ημιαγωγούς

Ανάστροφη πόλωση της επαφής p n

ΦΩΤΟΒΟΛΤΑΪΚΑ. Γ. Λευθεριώτης Αναπλ. Καθηγητής Γ. Συρροκώστας Μεταδιδακτορικός Ερευνητής

ΦΩΤΟΒΟΛΤΑΪΚΑ. Γ. Λευθεριώτης Αναπλ. Καθηγητής Γ. Συρροκώστας Μεταδιδακτορικός Ερευνητής

Ανάστροφη πόλωση της επαφής p n

ΑΣΚΗΣΗ 7 Μέτρηση ωμικής αντίστασης και χαρακτηριστικής καμπύλης διόδου

Ξεκινώντας από την εξίσωση Poisson για το δυναμικό V στο στατικό ηλεκτρικό πεδίο:

Ορθή πόλωση της επαφής p n

Κεφάλαιο 3 ο. Γ. Τσιατούχας. VLSI Technology and Computer Architecture Lab. Ημιαγωγοί - ίοδος Επαφής 2

ΦΩΤΟΒΟΛΤΑΪΚΑ. Γ. Λευθεριώτης Αναπλ. Καθηγητής Γ. Συρροκώστας Μεταδιδακτορικός Ερευνητής

Ορθή πόλωση της επαφής p n

Περιεχόμενο της άσκησης

ΑΡΧΕΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ Αγωγιμότητα σε ημιαγωγούς

Ηλεκτρονική Φυσική & Οπτικοηλεκτρονική

ΑΝΑΛΟΓΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ

ΑΝΑΛΟΓΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ

Θέµατα που θα καλυφθούν

ΑΡΧΕΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ Αγωγιμότητα σε ημιαγωγούς

Δίοδοι Ορισμός της διόδου - αρχή λειτουργίας Η δίοδος είναι μια διάταξη από ημιαγώγιμο υλικό το οποίο επιτρέπει την διέλευση ροής ρεύματος μόνο από

Επαφές μετάλλου ημιαγωγού

Περιοχή φορτίων χώρου

ΗΛΕΚΤΡΟΝΙΚΗ Ι Ενότητα 2

Διατάξεις ημιαγωγών. Δίοδος, δίοδος εκπομπής φωτός (LED) Τρανζίστορ. Ολοκληρωμένο κύκλωμα

Άσκηση 10 Στοιχεία ηλεκτρονικής τεχνολογίας

Περιοχή φορτίων χώρου

ΑΣΚΗΣΗ 15 Μελέτη φωτοδιόδου (φωτοανιχνευτή) και διόδου εκπομπής φωτός LED

Αρχές φωτοβολταϊκών διατάξεων

ΑΠΑΝΤΗΣΕΙΣ. Σχήμα 1 Σχήμα 2 Σχήμα 3

Βιοµηχανικά Ηλεκτρονικά (Industrial Electronics) Κ.Ι.Κυριακόπουλος Καθηγητής Ε.Μ.Π.

Άσκηση 3 Η φωτο-εκπέµπουσα δίοδος (Light Emitting Diode)

Επαφή / ίοδος p- n. Σχήµα 1: Επαφή / ίοδος p-n

Περιοχή φορτίων χώρου

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΗΛΕΚΤΡΟΛΟΓΙΚΑ ΥΛΙΚΑ. Ενότητα 10: ΗΜΙΑΓΩΓΟΙ ΛΙΤΣΑΡΔΑΚΗΣ ΓΕΩΡΓΙΟΣ ΤΗΜΜΥ

Φωτοδίοδος. 1.Σκοπός της άσκησης. 2.Θεωρητικό μέρος

Γιάννης Λιαπέρδος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΗΛΕΚΤΡΟΝΙΚΗ. Κριτική Ανάγνωση: Αγγελική Αραπογιάννη. Επιμέλεια πολυμεσικού διαδραστικού υλικού: Γιώργος Θεοφάνους

ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ. Εργαστήριο Φυσικής IΙ. Μελέτη της απόδοσης φωτοβολταϊκού στοιχείου με χρήση υπολογιστή. 1. Σκοπός. 2. Σύντομο θεωρητικό μέρος

Ηλεκτρονική. Ενότητα: 2 Η επαφή pn. Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών

ΦΩΤΟΒΟΛΤΑΪΚΑ. Γ. Λευθεριώτης Επικ. καθηγητής

Εισαγωγή στη Μικροηλεκτρονική (ΕΤΥ-482) 1 Η ΙΟ ΟΣ ΕΠΑΦΗΣ

Ηλεκτρονική. Ενότητα: 3 Δίοδος. Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών

Εισαγωγή στη Μικροηλεκτρονική 1. Στοιχειακοί ηµιαγωγοί

Ηλεκτρονική. Ενότητα: 4 Διπολικά Τρανζίστορ (BJT) Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών

ΑΡΧΕΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ Διπολικά Τρανζίστορ

Η επαφή p n. Η επαφή p n. Υπενθύμιση: Ημιαγωγός τύπου n. Υπενθύμιση: Ημιαγωγός τύπου p

ΑΡΧΕΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ

Ηλεκτρονική Φυσική (Εργαστήριο) ρ. Κ. Ι. ηµητρίου ΙΟ ΟΙ

Ηλεκτρονικά Ισχύος. ίοδος

Αγωγιμότητα στα μέταλλα

αγωγοί ηµιαγωγοί µονωτές Σχήµα 1

Αγωγιμότητα στα μέταλλα

ΗΛΕΚΤΡΟΝΙΚΑ Ι. ΚΕΦΑΛΑΙΟ 4 Ο : FET (Τρανζίστορ επίδρασης πεδίου)

Άσκηση 5 ΦΩΤΟΒΟΛΤΑΪΚΟ ΦΑΙΝΟΜΕΝΟ

ΣΧΕΔΙΑΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΗΛΕΚΤΡΟΝΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ. Δρ. Δ. Λαμπάκης (7 η σειρά διαφανειών)

Οι οπτικοί δέκτες μετατρέπουν το οπτικό σήμα σε ηλεκτρικό. Η μετατροπή των φωτονίων σε ηλεκτρόνια ονομάζεται φώραση.

ΑΡΧΕΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ

ΑΡΧΕΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΗΛΕΚΤΡΟΝΙΚΑ ΙΙ

Ηλεκτρονική. Ενότητα 2: Η επαφή pn. Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών

ΑΡΧΕΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ

ΠΑΡΑΓΩΓΗ ΜΙΚΡΟΚΥΜAΤΩΝ ΜΕ ΔΙΟΔΟ GUNN

ηλεκτρικό ρεύμα ampere

12. Εάν ένα κομμάτι ημιαγωγού τύπου n και ένα κομμάτι ΟΧΙ

Ηλεκτρικη αγωγιµοτητα

3.1 Η δίοδος στο κύκλωμα. Στατική και δυναμική χαρακτηριστική

1.1 Ηλεκτρονικές ιδιότητες των στερεών. Μονωτές και αγωγοί

Δίοδος Εκπομπής Φωτός, (LED, Light Emitting Diode), αποκαλείται ένας ημιαγωγός ο οποίος εκπέμπει φωτεινή ακτινοβολία στενού φάσματος όταν του

ΗΛΕΚΤΡΟΝΙΚΗ Ι Ενότητα 1

Διπολικά τρανζίστορ (BJT)

ΤΡΑΝΖΙΣΤΟΡ ΕΠΙ ΡΑΣΗΣ ΠΕ ΙΟΥ (FET)

Δίοδοι εκπομπής φωτός Light Emitting Diodes

ΤΕΙ - ΧΑΛΚΙ ΑΣ 4. ΕΙ ΙΚΕΣ ΙΟ ΟΙ. ίοδος zener. Χαρακτηριστική καµπύλη διόδου zener. Χαρακτηριστική καµπύλη διόδου Zener

Τα τρανζίστορ επίδρασης πεδίου (FET) Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής

Άσκηση 5. Τρανζίστορ Διπολικής Επαφής σε συνδεσμολογία Κοινής Βάσης

ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΗΣ

1. Ρεύμα επιπρόσθετα

ΦΥΣΙΚΗ ΗΜΙΑΓΩΓΩΝ. Βοήθημα μελέτης. Τεύχος 2 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Δ. ΤΡΙΑΝΤΗΣ ΚΑΘΗΓΗΤΗΣ. 4. Επαφή p n και δίοδοι Φυσική Ημιαγωγών & Διατάξεων

Συλλογή μεταφορά και έλεγχος Δεδομένων ΕΛΕΓΧΟΣ ΦΩΤΙΣΜΟΥ

Φυσική για Μηχανικούς

ΑΝΑΛΟΓΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ

Υ53 Τεχνολογία Κατασκευής Μικροηλεκτρονικών Κυκλωμάτων. Δεληγιαννίδης Σταύρος Φυσικός, MsC in Microelectronic Design

Οι οπτικοί δέκτες μετατρέπουν το οπτικό σήμα σε ηλεκτρικό. Η μετατροπή των φωτονίων σε ηλεκτρόνια ονομάζεται φώραση.

2.9 ΚΥΚΛΩΜΑΤΑ ΠΕΡΙΟΡΙΣΤΩΝ Τρανζίστορ Διπολικής Επαφής (BJT) ΚΕΦΑΛΑΙΟ 3: ΤΡΑΝΖΙΣΤΟΡ ΔΙΠΟΛΙΚΗΣ ΕΠΑΦΗΣ (BJT)...131

Πόλωση των Τρανζίστορ

Φυσική για Μηχανικούς

ΑΝΑΛΟΓΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ

Δίοδοι Zener. Οι Zener χρησιμοποιούνται σε ρυθμιστές τάσεως (voltage. I s regulators) δηλαδή συσκευές όπου η τάση του φορτίου

Φυσική για Μηχανικούς

ΒΑΣΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗ Ηµιαγωγοί VLSI T echnol ogy ogy and Computer A r A chitecture Lab Γ Τσ ιατ α ο τ ύχ ύ α χ ς ΒΑΣΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ

ΗΛΕΚΤΡΟΝΙΚΑ Ι. Ενότητα 1: Δίοδοι ανόρθωσης. Επ. Καθηγητής Γαύρος Κωνσταντίνος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ

ΗΥ335: Προχωρημένη Ηλεκτρονική

Ανάλυση Κυκλωμάτων. Φώτης Πλέσσας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών

Ακτίνες Χ (Roentgen) Κ.-Α. Θ. Θωμά

ηλεκτρικό ρεύµα ampere

ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α Α. Στα ερωτήµατα Α.1 έως Α.5 να απαντήσετε χωρίς να αιτιολογήσετε τις απαντήσεις σας. Α.1. Σε ένα τµήµα ηµιαγωγού πρόσµιξης τύπου n:

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

ΠΕΙΡΑΜΑ 8 ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΗΛΙΑΚΟΥ ΦΩΤΟΚΥΤΤΑΡΟΥ

ΑΝΑΛΟΓΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd stvrentzou@gmail.com

Ηλεκτρονική. Ενότητα 4: Διπολικά Τρανζίστορ (BJT) Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών

Transcript:

ΑΡΧΕΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ Διοδική Επαφή p- n Required Text: Microelectronic Devices, Keith Leaver (3 rd Chapter)

Τρέχον περιεχόμενο Η δίοδος σε ισορροπία Επίδραση της πόλωσης Περιοχές λειτουργίας της διόδου IV χαρακτηριστική της Επαφής PN Μοντέλα διόδου Αντίστροφη κατάρρευση και κατάρρευση Zener 2

Διοδική επαφή p- n Η δίοδος είναι το βασικότερο ηλεκτρονικό στοιχείο. Δημιουργείται φέροντας σε επαφή δύο ημιαγωγούς n και p τύπου Κύρια ιδιότητά τους είναι η ανόρθωση (rectifying). Ανόρθωση είναι η «μόνωση» των άκρων της διόδου, με την έννοια της διακοπής ροής ρεύματος δια μέσου αυτής, σε ανάστροφη πόλωση. 3

Διοδική επαφή p- n Κατασκευαστικά η δίοδος δεν προκύπτει με απλή επαφή των επιφανειών δύο ημιαγωγών διαφορικού τύπου (ασυνέχεια κρυσταλλικού πλέγματος). Στην πραγματικότητα προκύπτει με διάχυση διαδοχικών προσμίξεων π.χ. πρόσμιξη τύπου n σε ημιαγωγό p τύπου. Αυτό εξασφαλίζει την ύπαρξη ενός κρυσταλλικού πλέγματος. Στο κεφάλαιο αυτό υποθέτουμε οτι υπάρχει απότομη αλλαγή της πρόσμιξης στην επιφάνεια επαφής. Ιδανική Δίοδος Είναι όντως έτσι????? 4

Διοδική επαφή p- n Σε ιδανική δίοδο Με δεδομένο ότι σε κάθε πλευρά της επαφής υπάρχει περίσσεια οπών ή ηλεκτρονίων σε σχέση με την άλλη πλευρά, είναι προφανές ότι ένα ρεύμα διάχυσης (diffusion current) αντίστοιχων φορέων φορτίου από κάθε πλευρά, θα ρέει διά της επαφής. 5

Διοδική επαφή p- n Σε ιδανική δίοδο Στις δύο περιοχές πλησίον της επαφής οι φορείς πλειονότητας θα μετακινηθούν προς την απέναντι πλευρά, δημιουργώντας εκεί αντίστοιχη φορτισμένη περιοχή. Ετσι δημιουργείται μια περιοχή συγκεκριμένου εύρους από ακίνητα ιόντα (θετικά στην n και αρνητικά στην p) που ονομάζεται : περιοχή φορτίων χώρου ή εξάντλησης (depletion region). 6

Διοδική επαφή p- n Σε ιδανική δίοδο Στην περιοχή φορτίων χώρου δεν υπάρχουν κινητοί φορείς φορτίου (οι αντίστοιχοι φορείς πλειονότητας) γιατί αυτοί έχουν δεσμευτεί. Η εικόνα της συγκέντρωσης των φορέων πλειονότητας στη δίοδο (σε ισορροπία) θα είναι: Το εύρος των δύο περιοχών φορτίου χώρου δεν είναι συμμετρικό! 7

Διοδική επαφή p- n Τα ακίνητα ιόντα στην περιοχή φορτίων χώρου δημιουργούν με τη σειρά τους ένα (εσωτερικό) ηλεκτρικό πεδίο (Ε o ) και φυσικά ένα αντίστοιχο εσωτερικό δυναμικό (V o ) φράγμα δυναμικού. Το ηλεκτρικό αυτό πεδίο θα δημιουργήσει ένα ρεύμα ολίσθησης (drift current) με φορά αντίθετη του ρεύματος διάχυσης (diffusion current). 8

Διοδική επαφή p- n J e = neµ e E + D e e dn dx = 0 J p = peµ h E! D h e dp dx = 0 9

10

Διοδική επαφή p- n Ενεργειακά, η διαφορά δυναμικού μπορεί να υπολογιστεί ως εξής: o w n V = E dx w p Η αύξηση του φράγματος δυναμικού έχει ως αποτέλεσμα, το ηλεκτρόνιο να έχει μεγαλύτερη δυναμική ενέργεια στον p- τύπου ημιαγωγό. o Η Ενέργεια Fermi είναι και στις δύο περιοχές στο ίδιο επίπεδο. ΓΙΑΤΙ? 11

Υπολογισμός του φράγματος δυναμικού φράγμα δυναμικού = E cp! E cn = ev 0 n n = N c e! E cn!e F kt n p = N c e!e cp!e F kt Ecp Ecn evo n kt n kt kt kt D A = e = e Vo = ln Vo = ln 2 p p i n n N N n e n e n Σε Si με Ν Α =10 22 m - 3 και Ν D =10 24 m - 3 => V o =0.82V (300K) 12

Iσορροπία Ρευμάτων στη Επαφή neµ e E =!D e e dn dx " =! dv dx # dv dx = D $ e 1 & µ e % n dn dx ' ) ( #! $ dv dx dx = D # e 1 $ µ e n "# V 0 "#! $ dv = D e 1 $ µ e n dn 0 n n n p!v o = D % e ln n ( n µ ' e & n * p ) dn dx dx 13

Iσορροπία Ρευμάτων στη Επαφή Λαμβάνοντας υπόψη τη σχέση του Einstein: D e µ e = kt e καταλήγουμε στην ίδια σχέση με προηγουμένως (Διαφάνεια 12). V o = D! e ln n n µ # e " n p $ & % V o = kt! e ln n n # " n p $ & % (Διαφάνεια 12) 14

Τρέχον περιεχόμενο Η δίοδος σε ισορροπία Επίδραση της πόλωσης Περιοχές λειτουργίας της διόδου IV χαρακτηριστική της Επαφής PN Μοντέλα διόδου Αντίστροφη κατάρρευση και κατάρρευση Zener 15

Διοδική επαφή p- n Με δεδομένο το γεγονός της έλλειψης φορέων πλειονότητας στην περιοχή φορτίων χώρου (όπως φαίνεται στο σχήμα), Η περιοχή αυτή εμφανίζει πολλή αυξημένη αντίσταση σε σχέση με τον υπόλοιπο ημιαγωγό, που εμφανίζει χαμηλή αντίσταση. Ετσι ουσιαστικά οποιαδήποτε διαφορά δυναμικού μεταξύ των άκρων του ημιαγωγού εφαρμόζεται στην περιοχή επαφής. 16

Περιοχές λειτουργίας της διόδου Για να γίνει κατανοητή πλήρως η λειτουργία της διόδου ως ηλεκτρονικού στοιχείου, θα μελετήσουμε τη λειτουργία της σε ορθή και ανάστροφη πόλωση. 17

Ανάστροφη Πόλωση 18

Ορθή Πόλωση 19

Ορθή πόλωση διόδου (forward biased) Οταν η n- τύπου περιοχή της διόδου βρίσκεται σε χαμηλότερο δυναμικό από την περιοχή p- τύπου τότε η δίοδος θεωρείται ορθά πολωμένη. (Forward- biased) Η περιοχή φορτίων χώρου συρρικνώνεται. Το φράγμα δυναμικού μειώνεται κατά την τιμή της εξωτερικά εφαρμοζόμενης τάσης. 20

Ορθή πόλωση διόδου (forward biased) Θεωρώντας ότι η συνολική πυκνότητα ρεύματος είναι αμελητέα σε σχέση με τα δύο, αντικρουόμενα ρεύματα διάχυσης και ολίσθησης και ότι η πυκνότητα ηλεκτρονίων δεν θα έχει παντού τις τιμές της κατάστασης ισορροπίας της διόδου, θα ισχύουν τα ακόλουθα: J e = 0! neµ e E = "D e e dn dx! V o "V n n # dv = D e i # 0 µ e n dn!v o = D e ln n n n p ' µ & e n p ')! % ( V o "V = kt $ e ln n ' n & n p ') % ( Απ όπου υπολογίζεται η πυκνότητα ηλεκτρονίων n p στο όριο της περιοχής φορτίων χώρου της p πρόσμιξης: n p ' = n e n ev ( V o ) kt $ ' 21

Ορθή πόλωση διόδου (forward biased) Η αύξηση των φορέων μειονότητας σε κάθε περιοχή (οπών στην n- τύπου περιοχή) θα οδηγήσει στην αύξηση των ρευμάτων διάχυσης (υπό την προϋπόθεση ότι το φαινόμενο της επανασύνδεσης είναι αμελητέο). 22

Ορθή πόλωση διόδου (forward biased) Ετσι τόσο η ροή οπών, όσο και η αντίστοιχη ροή ηλεκτρονίων στις δύο περιοχές θα είναι ίσες. ev dp pn' pn Dhep n kt Jp = Dhe = Dhe Jp = e 1 dx Ln Ln ev dn np' np Deenp kt Je = Dee = Dee Je = e 1 dx Lp Lp 23

Ορθή πόλωση διόδου (forward biased) Προσθέτοντας τα δύο ρεύματα προκύπτει η γενική σχέση του ρεύματος μέσα από δίοδο ορθά πολωμένη: ev kt I = IS e 1 Οπου το ρεύμα κόρου (I S )της διόδου δίνεται από τη σχέση: I S Den Dep = A + Lp Ln e p h n (Α = επιφάνεια της επαφής) Από τι εξαρτάται το ρεύμα κόρου??? Για τάσεις μεγαλύτερες μιας τιμής κατωφλίου (για Si 600mV και για Ge 200mV) μπορούμε να θεωρήσουμε ότι ισχύει με καλή προσέγγιση η σχέση: I = I e S ev kt 24

Ανάστροφη πόλωση διόδου (reverse biased) Οταν η p- τύπου περιοχή της διόδου βρίσκεται σε χαμηλότερο δυναμικό από την περιοχή n- τύπου τότε η δίοδος θεωρείται ανάστροφα πολωμένη. Η περιοχή φορτίων χώρου επεκτείνεται. Το φράγμα δυναμικού αυξάνεται κατά την τιμή της εξωτερικά εφαρμοζόμενης τάσης. 25

Ανάστροφη πόλωση διόδου (reverse biased) Ισχύουν οι ίδιες σχέσεις με πριν, με το εξωτερικό δυναμικό V να είναι αρνητικό. Συνεπώς από τη σχέση n p ' = n e ev ( V o ) kt θα προκύπτει ότι n p <<n p n Αντί να εισέρχονται φορείς φορτίου στις απέναντι περιοχές, απωθούνται από την περιοχή της επαφής, λόγω του ηλεκτρικού πεδίου, με αποτέλεσμα την αναστροφή της κλίσης της συγκέντρωσης φορτίων 26

Ανάστροφη πόλωση διόδου (reverse biased) Τότε τα ρεύματα διάχυσης θα είναι: dn n n ' D en Je = Dee = Dee Je = dx L L p p e p dp p p ' D ep Jp = Dhe = Dhe Jp = dx L L n n h n Και κατά συνέπεια το μόνο ρεύμα που θα υπάρχει θα είναι το πολύ μικρό ρεύμα κόρου I S, που στην περίπτωση αυτή αποτελεί το ρεύμα διαρροής της διόδου: p n p n I S Den Dep = A + Lp Ln e p h n 27

Χαρακτηριστική της διόδου (I- V) Ως χαρακτηριστική καμπύλη ενός ηλεκτρονικού διπόλου στοιχείου ορίζεται η γραφική παράσταση (και θεωρητική σχέση) ρεύματος δια του στοιχείου σε συνάρτηση με την τάση στα άκρα του. Στην περίπτωση της διόδου η χαρακτηριστική της (I- V) καλύπτει τόσο την ορθή πόλωση όσο και την ανάστροφη. Στην ορθή πόλωση έχουμε ομαλή μεταβολή του ρεύματος συναρτήσει της τάσης στα άκρα της διόδου. Τυπικά δεν υπάρχει κάποιο κατώφλι έναρξης της αγωγής της διόδου. Στην ανάστροφη πόλωση το ρεύμα σταθεροποιείται για πολώσεις της τάξης του - 3kT/e και πάνω. 28

Χαρακτηριστική της διόδου (I- V) Σε ισχυρές πολώσεις τα πράγματα είναι πολύ πιο «ιδανικά» και η δίοδος θεωρείται ότι αποκόπτει από κάποιο κατώφλι πόλωσης και κάτω. Στην περίπτωση της διόδου η χαρακτηριστική της (I- V) καλύπτει τόσο την ορθή πόλωση όσο και την ανάστροφη. Στην ορθή πόλωση έχουμε ομαλή μεταβολή του ρεύματος συναρτήσει της τάσης στα άκρα της διόδου. Τυπικά δεν υπάρχει κάποιο κατώφλι έναρξης της αγωγής της διόδου. Στην ανάστροφη πόλωση το ρεύμα σταθεροποιείται για πολώσεις της τάξης του - 3kT/e και πάνω. 29

Χαρακτηριστική της διόδου (I- V) Στην ορθή πόλωση έχουμε ομαλή μεταβολή του ρεύματος συναρτήσει της τάσης στα άκρα της διόδου. Τυπικά δεν υπάρχει κάποιο κατώφλι έναρξης της αγωγής της διόδου. Στην ανάστροφη πόλωση το ρεύμα σταθεροποιείται για ανάστροφες πολώσεις της τάξης του - 3kT/e και πάνω. 30

Χαρακτηριστική της διόδου (I- V) Η χαρακτηριστική (I- V) που περιγράφηκε αφορούσε ιδανική δίοδο, αφού δεν λάμβανε υπόψη τα ακόλουθα τρία φαινόμενα: Το φαινόμενο της επανασύνδεσης φορέων (recombination) στην περιοχή φορτίων χώρου. Την πτώση τάσης και εκτός της περιοχής φορτίων χώρου. Το φαινόμενο της κατάρρευσης (breakdown), στην ανάστροφη πόλωση. 31

Χαρακτηριστική της διόδου (I- V) Επανασύνδεση φορέων (Recombination) Το φαινόμενο της επανασύνδεσης φορέων, που προέρχονται από (θερμική) δίδυμη γένεση ηλεκτρονίων οπών και διάχυση στην περιοχή φορτίων χώρου, έχει ως αποτελέσματα: την αύξηση του ρεύματος I s και την απόκλιση της χαρακτηριστικής ορθής πόλωσης από την ιδανικότητα, σύμφωνα με τη προσέγγιση: ev ηkt I = IS e 1 Ο συντελεστής η είναι σταθερός αριθμός η τιμή του οποίου καθορίζεται από την χρησιμοποιούμενη τεχνολογία κατασκευής της διόδου. 32

Χαρακτηριστική της διόδου (I- V) Επανασύνδεση φορέων (Recombination) Η πιο ακριβής σχέση είναι: I = I S " $ # ev kt e!1 % ' + I " e Ro $ & # ev 2kT!1 Ο συντελεστής I Ro είναι ανάλογος του όγκου της περιοχής απογύμνωσης - Για μικρά ρεύματα ορθής πόλωσης και αντίστροφης πόλωσης ο δεύτερος όρος γινεται σημαντικός - Για μεγάλα ρεύματα ορθής πόλωσης ο όγκος της περιοχής απογύμνωσης γίνεται πολύ μικρός και έτσι ο δεύτερος όρος γίνεται αμελιτέος. % ' & 33

Χαρακτηριστική της διόδου (I- V) Πτώση τάσης εκτός της περιοχής φορτίων χώρου Η ύπαρξη πολύ μικρής, αλλά υπαρκτής αντίστασης και στο χώρο εκτός της περιοχής φορτίων χώρου, οδηγεί σε περιορισμό του ρεύματος της διόδου (κυρίως στην περίπτωση υψηλών ρευμάτων ορθής πόλωσης). Η διόρθωση στην περίπτωση αυτή έχει ως ακολούθως: ev ( IRS ) kt I = IS e 1 Και φυσικά οδηγεί σε μικρότερη πτώση τάσης στην περιοχή της επαφής σε σχέση με τη συνολικά εφαρμοζόμενη στα άκρα της διόδου. 34

Χαρακτηριστική της διόδου (I- V) Φαινόμενο κατάρρευσης στην ανάστροφη πόλωση Το φαινόμενο της κατάρρευσης (breakdown) διόδου εμφανίζεται σε συγκεκριμένες τιμές ανάστροφης τάσης πόλωσης και συνίσταται στην αύξηση του ανάστροφου ρεύματος διά της διόδου, ανεξαρτήτως της τάσης της. Η κατάρρευση οφείλεται στην εφαρμογή υψηλής έντασης (ανάστροφου) ηλεκτρικού πεδίου στην περιοχή φορτίων χώρου. Υπάρχουν δυο μηχανισμοί με τους οποίους ερμηνεύεται το φαινόμενο: το φαινόμενο του καταιγισμού φορέων (χιονοστοιβάδας) και το φαινόμενο tunneling 35

Φαινόμενο tunneling 36

Χαρακτηριστική της διόδου (I- V) Φαινόμενο κατάρρευσης στην ανάστροφη πόλωση Το φαινόμενο της καταιγισμού φορέων Στην περίπτωση μεγάλης περιοχής φορτίων χώρου, λαμβάνει χώρα το φαινόμενο του καταιγισμού φορέων (avalanche). Oι εισερχόμενοι φορείς φορτίου μπορούν να επιταχυνθούν από το εξωτερικό ηλεκτρικό πεδίο τόσο, που να δημιουργούν με κρούση νέους επιταχυνόμενους φορείς φορτίου, με συνακόλουθη αύξηση του ρεύματος. Μπορώ να έχω κατάρρευση της ανάστροφης πόλωσης σε τιμές μέχρι και 1kV. Χρήση στις διόδους zener 37

Δυναμική αντίσταση διόδου Με τον όρο δυναμική αντίσταση διόδου (r d ) ορίζουμε την αντίσταση που εμφανίζει η επαφή p- n στην διέλευση εναλλασσόμενου ρεύματος διά μέσου αυτής, όταν είναι ορθά πολωμένη. Ο υπολογισμός της γίνεται μέσω της αντίστοιχης δυναμικής αγωγιμότητας g d (g d =1/r d ). ev ev di d e kt kt gd = = ISe = ISe dv dv kt ei kt gd = rd = kt ei 38

Εύρος περιοχής φορτίων χώρου Στην ισορροπία, οι φορείς φορτίου σε κάθε περιοχή δίνονται από τις σχέσεις: n = N e c p = N e v Ec E kt Η δραματική αλλαγή της διαφοράς E c - E F οδηγεί και στο σχεδόν μηδενισμό των ηλεκτρονίων (ή οπών) μέσα στην περιοχή φορτίων χώρου. F EF Ev kt 39

Εύρος περιοχής φορτίων χώρου Το συνολικό φορτίο, σε κάθε τμήμα της περιοχής φορτίων χώρου, θα είναι: q NDe NAe Ax = = Σύμφωνα με τον νόμο Gauss: ε Φ = ε ExA () = q= en Ax E Εκτελώντας σειρά πράξεων: en D x E( x) A = en Ax E( x) = dv en D D D = x dv = xdx dx ε x en D endx V ( x) V (0) = xdx = ε 2ε 0 en ε D ε 2 40

Εύρος περιοχής φορτίων χώρου Η συνολική κλιμάκωση της διαφοράς δυναμικού κατά μήκος της περιοχής φορτίων χώρου θα είναι: V o 2 endw en n AW V = + 2ε 2ε Εύρεση του εύρους περιοχής φορτίων χώρου: Επειδή ο κρύσταλλος συνολικά είναι ουδέτερος: WN n D WN p A = WN n D Wp = N Αντικαθιστώντας στην 1 η A σχέση της διαφάνειας, 2 2ε N A Wn = 2 ( Vo V) e N N + N A D D V 2εV W = W 1 µε W = 2 2 2 o A n n0 n0 2 Vo e NAND + ND 2 p N 41

Εύρος περιοχής φορτίων χώρου Παρατηρούμε ότι η το εύρος κάθε τμήματος της περιοχής φορτίων χώρου εξαρτάται: Από την τάση πόλωσης. Μικραίνει στην ορθή πόλωση και αυξάνει στην ανάστροφη. Το επίπεδο πρόσμιξης στο κάθε τμήμα της επαφής. Ισχυρότερη πρόσμιξη στην μία πλευρά οδηγεί σε μείωση του εύρους του αντίστοιχου τμήματος και αύξηση του απέναντι τμήματος της περιοχής φορτίων χώρου (transistor fabrication). Ετσι σε επαφές p- n με ισχυρή πρόσμιξη μπορώ να έχω ευκολότερα κατάρρευση σε ανάστροφη πόλωση. 42

Χωρητικότητες επαφής p- n Η επαφή p- n διόδου μπορεί να εμφανίζει υπολογίσιμη χωρητική συμπεριφορά. Κάτω από κατάλληλες συνθήκες παρουσιάζει: χωρητικότητα επαφής (junction capacity), η οποία εμφανίζεται όταν η δίοδος είναι ανάστροφα πολωμένη και χωρητικότητα διάχυσης (diffusion or storage capacity), η οποία εμφανίζεται κατά την ορθή πόλωση της διόδου. 43

Χωρητικότητες επαφής p- n Χωρητικότητα επαφής (junction capacity) Σε ανάστροφη πόλωση η περιοχή φορτίων χώρου μεγαλώνει και τα ακίνητα ιόντα, εκατέρωθεν της επαφής, υλοποιούν έναν «εν δυνάμει» πυκνωτή. Βέβαια η μεταβολή φορτίου ΔQ λόγω της αλλαγής στον όγκο της περιοχής φορτίων χώρου, δεν είναι ευθέως ανάλογη της τάσης ΔV γιατί W V = V 2 2 n Wn0 1 o 44

Χωρητικότητες επαφής p- n Χωρητικότητα επαφής (junction capacity) Η χωρητικότητα επαφής θα ορίζεται ως εξής: C j ΔQ end AΔWn dwn = = enda ΔV ΔV dv endwn0 C j = V 2V o 1 V Με τη διαφορά V- V o να αυξάνει όταν αυξάνει η ανάστροφη πόλωση της διόδου. Οταν V o <<abs(v), τότε: C j 1 V o 45

Δίοδος varactor Πρόκειται για διόδους βέλτιστα κατασκευασμένες για να λειτουργούν σαν πυκνωτές ελεγχόμενοι από τάση. Βασίζονται στην αξιοποίηση της χωρητικότητας επαφής (junction capacitance), για την οποία ισχύει η σχέση: 1 C j V Οταν η διοδική επαφή είναι πολωμένη ανάστροφα. Σημειώνεται ότι αν το προφίλ της p- n επαφής δεν είναι ιδανικό, τότε στη σχέση C j endwn0 = V 2V o 1 V η τάξη της ρίζας παίρνει τιμές μεταξύ 2-3. o 46

Recombination and Lifetime So far ignored recombination (assumed short diodes) Need to assess effect of recombination At equilibrium in p-type silicon have n p & p p An increase to n p => increase in recombination since recombination rate is proportional to np i.e. dn dt =!c(n! n p ) Which has solution: (n! n p ) = Aexp(!ct) 47

Recombination and Lifetime Where is called the LIFETIME of electrons in the p- type semiconductor, and is the average time of survival of the excess electrons. Hence: " (n! n p ) = (n(0)! n p )exp!t % $ ' # &! e dn " dt =! n! n p $ #! e % ' & dp dt =! " p! p % n $ ' # &! h 48

The thick diode: recombination and diffusion length 49

The thick diode: recombination and diffusion length 50

The thick diode: recombination and diffusion length 51

The thick diode: recombination and diffusion length The rate of loss of electrons occurring within this volume by recombination is!n!t!x = " (n(x) " n p )! e "x from dn " dt =! n! n p $ #! e % ' & Out flow is #"n!d e "x + "2 n "x!x & % ( $ 2 ' 52

The thick diode: recombination and diffusion length The difference between influx and outflux is equal to recombination so D e d 2 n(x) dx 2! (n(x)! n p )! e = 0 Which has solution " %!x n(x)! n p = n' p! n p exp $ ' ( D e! ) 1/2 # $ e &' 53

The thick diode: recombination and diffusion length ( D e! ) 1/2 e is called the DIFFUSION LENGTH J n = D e e (n '! n p p ) ( D! ) 1/2 e Which is identical in form to that of the short diode, with L n replaced by the DIFFUSION LENGTH It should be noted that the hole current rises as x increased to supply the holes for recombination. 54

Δίοδοι LED Εκπομπή ακτινοβολίας από ημιαγωγό μπορούμε να έχουμε κατά την ενεργειακή μετάβαση ηλεκτρονίου από τη ζώνη αγωγιμότητας στη ζώνη σθένους. Αυτό μπορεί να γίνει μέσω του μηχανισμού της επανασύνδεσης, υπό την προϋπόθεση ότι αυτός λαμβάνει χώρα έξω από την περιοχή φορτίων χώρου (μεγάλου πάχους δίοδος). Στην περίπτωση αυτή η ενέργεια που από- δεσμεύεται, εκπέμπεται με τη μορφή φωτονίου. Για οριακή μετάβαση από τη ζώνη αγωγιμότητας στη ζώνη σθένους, το μήκος κύματος της ακτινοβολίας θα δίνεται από τη σχέση: hc λ = = ΔE hc E g 55

Δίοδοι LED Επειδή όμως στην ενεργειακή ζώνη σθένους και αγωγιμότητας τα ηλεκτρόνια έχουν μεγαλύτερη πιθανότητα να βρίσκονται σε ενέργιακο επίπεδο kt/2 πιο πάνω απο το E c, και kt/2 πιο κάτω απο το E v η ακτινοβολία είναι κυρίως των μήκων: hc hc λ = = E E + kt g g Χρησιμοποιώντας ημιαγωγό GaAs, με ενεργει- ακό χάσμα E g =1.4eV, εκπεμπόμενη ακτινοβο- λία θα έχει λ=860nm στο εγγύς υπέρυθρο. Στον ίδιο ημιαγωγό με προσμίξεις Al μπορούμε να μικρύνουμε το ενεργειακό χάσμα ώστε η εκπεμπόμενη ακτινοβολία να είναι στο ορατό. 56

Δίοδοι LED Με δεδομένο ότι ο ρυθμός εκπομπής φωτονίων εξαρτάται από np, απαιτούνται αρκετοί φορείς μειονότητας, ώστε το φαινόμενο της επανασύνδεσης να είναι ικανό να παράξει φως. Συνεπώς στις διόδους LED απαιτούνται ισχυρές προσμίξεις και αυξημένη πυκνώτητα ρεύματος με μόνον περιορισμό την θερμοκρασιακή αντοχή του υλικού. Οι δίοδοι LED αν και λειτουργούν ορθά πολωμένες απαιτούν μεγαλύτερη των 0.7V τάση, γύρω στο 1.5V, γιατί εκτός της πόλωσης της επαφής (που φτάνει να γίνει ίση με το V o ) έχουμε μεγάλη πτώση τάσης στην εκτός της περιοχής φορτίων χώρου, περιοχή. Η τάση κατάρρευσης σε ανάστροφη πόλωση είναι πολύ κοντά στο 1V (στενή περιοχή φορτίων χώρου). 57

Δίοδοι LED Σχεδόν όλη η ακτινοβολία εκπέμπεται στην περιοχή της επαφής (μικρό μήκος επανασύνδεσης L= Dτ, λόγω μικρού χρόνου ελεύθερης διαδρομής τ e ). Ο μικρός τ e οφείλεται στ τ e ν ισχυρή πρόσμιξη που έχει σα συνέπεια την γρήγορη επανασύνδεση ηλεκτρονίων- οπών. Υπάρχει ένα άνω όριο πρόσμιξης πάνω από το οποίο δεν έχω αύξηση της έντασης της εκπεμπόμενης ακτινοβολίας. Αυτό καθορίζεται από το φαινόμενο: παγιδευμένες οπές (σε n- τύπου περιοχή) να επανασυνδέονται με ηλεκτρόνια, αλλά αυτή τη φορά χωρίς εκπομπή ακτινοβολίας. Το φαινόμενο γίνεται εντονότερο όσο μεγαλύτερες προσμίξεις έχω. 58

Φωτοδίοδοι Πρόκειται δια διόδους που ανιχνεύουν το φως ή την ακτινοβολία γενικότερα. Βασίζονται στο φαινόμενο της γένεσης ζεύγους ηλεκτρονίου- οπής με την απορρόφηση κατάλληλης ακτινοβολίας (Ε φωτονίου >E g ). Ετσι, σε κάθε τέτοια δίοδο μπορεί να αυξηθεί το ρεύμα με απορρόφηση ακτινοβολίας, υπό την προϋπόθεση ότι το ζεύγος που δημιουργείται δεν θα επανασυνδεθεί. Η αποφυγή της επανασύνδεσης επιτυγχάνεται με εφαρμογή ηλεκτρικού πεδίου που απομακρύνει το ζεύγος που δημιουργείται. Για το λόγο αυτό προσπαθούμε η απορρόφηση φωτονίου και η γένεση ζεύγους ηλεκτρονίου- οπής να συμβαίνει κοντά στην περιοχή της p- n επαφής, όπου υπάρχει ηλεκτρικό πεδίο ακόμα και απουσία πόλωσης. 59

Φωτοδίοδοι Στην ορθή πόλωση η αύξηση του ρεύματος λόγω της ακτινοβολίας είναι ανεξάρτητη της πόλωσης. Στην ανάστροφη πόλωση το ρεύμα καθορίζεται σχεδόν αποκλειστικά από το ποσοστό (η) των ζευγών που φτάνουν στην επαφή χωρίς να επανασυνδεθούν. Για δέσμη φωτός συχνότητας f και με ρυθμό εκπομπής φωτονίων Ν/s, η ισχύς της θα είναι Nhf και το παραγόμενο από αυτήν ρεύμα ηne. Η ευαισθησία της διόδου θα είναι: ηne/ Nhf με μονάδα A (ρεύμα)/w (φωτός) 60

Φωτοδίοδοι Για να αυξηθεί η αποδοτικότητα (η) της διόδου πρέπει η απορρόφηση των φωτονίων να γίνεται σε περιοχή με ηλεκτρικό πεδίο, δηλαδή στην περιοχή απογύμωσης. Ο συντελεστής η εκφράζει ακριβώς αυτή την ευαισθησία και άρα την απόδοση της φωτοδιόδου. Ετσι αυξάνεται το εύρος της περιοχής φορτίων χώρου (περιοχή απογύμωσης) με μείωση των προσμίξεων (p- i- n diode). Υπάρχει εξάρτηση μήκους κύματος και ευαισθησίας απορρόφησης ακτινοβολίας της διόδου. Πώς εξηγείται??? 61

Μοντέλα διόδου Η μοντελοποίηση της συμπεριφοράς διόδου έχει οδηγήσει σε δύο είδη μοντέλων: Το Μοντέλο Μικρού Σήματος (small signal model). Είναι προσεγγιστικό και χρησιμοποιείται κυρίως σε υπολογισμούς στο χέρι. Το Μοντέλο Μεγάλου Σήματος (large signal model). Είναι αναλυτικό, με την έννοια ότι επιλύονται ακριβώς οι πλήρεις εξισώσεις που περιγράφουν τη συμπεριφορά της διόδου. Χρησιμοποιείται κυρίως σε προσομοιώσεις συμπεριφοράς διόδων με Η/Υ (αλγόριθμοι PSPICE). 62

Μοντέλo διόδου Μικρού Σήματος Πρόκειται για ισοδύναμο ηλεκτρικό κύκλωμα που μπορεί να παραστήσει την ηλεκτρική συμπεριφορά της διόδου για μικρά ac ρεύματα που επικάθονται του ρεύματος πόλωσης. Σημειώνονται τα ακόλουθα: Η αντίσταση R S αφορά την ωμική αντίσταση της ουδέτερης περιοχής (εκτός της περιοχής φορτίων χώρου). Η δυναμική αντίσταση της διόδου, ουσιαστικά καθορίζεται από το ρεύμα πόλωσής της (dc), μια και η ac συνιστώσα θα είναι πολύ μικρότερη. Στην ανάστροφη πόλωση η ισοδύναμη αντίσταση καθορίζεται από την αντίσταση διαρροής του περιβλήματος της διόδου. 63

Μοντέλo διόδου Μικρού Σήματος I = I S " $ # ev kt e!1 % ' & g d = di dv = e kt I S g d! e kt I exp ev kt για V>120mV χωρητικότητα επαφής C j (junction capacity), η οποία κυριαρχεί όταν η δίοδος είναι ανάστροφα πολωμένη και χωρητικότητα διάχυσης C d (diffusion or storage capacity), η οποία κυριαρχεί κατά την ορθή πόλωση της διόδου. 64

Χωρητικότητες επαφής p- n 65

Μοντέλα διόδου Μεγάλου Σήματος Μοντέλο Μεγάλου Σήματος Πρόκειται για αναλυτικό ισοδύναμο ηλεκτρικό κύκλωμα που μπορεί να παραστήσει όλων των ειδών ρευμάτων και βασίζεται στη επίλυση των εξισώσεων που περιγράφουν τη συμπεριφορά της διόδου με τη βοήθεια ηλεκτρονικού υπολογιστή. Ο υπολογιστής χρειάζεται τις παραμέτρους: I s = saturation current of diode at 25 C η= correction factor for the exponent in eqn (3.12) V 0 =built in voltage C j0 = depletion layer capacitance at zero bias V=0 in (Eqn 3.20) m= exponent in capacitance eqn 3.20 R s = Series resistance in neutral regions and device contacts τ t = so- called transit time. 66

Χωρητικότητες επαφής p- n Χωρητικότητα διάχυσης (diffusion or storage capacity) Ουσιαστικά πρόκειται για χωρητική συμπεριφορά της διόδου που εμφανίζεται κατά την ορθή πόλωσή της. Οφείλεται στην ύπαρξη φορτίων και στην ουδέτερη περιοχή της διόδου, δηλαδή εκτός της περιοχής φορτίων χώρου. Οι επιπλέον φορείς μειονότητας που διαχέονται στην περιοχή αυτή, με τη σειρά τους προκαλούν αύξηση και στους φορείς πλειονότητας (λόγω ουδετερότητας της περιοχής). Οποιαδήποτε μεταβολή στην τάση της διόδου οδηγεί και σε αντίστοιχη μετακίνηση φορτίων 67

Χωρητικότητες επαφής p- n Χωρητικότητα διάχυσης (diffusion or storage capacity) Ετσι αύξηση της ορθής πόλωσης κατά ΔV οδηγεί και σε αύξηση της συγκέντρωσης φορέων μειονότητας (σε p τύπου υλικό) n p. Q e = 1 2 (n ' p! n p )el p A = 1 2 L ean (exp(ev / kt )!1) p p και απο τη διάχυση των ηλεκτρονίων ξέρουμε ότι I e = AD e en p L p (! exp ev $ + * # &'1-. I L e p ) " kt %, AD e e = n (! ev $ + exp p * # &'1- ) " kt %, Ετσι το φορτίο γίνεται Q e = L 2! p I 2D e Q st = L 2 p # e " 2D e $ & I +! L 2 n e # % " 2D h $ & I h % 68

Χωρητικότητες επαφής p- n Ετσι το συνολικό φορτίο γίνεται! Q st = L 2 $ p # " 2D & I +! L 2 $ n e # e % " 2D & I h h %!! 2 L = # p # " #" 2D e $ & f +! L 2 n # % " 2D h $ $ & (1! f ) & % % & I Οπου το f αντιπροσωπεύει το ποσοστό του ρεύματος που μεταφέρεται απο ηλεκτρόνια C d = dq st dv = (! 2 L * p # ) *" 2D e $ & f +! L 2 n # % " 2D h $ + & (1' f ) - di %, - dv Και αφού di/dv= g d =ei/kt απο τη διαφάνεια 64: 69

Χωρητικότητες επαφής p- n (! 2 L $ C d = p # " 2D & f +! L 2 $ + * n # e % " 2D & (1' f ) - ) * h %, - g d (! 2 L $ = p # " 2D & f +! L 2 $ + * n # e % " 2D & (1' f ) - ei ) * h %, - KT =! t g d Οπου το τ t είναι ο συνολικός χρόνος διάβασης (effective transit time) και g d η δυναμική αγωγιμότητα της διόδου Γιατί τον ονομάζουμε το τ t χρόνο διάβασης; Q = t. ( Q / t) = t.i Απο τη διαφάνεια 68: Q e = L 2 p I 2D e! L 2 p = t e 2D e 70

Χωρητικότητες επαφής p- n Χωρητικότητα διάχυσης (diffusion or storage capacity) Η χωρητικότητα διάχυσης είναι συμμετέχει μαζί με τη δυναμική αντίσταση της διόδου στην εμφάνιση μιας σταθεράς χρόνου (καθυστέρησης): τ == Cr t Ετσι, εύκολα εξάγεται ερμηνεία για την καθυστέρηση στην αποκοπή της διόδου. d d 71

Η Μετάβαση απο ορθή σε Ανάστροφη Πόλωση (Large- signal Switching) 72

Διόδοι Schottky και Ohmic Επαφές e! b Schottky barrier (Shottky φραγμός)!e! b kt I = e " $ # ev kt e!1 % ' & Ohmic Junction I = 1 R V 73

Schottky Diode Lower C d than p- n diodes why? Faster switching than p- n diodes Usually have lower forward voltage drop (0.25V for Al- Si) If doping is very high (i.e. n+) Shottky diode can have ohmic behaviour because of tunneling 74

Summary of Terminology 75