ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 03 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Στις ερωτήσεις Α-Α να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα στο γράμμα που αντιστοιχεί στη φράση, η οποία συμπληρώνει σωστά την ημιτελή πρόταση. Α. Περιπολικό ακολουθεί αυτοκίνητο που έχει παραβιάζει το όριο ταχύτητας. Τα δύο αυτοκίνητα κινούνται με ίσες ταχύτητες. Αν η σειρήνα του περιπολικού εκπέμπει ήχο συχνότητας f s τότε, η συχνότητα f A που αντιλαμβάνεται ο οδηγός του άλλου αυτοκινήτου είναι: f = f f = f f = f f 0 α) A s β) A s γ) A s δ) = A Α. Διακρότημα δημιουργείται από τη σύνθεση δύο απλών αρμονικών ταλαντώσεων ίδιας διεύθυνσης, με ίδιο πλάτος, γύρω από την ίδια θέση ισορροπίας, όταν οι ταλαντώσεις αυτές έχουν: α) ίσες συχνότητες και ίδια φάση β) ίσες συχνότητες και διαφορά φάσης π γ) παραπλήσιες συχνότητες δ) ίσες συχνότητες και διαφορά φάσης π. Α3. Σε μια μηχανική ταλάντωση της οποίας το πλάτος φθίνει χρονικά ως Α=Α 0 e - Λt, όπου Α 0 είναι το αρχικό πλάτος της ταλάντωσης και Λ είναι μια θετική σταθερά, ισχύει ότι: α) οι μειώσεις του πλάτους σε κάθε περίοδο είναι σταθερές β) η δύναμη αντίστασης είναι F αντ = - b u, όπου b είναι η σταθερά απόσβεσης και u η ταχύτητα του σώματος που ταλαντώνεται γ) η περίοδος Τ της ταλάντωσης μειώνεται με το χρόνο για μικρή τιμή της σταθεράς απόσβεσης b δ) η δύναμη αντίστασης είναι F αντ = - b u, όπου b είναι η σταθερά απόσβεσης και η u η ταχύτητα του σώματος που ταλαντώνεται. Α. Κατά τη διάδοση ηλεκτρομαγνητικού κύματος στο κενό, σε μεγάλη απόσταση από την πηγή, ισχύει ότι: α) στη θέση που η ένταση Ε του ηλεκτρικού πεδίου είναι μηδέν, η ένταση Β του μαγνητικού πεδίου είναι μέγιστη
ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 03 β) τα διανύσματα των εντάσεων Ε του ηλεκτρικού και Β του μαγνητικού πεδίου είναι παράλληλη μεταξύ τους γ) το διάνυσμα της έντασης Ε του ηλεκτρικού πεδίου είναι κάθετο στη διεύθυνση διάδοσης του ηλεκτρομαγνητικού κύματος δ) το διάνυσμα της έντασης Β του μαγνητικού πεδίου είναι παράλληλο στη διεύθυνση διάδοσης του ηλεκτρομαγνητικού κύματος. Α5. Να χαρακτηρίστε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας, δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή τη λέξη Λάθος, αν η πρόταση είναι λανθασμένη. α) Το όζον της στρατόσφαιρας απορροφά κατά κύριο λόγο την επικίνδυνη υπεριώδη ακτινοβολία. β) Σε μια απλή αρμονική ταλάντωση αυξάνεται το μέτρο της ταχύτητας του σώματος που ταλαντώνεται καθώς αυξάνεται το μέτρο της δύναμης επαναφοράς. γ) Κατά τη διάδοση μηχανικού κύματος μεταφέρεται ορμή από ένα σημείο του μέσου στο άλλο. δ) Σε στερεό σώμα σφαιρικού σχήματος που στρέφεται με σταθερή γωνιακή ταχύτητα γύρω από άξονα διερχόμενο από το κέντρο του ισχύει πάντα ΣF=0. ε) Έκκεντρη ονομάζεται η κρούση κατά την οποία οι ταχύτητες των κέντρων μάζας των δύο σωμάτων που συγκρούονται είναι παράλληλες αλλά μη συγγραμμικές. ΘΕΜΑ Β Β. Στο κύκλωμα του σχήματος ο πυκνωτής χωρητικότητας C=0x0-6 F είναι φορτισμένος με τάση V c =0 V και το ιδανικό πηνίο έχει συντελεστή παραγωγής L x0 9 3 = Η. Τη χρονική στιγμή t 0 =0 κλείνουμε το διακόπτη δ. Κάποια μεταγενέστερη χρονική στιγμή t, το φορτίο του πυκνωτή είναι μηδέν και η ένταση του ρεύματος που διαρρέει το πηνίο είναι 6 Α. Από τη στιγμή t 0 έως τη στιγμή t η συνολική ενέργεια της ηλεκτρικής ταλάντωσης μειώθηκε κατά: 3 i) x0 J
ii) iii) ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 03 3 x0 J 3 x0 J α) Να επιλέξετε τη σωστή απάντηση. β) Να δικαιολογήσετε την απάντησή σας. Μονάδες Β. Δύο σύγχρονες πηγές κυμάτων Π και Π που βρίσκονται αντίστοιχα στα σημεία Κ και Λ της επιφάνειας υγρού παράγουν πανομοιότυπα εγκάρσια αρμονικά κύματα με ίδιο πλάτος, ίσες συχνότητες f και ίσα μήκη κύματος λ. Αν η απόσταση των σημείων Κ και Λ είναι d=λ, τότε δημιουργούνται τέσσερις υπερβολές απόσβεσης, μεταξύ των σημείων Κ και Λ. Αλλάζοντας την συχνότητα των δύο πηγών σε f =3 f και διατηρώντας το ίδιο πλάτος, ο αριθμός των υπερβολών απόσβεσης, που δημιουργούνται μεταξύ των δύο σημείων Κ και Λ, είναι: i) 6 ii) 8 iii) α) Να επιλέξετε τη σωστή απάντηση. Μονάδες β) Να δικαιολογήσετε την απάντησή σας. Μονάδες 7 Β3. Ένας δίσκος Δ με ροπή αδράνειας Ι στρέφεται με γωνιακή ταχύτητα ω και φορά περιστροφής όπως φαίνεται στο σχήμα, γύρω από σταθερό κατακόρυφο άξονα που διέρχεται από το κέντρο του και είναι κάθετος στο επίπεδό του. Ένας δεύτερος δίσκος Δ με ροπή αδράνειας I I =, που αρχικά είναι ακίνητος, τοποθετείται πάνω στο δίσκο Δ, ενώ αυτός περιστρέφεται, έτσι ώστε να έχουν κοινό άξονα περιστροφής, που διέρχεται από τα κέντρα των δύο δίσκων, όπως δείχνει το σχήμα. Μετά από λίγο οι δύο δίσκοι αποκτούν κοινή γωνιακή ταχύτητα ω.
ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 03 Αν L, είναι το μέτρο της αρχικής στροφορμής του δίσκου Δ, τότε το μέτρο της μεταβολής της στροφορμής του δίσκου Δ, είναι: i) 0 L 5 L ii) iii) 5 α) Να επιλέξετε τη σωστή απάντηση. β) Να δικαιολογήσετε την απάντησή σας. Μονάδες ΘΕΜΑ Γ Σώμα Σ με μάζα m κινείται σε οριζόντιο επίπεδο ολισθαίνοντας προς άλλο σώμα Σ με μάζα m = m, το οποίο αρχικά είναι ακίνητο. Έστω u 0 η ταχύτητα που έχει το σώμα Σ τη στιγμή t 0 =0 και ενώ βρίσκεται σε απόσταση d= m από το σώμα Σ. Αρχικά θεωρούμε, ότι το σώμα Σ είναι ακίνητο πάνω στο επίπεδο δεμένο στο ένα άκρο οριζόντιου ιδανικού ελατηρίου με αμελητέα μάζα και σταθερά ελατηρίου k, και το οποίο έχει το φυσικό του μήκος l 0. Το δεύτερο άκρο του ελατηρίου είναι στερεωμένο σε ακλόνητο τοίχο, όπως φαίνεται στο σχήμα: Αμέσως μετά τη κρούση, που είναι κεντρική και ελαστική, το σώμα Σ αποκτά ταχύτητα με μέτρο u = 0m/s και φορά αντίθετη της αρχικής ταχύτητας. Δίνεται ότι ο συντελεστής τριβής ολίσθησης των δύο σωμάτων με το οριζόντιο επίπεδο είναι μ=0,5 και ότι η επιτάχυνση της βαρύτητας είναι g=0m/s. Γ. Να υπολογίστε την αρχική ταχύτητα u 0 του σώματος Σ. Γ. Να υπολογίσετε το ποσοστό της κινητικής ενέργειας που μεταφέρθηκε από το σώμα Σ στο σώμα Σ κατά την κρούση. Γ3. Να υπολογίσετε το συνολικό χρόνο κίνησης του σώματος Σ από την αρχική χρονική στιγμή t 0 μέχρι να ακινητοποιηθεί τελικά. Δίνεται: Γ. Να υπολογίσετε τη μέγιστη συσπείρωση του ελατηρίου, αν δίνεται ότι
ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 03 m = kg και k=05n/m. Θεωρείται ότι η χρονική διάρκεια της κρούσης είναι αμελητέα και ότι τα δυο σώματα συγκρούονται μόνο μια φορά. Μονάδες 7 ΘΕΜΑ Δ Δίνεται συμπαγής, ομογενής κύλινδρος μάζας Μ και ακτίνας. Αφήνουμε τον κύλινδρο να κυλίσει χωρίς ολίσθηση, υπό την επίδραση της βαρύτητας (με επιτάχυνση της βαρύτητας g), πάνω σε κεκλιμένο επίπεδο γωνίας φ, όπως φαίνεται στο σχήμα που ακολουθεί: Δ. Να υπολογίσετε την επιτάχυνση του κέντρου μάζας του κυλίνδρου. Ο άξονας του κυλίνδρου διατηρείται οριζόντιος. Δ. Από το εσωτερικό αυτού του κυλίνδρου, που έχει ύψος h, αφαιρούμε πλήρως ένα ομοαξονικό κύλινδρο ακτίνας, όπου <, όπως απεικονίζεται στο παρακάτω σχήμα: Να αποδείξετε ότι η ροπή αδράνειας του κοίλου κυλίνδρου, ως προς τον άξονά του, που προκύπτει μετά την αφαίρεση του εσωτερικού κυλινδρικού τμήματος, είναι Ι M κοιλ = Μονάδες 7 Στη συνέχεια λιπαίνουμε το κυλινδρικό τμήμα που αφαιρέσαμε και το επανατοποθετούμε στη θέση του, ούτως ώστε να εφαρμόζει απόλυτα με τον κοίλο κύλινδρο χωρίς τριβές. Το νέο σύστημα που προκύπτει αφήνεται να κυλίσει χωρίς ολίσθηση, υπό την επίδραση της βαρύτητας (με επιτάχυνση της βαρύτητας g), στο ίδιο κεκλιμένο επίπεδο, όπως φαίνεται στο παρακάτω σχήμα:
ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 03 Δ3. Να υπολογίσετε την επιτάχυνση του κέντρου μάζας του συστήματος. Μονάδες 7 Δ. Όταν =, να υπολογίσετε, σε κάθε χρονική στιγμή της κύλισης στο κεκλιμένο επίπεδο, το λόγο της μεταφορικής προς την περιστροφική κινητική ενέργεια του συστήματος. Ο άξονας του συστήματος διατηρείται πάντα οριζόντιος. Δίνονται: Η ροπή αδράνειας Ι συμπαγούς και ομογενούς κυλίνδρου μάζας Μ και ακτίνας, ως προς τον άξονα γύρω από τον οποίο στρέφεται: I = Μ. Ο όγκος V ενός συμπαγούς κυλίνδρου ακτίνας και ύψους h: V= π h. ΘΕΜΑ Α Α.) γ Α.) γ Α.3) δ Α.) γ Α.5) Σ, Λ, Σ, Λ, Σ ΘΕΜΑ Β Β. α) Σωστό είναι το ii) β) Ε τελ = U= LI =*0-3 J για και t=t ΑΠΑΝΤΗΣΕΙΣ Ε αρχ =U= CV C=*0-3 J για t=0 άρα Q= *0-3 J B. α) Σωστό είναι το iii) β) - =(N+)λ/ και + =d από πρόσθεση κατά μέλη έχουμε =(N+)λ / +d/
ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 03 Άρα 0<(Ν+)λ /+d/<λ άρα συνεχίζοντας την λύση της ανίσωσης καταλήγουμε -3<Ν< άρα -6,5<Ν<5,5 άρα έχουμε υπερβολές απόσβεσης αφού Ν Ζ. Β3. α)σωστό το ii) β) Α.Δ.Σ για το σύστημα. I ω =(Ι +Ι )ω άρα I ω =(Ι +Ι /)ω άρα ω=ω /5 Άρα ΔL = L τελ -L αρχ = L /5 ΘΕΜΑ Γ Γ. Στην περίπτωση της μετωπικής ελαστικής κρούσης όταν το σώμα μάζας m είναι ακίνητο πριν τη κρούση (u = 0) οι ταχύτητες των σωμάτων αμέσως μετά την κρούση δίνονται από τις παρακάτω σχέσεις: u = m-m u m+m m 3 m - 0 = u υ = 3 0 m/s. m m u = u = 3 0 m+m 3m u = 0 m/s. γ. Εφαρμόζουμε ΘΜΚΕ για το σώμα Σ από τη αρχική θέση ως τη θέση κρούσης: Κ τελ Κ αρχ = W Τ m υ - m υ = - Τ d υ 0 = 0 m/s. 0 Τ = μ Ν = μ m g = 5 Ν 0 υ = 00 (m/s) Γ. τελ Κ m υ m 0 8 = = = αρχ Κ m 90 9 m υ ή 800 9 %
ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 03 Γ3. Το σώμα Σ πριν την κρούση κάνει ευθύγραμμη ομαλά επιβραδυνόμενη Τ κίνηση με επιβράδυνση μέτρου α = m = 5 m/s. Άρα: υ = υ 0 α t t = υ - υ 0 = 0,08 s. α Το σώμα Σ μετά την κρούση κάνει ευθύγραμμη ομαλά επιβραδυνόμενη κίνηση με Τ επιβράδυνση μέτρου α = m = 5 m/s υ. Άρα: 0 = υ α t t = α = 0,6 s Άρα t ολ = t + t = 0,7 s. Γ. Εφαρμόζουμε ΘΜΚΕ για το Σ από τη ΘΦΜ ως τη θέση που σταματάει στιγμιαία: Κ τελ Κ αρχ = W Fελ + W Τ ΘΦΜ (τελ) Κ τελ Κ αρχ = U - U - Τ ελ ελ Δl max 0 - m υ = k l ΘΦΜ - k l(max) - μ Ν Δl max Ν = m g - 0 = - 05 lmax - 0,Δl max 05 l max + 0 Δl max - 0 = 0 Δl max = - 0 ± 6900 0 Δl max = 7 m ΘΕΜΑ Δ Δ. Επειδή ο κύλινδρος κυλίεται χωρίς να ολισθαίνει και η μεταφορική και η περιστροφική κίνηση του θα είναι ομαλά επιταχυνόμενες. Για τη μεταφορική κίνηση του κυλίνδρου ισχύει: ΣF χ = m α Μ g ημφ Τ = Μ α Μ g ημφ T = Μ α () Από το θεμελιώδη νόμο για την περιστροφική κίνηση έχουμε: Στ (Κ) = Ι α γ Τ = Μ α γ Τ = Μ α γ = Μ α () αφού ισχύει: α = α γ. h Τ w ψ Κ w Ν w χ φ
ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 03 Από () και () παίρνουμε: Mg ημφ = 3 Μ α α = 3 g ημφ. Δ. Επειδή οι κύλινδροι είναι από το ίδιο υλικό θα ισχύει: Μ m V π h d = d = m = Μ= Μ= Μ. V V V π h Μ Άρα Ι κοιλ = Μ - m = Μ - Ι κοιλ = Μ ( - ). m Δ3. Στο σύστημα ο εξωτερικός κοίλος κύλινδρος κυλίεται χωρίς να ολισθαίνει ενώ το κυλινδρικό τμήμα που επανατοποθετήθηκε κάνει μόνο μεταφορική κίνηση. Για τη μεταφορική κίνηση του συστήματος ισχύει: ΣF χ = Μ α Μ g ημφ Τ = Μ α Μ g ημφ T = Μ α (3) Από το θεμελιώδη νόμο για την περιστροφική κίνηση έχουμε: Στ (Κ) = Ι α Τ γ = Μ ( - αφού ισχύει: α = α. γ α Τ = Μ ( - ) γ Από (3) και () παίρνουμε: Mg ημφ = Μ α + Μ ( - α = g ημφ 3 - = g ημφ 3- Τ Mgσυνφ Mg Ν ) α () ) α Mgημφ φ Δ. Μυ Κ μετ Μω = = = = = Κ περ 5 Ι ω κοιλ Μ - ω Κ 3 μετ = Κ 5. περ 6 6 - ΤΙΣ ΑΠΑΝΤΗΣΕΙΣ ΕΠΙΜΕΛΗΘΗΚΕ Ο ΤΟΜΕΑΣ ΤΩΝ ΦΥΣΙΚΩΝ ΤΩΝ ΦΡΟΝΤΙΣΤΗΡΙΩΝ «ΟΜΟΚΕΝΤΡΟ» ΦΛΩΡΟΠΟΥΛΟΥ ΖΑΒΟΣ Δ. ΗΜΕΛΛΟΣ Μ. ΚΑΛΑΝΤΖΗΣ Π.