Communication Protocols in Ad-Hoc Radio Networks

Σχετικά έγγραφα
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Fractional Colorings and Zykov Products of graphs

Fast broadcasting and gossiping in radio networks. Chrobak, Gasieniec, Rytter 2002.

Fast broadcasting and gossiping in radio networks. Chrobak, Gasieniec, Rytter 2002.

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible.

EE512: Error Control Coding

Section 8.3 Trigonometric Equations

Finite Field Problems: Solutions

The Simply Typed Lambda Calculus

Approximation of distance between locations on earth given by latitude and longitude

Matrices and Determinants

Homework 3 Solutions

the total number of electrons passing through the lamp.

Block Ciphers Modes. Ramki Thurimella

A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks

Αλγόριθμοι και πολυπλοκότητα Depth-First Search

The challenges of non-stable predicates

Πανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής Πρόγραμμα Μεταπτυχιακών Σπουδών «Πληροφορική»

Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2)

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Numerical Analysis FMN011

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def

Δίκτυα Επικοινωνιών ΙΙ: OSPF Configuration

Second Order RLC Filters

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΕΠΛ342: Βάσεις Δεδομένων. Χειμερινό Εξάμηνο Φροντιστήριο 10 ΛΥΣΕΙΣ. Επερωτήσεις SQL

Statistical Inference I Locally most powerful tests

Capacitors - Capacitance, Charge and Potential Difference

C.S. 430 Assignment 6, Sample Solutions

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

Homework 8 Model Solution Section

ST5224: Advanced Statistical Theory II

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Math 6 SL Probability Distributions Practice Test Mark Scheme

Network Algorithms and Complexity Παραλληλοποίηση του αλγορίθμου του Prim. Αικατερίνη Κούκιου

Abstract Storage Devices

derivation of the Laplacian from rectangular to spherical coordinates

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

The ε-pseudospectrum of a Matrix

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Bounding Nonsplitting Enumeration Degrees

Minimum Spanning Tree: Prim's Algorithm

Αλγόριθμοι και πολυπλοκότητα Directed Graphs

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

From the finite to the transfinite: Λµ-terms and streams

Στο εστιατόριο «ToDokimasesPrinToBgaleisStonKosmo?» έξω από τους δακτυλίους του Κρόνου, οι παραγγελίες γίνονται ηλεκτρονικά.

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Models for Probabilistic Programs with an Adversary

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ. Πτυχιακή εργασία

ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ ΣΕ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΔΙΕΘΝΩΝ ΣΧΕΣΕΩΝ & ΟΙΚΟΝΟΜΙΑΣ

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Lecture 34 Bootstrap confidence intervals

Chapter 3: Ordinal Numbers

Lecture 2. Soundness and completeness of propositional logic

An Inventory of Continuous Distributions

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΒΑΛΕΝΤΙΝΑ ΠΑΠΑΔΟΠΟΥΛΟΥ Α.Μ.: 09/061. Υπεύθυνος Καθηγητής: Σάββας Μακρίδης

Other Test Constructions: Likelihood Ratio & Bayes Tests

2 Composition. Invertible Mappings

Μεταπτυχιακή διατριβή. Ανδρέας Παπαευσταθίου

«ΑΓΡΟΤΟΥΡΙΣΜΟΣ ΚΑΙ ΤΟΠΙΚΗ ΑΝΑΠΤΥΞΗ: Ο ΡΟΛΟΣ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗΝ ΠΡΟΩΘΗΣΗ ΤΩΝ ΓΥΝΑΙΚΕΙΩΝ ΣΥΝΕΤΑΙΡΙΣΜΩΝ»

Assalamu `alaikum wr. wb.

New bounds for spherical two-distance sets and equiangular lines

Συστήματα Διαχείρισης Βάσεων Δεδομένων

Μειέηε θαη αλάιπζε επίδνζεο πξσηνθόιισλ δξνκνιόγεζεο ζε θηλεηά ad hoc δίθηπα κε βάζε ελεξγεηαθά θξηηήξηα ΓΗΠΛΩΜΑΣΗΚΖ ΔΡΓΑΗΑ

Partial Differential Equations in Biology The boundary element method. March 26, 2013

EPL 603 TOPICS IN SOFTWARE ENGINEERING. Lab 5: Component Adaptation Environment (COPE)

Jordan Form of a Square Matrix

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

Computing the Gradient

Example Sheet 3 Solutions

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Το Πρόβληµα Routing and Path Coloring και οι εφαρµογές του σε πλήρως οπτικά δίκτυα

Inverse trigonometric functions & General Solution of Trigonometric Equations

CRASH COURSE IN PRECALCULUS

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

( y) Partial Differential Equations

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

Partition of weighted sets (problems with numbers)

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

(C) 2010 Pearson Education, Inc. All rights reserved.

Elements of Information Theory

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008

Every set of first-order formulas is equivalent to an independent set

5.4 The Poisson Distribution.

4.6 Autoregressive Moving Average Model ARMA(1,1)

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Transcript:

ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Τµήµα Πληροφορικής και Τηλεπικοινωνιών, ΕΚΠΑ http://www.di.uoa.gr/~telelis/opt.html Communication Protocols in Ad-Hoc Radio Networks Αρης Παγουρτζής ΕΜΠ ΕΚΠΑ

Ad-Hoc Radio Networks Expected to play an important role in future commercial and public interest applications. Suitable in situations where instant infrastructure is needed and no central system administration is available. Typical applications include: mobile communication in remote areas tactical communications disaster recovery situations ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ, Τµήµα Πληροφορικής και Τηλεπ/νιών ΕΚΠΑ 2

Topology of Radio Network Radio network is modelled as a graph G = ( V, E ) V set of nodes, V =n E set of connections (links) Graph G can be directed or undirected Ad-hoc stands for unknown topology ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ, Τµήµα Πληροφορικής και Τηλεπ/νιών ΕΚΠΑ 3

Communication Protocol Network is synchronised 4:59:06 PM 4:59:06 PM 4:59:06 PM 4:59:06 PM 4:59:06 PM 4:59:06 PM 4:59:06 PM At any time step each node v V is either in transmitting or receiving mode ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ, Τµήµα Πληροφορικής και Τηλεπ/νιών ΕΚΠΑ 4

Communication Protocol Transmission mode node v attempts to deliver possessed message m to all its neighbours Receiving mode node v attempts to collect a message transmitted by one of its neighbours Warning: If more than one neighbour of v transmits then none of the messages reaches destination v ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ, Τµήµα Πληροφορικής και Τηλεπ/νιών ΕΚΠΑ 5

Communication Protocol Successful delivery BINGO!! Collision BANG!! ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ, Τµήµα Πληροφορικής και Τηλεπ/νιών ΕΚΠΑ 6

Communication Primitives Broadcasting: one-to-all communication; a message m held originally in the source node s has to be delivered to all other nodes in the network Gossiping: all-to-all communication; total exchange of messages originated in every single node of the network ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ, Τµήµα Πληροφορικής και Τηλεπ/νιών ΕΚΠΑ 7

Crucial Parameters Number of nodes (size) n Largest label N We are interested in time complexity! ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ, Τµήµα Πληροφορικής και Τηλεπ/νιών ΕΚΠΑ 8

Complexity Bounds (I) Lower: Ω(n logn) Upper: O(n 2 ) using ROUND-ROBIN if N not O(n) : O(N 2 ) ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ, Τµήµα Πληροφορικής και Τηλεπ/νιών ΕΚΠΑ 9

Complexity Bounds (II) Small labels: N =O(n) Broadcasting: O(n log 2 n) Gossiping: O(n 3/2 log 2 n) Chrobak, Gasieniec, Rytter [FOCS 00] Large labels: N = O(poly(n)) Broadcasting: O(n 2 ) Peleg [Manuscript 00] O(n log 2 n) Chrobak et al. [FOCS 00] ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ, Τµήµα Πληροφορικής και Τηλεπ/νιών ΕΚΠΑ 10

Complexity Bounds (III) Large labels: N = O(poly(n)) Gossiping Chrobak et al. [FOCS 00] : O(Nn 1/2 log 2 N) Gasieniec, Pagourtzis, Potapov [ESA'02]: In directed graphs: O(n 3/2 log 3 n) In undirected graphs: O(n log 3 n) This Presentation ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ, Τµήµα Πληροφορικής και Τηλεπ/νιών ΕΚΠΑ 11

k-selectivity A family F= {Y 1,Y 2, } of subsets of some universe U is said to be k-selective for U iff for any X U with X <=k, there is a set Y j F, s.t. X Y j =1. ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ, Τµήµα Πληροφορικής και Τηλεπ/νιών ΕΚΠΑ 12

k-selectivity A family F= {Y 1,Y 2, } of subsets of some universe U is said to be strongly k- selective for U iff for any X U, X <=k, and any x X there is a set Y j F, s.t. X Y j ={x}. A family F= {Y 1,Y 2, } of subsets of some universe U is said to be linearly k-selective for U iff for any X U, X <=k, there exists set X X, s.t., X >k/2 and for any x X there is a set Y j F, s.t., X Y j ={x}. ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ, Τµήµα Πληροφορικής και Τηλεπ/νιών ΕΚΠΑ 13

k-selectivity U set of labels, U={1,2,,N} Size/Time Selectivity m 1 m 2 m 2 O(k log N) m 3 m 4 m 5 Strong selectivity Linear selectivity m ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ, Τµήµα 5 Πληροφορικής και Τηλεπ/νιών ΕΚΠΑ 14 m 1 m 2 m 3 m 4 m 1 m 2 m 3 m 4 m 5 m 2 m 4 m 5 m 1 m 2 m 3 m 4 m 5 O(k 2 log N) O(k log N)

Gossiping in Stars O(n logn) use linearly selective family Collect branch messages in the centre Then distribute compound message ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ, Τµήµα Πληροφορικής και Τηλεπ/νιών ΕΚΠΑ 15

Approximate neighbour count Run linearly selective family once in order to learn about half the neighbourhood v 2 1 v x 3 x deg(v) 2x ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ, Τµήµα Πληροφορικής και Τηλεπ/νιών ΕΚΠΑ 16

Leader election O(B(n) log(b-a)) O(n log 3 n) Binary search (e.g., for a node with the smallest label, the largest knowledge, etc.) Each step of binary search implemented by a vote based on broadcasting algorithm. E.g., is there any node, s.t.,a< label <(a+b)/2? YES further search between a and (a+b)/2 NO further search between (a+b)/2 and b a (a+b)/2 b ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ, Τµήµα Πληροφορικής και Τηλεπ/νιών ΕΚΠΑ 17

Partial Gossiping + decrement of (active) max-in-degree to k Loop Run N-linear selector: each node v learns about a fraction A(v), (at least half), of its neighbourhood Find v max, s.t., A(v max ) A(v), for all v V Broadcast A(v max ) to all nodes For each v V, A(v) = A(v) \ A(v max ) Until A(v max ) < k/2 Time O(n log 3 n) Nodes whose original messages are O(n 2 already log 3 n/k) distributed become dormant (inactive) ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ, Τµήµα Πληροφορικής και Τηλεπ/νιών ΕΚΠΑ 18

Move remaining messages to dormant nodes Run strongly selective family with parameter k Dormant node active degree < k O(k 2 log n) O(k 2 log n) O(k 2 log n) O(k 2 log n) O(k 2 log n) O(k 2 log n) message m length n Time O(nk 2 log n) ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ, Τµήµα Πληροφορικής και Τηλεπ/νιών ΕΚΠΑ 19

Gossiping Algorithm (in directed graphs) Perform partial gossiping Time O(n 2 log 3 n/k) - and decrement of active max-in-degree Move remaining messages to dormant nodes Repeat all transmissions performed in partial gossiping! O(nk 2 log n) O(n 2 log 3 n/k) Total O(n 5/3 log 3 n) where k=n 1/3 ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ, Τµήµα Πληροφορικής και Τηλεπ/νιών ΕΚΠΑ 20

Gossiping Algorithm (in directed graphs, with Tomasz Radzik, KCL) The gossiping algorithm can be tuned in the partial gossiping stage, s.t., a distance between any message and some dormant node is k Then the second stage can be completed in time O(k 3 log n) In total we get time complexity O(n 3/2 log 3 n), with k=n 1/2 (Almost) best known bound in model with small labels! ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ, Τµήµα Πληροφορικής και Τηλεπ/νιών ΕΚΠΑ 21

Gossiping in Undirected Graphs Gossiping in connected graphs in model with known local neighbourhoods Find a leader λ in graph G (use binary search and broadcasting) Perform DFS traversal of G starting at λ (collect all messages while visiting G) Distribute compound message to all nodes in the network All done in time O(n log 3 n) ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ, Τµήµα Πληροφορικής και Τηλεπ/νιών ΕΚΠΑ 22

Gossiping in Undirected Graphs Time (1) Perform partial gossiping - and decrement of active max-in-degree to k (2.a) Run strongly selective family on active nodes only O(k 2 logn) - this creates a number of connected components with entirely known neighbourhoods (2.b) Perform gossiping in each connected component O(n log 3 n) (2.c) Repeat transmissions from stage (2.a) (3) Repeat transmissions from stage (1) O(n 2 log 3 n/k) Total (k = n 2/3 ): O(n 4/3 log 3 n) 23

Gossiping in Undirected Graphs The gossiping algorithm can be speeded up by introduction of the system of maps This leads to almost linear O(n log 3 n) time gossiping in undirected graphs The lower bound Ω(n log n) is almost matched! ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ, Τµήµα Πληροφορικής και Τηλεπ/νιών ΕΚΠΑ 24

Conclusion The upper bounds in model with large labels (O(poly(n)) ) almost match bounds in model with small labels (O(n) ) Broadcasting O(n log 2 n) Gossiping in directed graphs O(n 3/2 log 3 n) Gossiping in undirected graphs O(n log 3 n) Similarly for even larger labels: N=O(n logc n ) But: size of sets of selective families? What is the asymptotic complexity of gossiping in ad-hoc radio networks? In known radio networks? ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ, Τµήµα Πληροφορικής και Τηλεπ/νιών ΕΚΠΑ 25