ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

Σχετικά έγγραφα
ΠΙΘΑΝΟΤΗΤΕΣ - ΣΦΑΛΜΑΤΑ - ΣΤΑΤΙΣΤΙΚΗ

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

Δεδομένα (data) και Στατιστική (Statistics)

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Other Test Constructions: Likelihood Ratio & Bayes Tests

ST5224: Advanced Statistical Theory II

Elements of Information Theory

Math 6 SL Probability Distributions Practice Test Mark Scheme

Homework 3 Solutions

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

PARTIAL NOTES for 6.1 Trigonometric Identities

Approximation of distance between locations on earth given by latitude and longitude

Μηχανική Μάθηση Hypothesis Testing

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

The challenges of non-stable predicates

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Repeated measures Επαναληπτικές μετρήσεις

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:

Section 8.3 Trigonometric Equations

TMA4115 Matematikk 3

CE 530 Molecular Simulation

Inverse trigonometric functions & General Solution of Trigonometric Equations

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/2006

2 Composition. Invertible Mappings

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ

Areas and Lengths in Polar Coordinates

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

derivation of the Laplacian from rectangular to spherical coordinates

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Example Sheet 3 Solutions

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

χ 2 test ανεξαρτησίας

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 13. Συμπεράσματα για τη σύγκριση δύο πληθυσμών

Monolithic Crystal Filters (M.C.F.)

EE512: Error Control Coding

Aluminum Electrolytic Capacitors

Lecture 34 Bootstrap confidence intervals

Surface Mount Multilayer Chip Capacitors for Commodity Solutions

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

Aluminum Electrolytic Capacitors (Large Can Type)

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

SERIES DATASHEET INDUCTORS RF INDUCTORS (MRFI SERIES)

Areas and Lengths in Polar Coordinates

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Μορφοποίηση υπό όρους : Μορφή > Μορφοποίηση υπό όρους/γραμμές δεδομένων/μορφοποίηση μόο των κελιών που περιέχουν/

Second Order RLC Filters

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Calculating the propagation delay of coaxial cable

Instruction Execution Times

Statistical Inference I Locally most powerful tests

ΠΕΡΙΕΧΟΜΕΝΑ. Κεφάλαιο 1: Κεφάλαιο 2: Κεφάλαιο 3:

Statistics & Research methods. Athanasios Papaioannou University of Thessaly Dept. of PE & Sport Science

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

Matrices and Determinants

Section 9.2 Polar Equations and Graphs

Solution Series 9. i=1 x i and i=1 x i.

Fractional Colorings and Zykov Products of graphs

Finite Field Problems: Solutions

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

The Simply Typed Lambda Calculus

Metal thin film chip resistor networks

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

t-distribution t a (ν) s N μ = where X s s x = ν 2 FD ν 1 FD a/2 a/2 t-distribution normal distribution for ν>120

NMBTC.COM /

the total number of electrons passing through the lamp.

Precision Metal Film Fixed Resistor Axial Leaded

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Περιγραφική στατιστική μεθοδολογία.

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Comparison of Evapotranspiration between Indigenous Vegetation and Invading Vegetation in a Bog

Multilayer Ceramic Chip Capacitors

Probability and Random Processes (Part II)

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

Multilayer Ceramic Chip Capacitors

ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΠΟΡΩΝ & ΠΕΡΙΒΑΛΛΟΝΤΟΣ

LS series ALUMINUM ELECTROLYTIC CAPACITORS CAT.8100D. Specifications. Drawing. Type numbering system ( Example : 200V 390µF)

Για να ελέγξουµε αν η κατανοµή µιας µεταβλητής είναι συµβατή µε την κανονική εφαρµόζουµε το test Kolmogorov-Smirnov.

Chilisin Electronics Singapore Pte Ltd

Reminders: linear functions

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Solutions to Exercise Sheet 5

Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα

1) Formulation of the Problem as a Linear Programming Model

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Smaller. 6.3 to 100 After 1 minute's application of rated voltage at 20 C, leakage current is. not more than 0.03CV or 4 (µa), whichever is greater.

Transcript:

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας

ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται οι παρατηρήσεις είγµα Υποσύνολο του πληθυσµού που επιλέχτηκε τυχαία Μεταβλητή Το χαρακτηριστικό το οποίο παρατηρούµε στον πληθυσµό ή το δείγµα

ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Ποσοτική µεταβλητή Η µεταβλητή που επιδέχεται µέτρηση µε πραγµατικές τιµές Ποιοτική µεταβλητή Η µεταβλητή που δεν επιδέχεται µέτρηση και εκφράζεται µε λέξεις Ποσοτικές µεταβλητές Συνεχείς Ασυνεχείς

ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Συχνότητα (ν i ) Πόσες φορές µια τιµή xi της µεταβλητής Χ παρουσιάζεται στο δείγµα Μέγεθος του δείγµατος (N) Σχετική Συχνότητα (f i ) fi = v v i 100 % k = = i 1 vi N Αθροιστική συχνότητα (Fi) (δεξιόστροφη) Το άθροισµα των συχνοτήτων v i των τιµών που είναι µικρότερες ή ίσες της τιµής x i Σχετική Αθροιστική συχνότητα (Fi) Το άθροισµα των σχετικών συχνοτήτων f i των τιµών που είναι µικρότερες ή ίσες της τιµής x i k fi = = 100 i 1 %

Precision Precision is an indication of how close the elements of a series of measurements are to each other. It is desirable to have results that are precise, the results are grouped close together and not scattered.

Precision When the measurements are characterised by small random errors (e.g. errors derived from experimental conditions resulting in different values during subsequent measurements of the same parameter)

Precision Good Precision

Precision Poor Precision

Accuracy Accuracy is a measure of the difference between a measured value and the true value, that is, the error. If the errors of measurement average to zero, then the system is said to be accurate. It is desirable to have a system that is accurate, that is, has results that are close to the true value.

Accuracy When the measurements are characterised by small systematic errors (e.g. standard biases of the measurements derived from instrument calibration, personal errors, experimental design)

Accuracy Good Accuracy

Accuracy Poor Accuracy

Precision and Accuracy A system may be precise even though it is not accurate. Conversely, a system may be accurate, but not precise.

Precision and Accuracy Good Precision Good Accuracy

Precision and Accuracy Possible Results Good Accuracy Poor Accuracy Good Precision Precise and Accurate Precise but Inaccurate Poor Precision Imprecise but Accurate Imprecise and Inaccurate

CLASSIFICATION AND TABULATION Raw data: not organised data Grouped data: data organised and summarised in classes Class interval: the interval chosen for classifying Class frequency: number of observations within a particular class Class limits: the end numbers of the class interval (lower and upper limits) Open class interval: a class interval that has either no upper class or lower class limit

CLASSIFICATION AND TABULATION Class boundaries: (upper limit of one class interval + lower limit of the next higher class interval)/2 e.g. 60-62, 63-65 class boundary=(62+63)/2=62.5 59.5(lower boundary)-62.5(upper boundary) Class width or class size: difference between the lower and upper class boundaries e.g. (62.5-59.5)=3 Class mark or class midpoint: lower+upper class limits)/2 e.g. (60+62)/2=61

CLASSIFICATION AND TABULATION Example Class limits Class intervals Class midpoint 60-62 (60+62)/2 =61 Class boundaries Frequ ency Relative frequenc y(%) 59.5-62.5 2 2x100/22 =9 63-65 64 (62+63)/2-4 18 (65+66)/2= 62.5-65.5 66-68 67 65.5-68.5 7 32 69-71 70 68.5-71.5 9 41 Class size=62.5-59.5=3 N=22

Classification and tabulation General rules for classification Determine the range of the raw data (max-min) min) Find the number of class intervals A=5logN N=frequency of raw data Find class size range A

Classification and tabulation It is suggested that: Intervals have same size the number of intervals is usually 5-20 Midpoints usually coincide with observed data Class boundaries do not coincide with observations The distribution of the data within the classes should be as uniform as possible Closed classes are preferred

Classification and tabulation Example: N=28 max=76 min=63.2 A=5logN=5log28=7.2 number of class intervals= 7 Range=max-min=76-63.2=12.8 Class size=12.8/7 2 1st interval: 63-64.9 2nd interval: 65-66.9.

. CLASSIFICATION AND TABULATION Example: N=28 max=76 min=63.2 A=5logN=5log28=7.2 number of class intervals= 7 Range=max-min=76-63.2=12.8 Class size=12.8/7 2 1 st interval: 63-64.9 2 nd interval: 65-66.9

REPRESENTATION OF FREQUENCY DISTRIBUTIONS 35 30 25 Relative frequency (%) 20 15 10 5 0 60-62 63-65 66-68 69-71 72-74 Class intervals Frequency histogram and frequency polygon (or ogive)

REPRESENTATION OF FREQUENCY DISTRIBUTIONS 35 30 25 Relative frequency (%) 20 15 10 5 0 60-62 63-65 66-68 69-71 72-74 Class intervals Frequency curves

) CUMULATIVE FREQUENCY 100 100 90 90 80 80 70 Αθροιστική συχν ότητα (% ) 70 60 50 40 30 Αθροιστική συχνότητα (% 60 50 40 30 20 20 10 10 0 0 1 2 3 4 5 0 0 1 2 3 4 5 Κλίµακα Beaufort Κλίµακα Beaufort RF (%) CRF (%) 9.5 9.5 23.9 33.4 30.8 64.2 25.1 89.3 9.8 99.1 0.9 100 RF (%) CRF (%) 9.5 100 23.9 90.5 30.8 66.6 25.1 35.8 9.8 10.7 0.9 0.9 Less than cumulative frequency More than cumulative frequency

CALCULATION OF FREQUENCY WITH THE AID OF EXCEL Upper class limit

CALCULATION OF CUMULATIVE FREQUENCY WITH THE AID OF EXCEL

CALCULATION OF FREQUENCY WITH THE AID OF EXCEL Ctrl+Shift+Enter

CALCULATION OF FREQUENCY WITH THE AID OF EXCEL