Θεωρία Πληροφορίας και Κωδίκων

Σχετικά έγγραφα
2 Composition. Invertible Mappings

Θεωρία Πληροφορίας και Κωδίκων

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

EE512: Error Control Coding

Other Test Constructions: Likelihood Ratio & Bayes Tests

Reminders: linear functions

Homework 3 Solutions

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Tridiagonal matrices. Gérard MEURANT. October, 2008

ST5224: Advanced Statistical Theory II

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Numerical Analysis FMN011

C.S. 430 Assignment 6, Sample Solutions

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Congruence Classes of Invertible Matrices of Order 3 over F 2

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Fractional Colorings and Zykov Products of graphs

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

Section 8.3 Trigonometric Equations

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Matrices and Determinants

Elements of Information Theory

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

6.3 Forecasting ARMA processes

Approximation of distance between locations on earth given by latitude and longitude

Statistical Inference I Locally most powerful tests

Μηχανική Μάθηση Hypothesis Testing

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Every set of first-order formulas is equivalent to an independent set

CRASH COURSE IN PRECALCULUS

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

New bounds for spherical two-distance sets and equiangular lines

TMA4115 Matematikk 3

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Math221: HW# 1 solutions

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Section 7.6 Double and Half Angle Formulas

4.6 Autoregressive Moving Average Model ARMA(1,1)

Example Sheet 3 Solutions

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

Finite Field Problems: Solutions

The challenges of non-stable predicates

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

( ) 2 and compare to M.

Areas and Lengths in Polar Coordinates

Concrete Mathematics Exercises from 30 September 2016

Parametrized Surfaces

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Quadratic Expressions

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

PARTIAL NOTES for 6.1 Trigonometric Identities

w o = R 1 p. (1) R = p =. = 1

Inverse trigonometric functions & General Solution of Trigonometric Equations

Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Συστήματα Διαχείρισης Βάσεων Δεδομένων

derivation of the Laplacian from rectangular to spherical coordinates

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Areas and Lengths in Polar Coordinates

Problem Set 3: Solutions

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

A Note on Intuitionistic Fuzzy. Equivalence Relation

Space-Time Symmetries

Lecture 21: Properties and robustness of LSE

Trigonometric Formula Sheet

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/2006

Example of the Baum-Welch Algorithm

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Lecture 15 - Root System Axiomatics

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Uniform Convergence of Fourier Series Michael Taylor

Lecture 10 - Representation Theory III: Theory of Weights

5. Choice under Uncertainty

On a four-dimensional hyperbolic manifold with finite volume

The Simply Typed Lambda Calculus

Galatia SIL Keyboard Information

Solution Series 9. i=1 x i and i=1 x i.

Correction Table for an Alcoholometer Calibrated at 20 o C

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def

Jordan Form of a Square Matrix

Section 9.2 Polar Equations and Graphs

Lecture 13 - Root Space Decomposition II

Second Order Partial Differential Equations

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Abstract Storage Devices

(C) 2010 Pearson Education, Inc. All rights reserved.

Transcript:

Θεωρία Πληροφορίας και Κωδίκων Δρ. Νικόλαος Κολοκοτρώνης Λέκτορας Πανεπιστήμιο Πελοποννήσου Τμήμα Επιστήμης και Τεχνολογίας Υπολογιστών Τέρμα Οδού Καραϊσκάκη, 22100 Τρίπολη E mail: nkolok@uop.gr Web: http://www.uop.gr/~nkolok/ Ενότητα 3 η : σχεδιασμός απλών τμηματικών κωδίκων http://eclass.uop.gr/courses/cst273/

εισαγωγή οικογένειες σύνοψη. Περιεχόμενα Ομιλίας.1.. Περιεχόμενα της ομιλίας.2.. Οικογένειες γραμμικών τμηματικών κωδίκων Κώδικες Hamming Κώδικες LDPC.3.. Σύνοψη & βιβλιογραφία 2 / 16 Δρ. Νικόλαος Κολοκοτρώνης Θεωρία Πληροφορίας και Κωδίκων ( Προπτυχιακό )

Ορισμός Κωδίκων Hamming Definition ( Hamming Codes) For any positive integer m 3 there exists an (n, k) code C with the following parameters code length n = 2 m 1; number of information symbols k = 2 m m 1; number of parity check symbols m = n k; and error correcting capability t = 1 (d min = 3). Such a code is called a Hamming code 3 / 16 Δρ. Νικόλαος Κολοκοτρώνης Θεωρία Πληροφορίας και Κωδίκων ( Προπτυχιακό )

Ορισμός Κωδίκων Hamming (συν.) Property Hamming codes have the following properties: the parity check matrix H consists of all the nonzero m tuples as its columns in systematic form H = ( I m m tuples of weight 2 in systematic form G = ( P P t) and the rows of P are the nonzero ) I 2 m m 1 The minimum distance of C equals 3 since, for any columns h i, h j of H, we have h k : h k = h i + h j h i + h j + h k = 0 (hint: v H t = 0) 4 / 16 Δρ. Νικόλαος Κολοκοτρώνης Θεωρία Πληροφορίας και Κωδίκων ( Προπτυχιακό )

Παράδειγμα (7, 4) Κώδικα (συν.) The parity check matrix of the (7, 4) linear block code C is given by H = 1 0 0 1 0 1 1 0 1 0 1 1 1 0 G = 0 0 1 0 1 1 1 This is a Hamming code with parameters code length n = 7 (2 3 1) 1 1 0 1 0 0 0 0 1 1 0 1 0 0 1 1 1 0 0 1 0 1 0 1 0 0 0 1 number of information symbols k = 4 (2 3 3 1) number of parity check symbols m = 3 (7 4) 5 / 16 Δρ. Νικόλαος Κολοκοτρώνης Θεωρία Πληροφορίας και Κωδίκων ( Προπτυχιακό )

Ιδιότητες Κωδίκων Hamming Definition ( Perfect Codes) An (n, k) t error correcting code C is called a perfect code if its standard array has all error patterns of weight t as coset leaders, and no others Proposition Hamming codes are perfect single error correcting codes Proof There exist 2 2m 1 possible words, 2 2m m 1 codewords, and 2 m error patterns of weight 1 (and length 2 m 1) 6 / 16 Δρ. Νικόλαος Κολοκοτρώνης Θεωρία Πληροφορίας και Κωδίκων ( Προπτυχιακό )

Ιδιότητες Κωδίκων Hamming (συν.) Definition ( Shortened Hamming Codes) Any code obtained from an (2 m 1, 2 m m 1) Hamming code C by deleting l columns from H is called a shortened Hamming code Such codes have the following parameters code length n = 2 m l 1; number of information symbols k = 2 m m l 1; number of parity check symbols m = n k; and error correcting capability d min 3. Note: rate is decreased 7 / 16 Δρ. Νικόλαος Κολοκοτρώνης Θεωρία Πληροφορίας και Κωδίκων ( Προπτυχιακό )

Ιδιότητες Κωδίκων Hamming (συν.) Example Suppose we delete from P t in H all even weight columns; then we obtain a code of length 2 m 1, and all columns in H have odd weight; no three columns add to zero; and minimum distance equals d min = 4. Definition ( Dual Hamming Codes) The dual of an (2 m 1, 2 m m 1) Hamming code C is an (2 m 1, m) linear block code its codewords are the 2 m 1 vectors of weight 2 m 1, plus the all zero vector 8 / 16 Δρ. Νικόλαος Κολοκοτρώνης Θεωρία Πληροφορίας και Κωδίκων ( Προπτυχιακό )

Ιδιότητες Κωδίκων Hamming (συν.) The weight enumerators A(z), B(z) of a Hamming code and its dual are given by A(z) = 2 m ( 1 + z ) 1 [ ( 1 + z ) 2 m + ( 2 m 1 )( 1 z 2) 2 m 1 ] (1) B(z) = 1 + ( 2 m 1 ) z 2m 1 (2) So, it is easier to compute the probability Pr u (E) using (2) The Hamming codes can be decoded by using the techniques mentioned so far 9 / 16 Δρ. Νικόλαος Κολοκοτρώνης Θεωρία Πληροφορίας και Κωδίκων ( Προπτυχιακό )

Γενικά Περί LDPC Κωδίκων Low density parity check (LDPC) codes are an important class of Shannon limit (or channel capacity) approaching codes They were discovered by Gallager in the early 60 s but ignored; it was Tanner s work that played a key role graphical interpretation of LDPC codes Gallager did not provide a method to allow for algebraic and systematic construction of LDPC codes they are speci ied in terms of their parity check matrices constructions based on inite geometries are now used Compared to turbo codes, LDPC codes do not require a long interleaver to achieve good performance have better block error performance have a much simpler decoding (as it is not Trellis based) 10 / 16 Δρ. Νικόλαος Κολοκοτρώνης Θεωρία Πληροφορίας και Κωδίκων ( Προπτυχιακό )

Ορισμός LDPC Κωδίκων Definition ( LDPC Code) An LDPC code C is de ined as the null space of a parity check matrix H that has the following structural properties:...1 each row and column of H consists of ρ and γ 1 s respectively;...2 the number λ of 1 s in common between two columns of H, satis ies λ 1; and...3 both ρ, γ are small compared to the length n of the code and the number of rows in H Such an LDPC code is called (γ, ρ) regular LDPC code; otherwise, it is called irregular. 11 / 16 Δρ. Νικόλαος Κολοκοτρώνης Θεωρία Πληροφορίας και Κωδίκων ( Προπτυχιακό )

Ορισμός LDPC Κωδίκων (συν.) Definition ( Density of LDPC Code) The density r of an LDPC code C is de ined as the number of 1 s in H over the total number of its entries: r = ρ n r = γ J (3) where J is the number of rows in H (hint: ρj = γ n 1 s in H) Note Property 2 also implies that no two rows of H have more than one 1 in common The rows of H need not be LI; if they are LI, then J = n k in general, we need to ind rank(h) 12 / 16 Δρ. Νικόλαος Κολοκοτρώνης Θεωρία Πληροφορίας και Κωδίκων ( Προπτυχιακό )

Παράδειγμα LDPC Κώδικα The parity check matrix of an (15, 7) LDPC code is shown next, with density 0.267 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 1 H = 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 0 This is a (4, 4) regular LDPC code 13 / 16 Δρ. Νικόλαος Κολοκοτρώνης Θεωρία Πληροφορίας και Κωδίκων ( Προπτυχιακό )

Κατασκευή LDPC Κώδικα Construction ( Gallager)...1 Choose positive integer k > 1, and parameters ρ, γ...2 Construct a kγ kρ parity check matrix H as follows H 1 H 11 H 1k H =. =.. (4) H γ1 H γk H γ and each block H i, i = 1,..., γ, has size k kρ whereas block H ij, j = 1,..., k, has size k ρ...3 Fix the ρ 1 s of the jth row of H 1 to be in the jth row of H 1j H 1j = 1 ρ jth row (5) 14 / 16 Δρ. Νικόλαος Κολοκοτρώνης Θεωρία Πληροφορίας και Κωδίκων ( Προπτυχιακό )

Κατασκευή LDPC Κώδικα (συν.)...4 Obtain the other submatrices H 2,..., H γ from H i by appropriate column permutations...5 The parity check matrix H has kργ 1 s and a total of k 2 ργ entries; therefore its density is r = 1 k Note We can make the density arbitrarily low by choosing large k The problem with this construction is that no systematic way is proposed for choosing the column permutations for H 2,..., H γ 15 / 16 Δρ. Νικόλαος Κολοκοτρώνης Θεωρία Πληροφορίας και Κωδίκων ( Προπτυχιακό )

εισαγωγή οικογένειες σύνοψη Προτεινόμενη Βιβλιογραφία T. M. Cover and J. A. Thomas Elements of Information Theory John Wiley & Sons, 2006 R. Gallager Information Theory and Reliable Communication John Wiley & Sons, 1968 S. Lin and D. Costello Error Control Coding, 2nd ed. Prentice Hall, 2004 16 / 16 Δρ. Νικόλαος Κολοκοτρώνης Θεωρία Πληροφορίας και Κωδίκων ( Προπτυχιακό )