CRASH COURSE IN PRECALCULUS

Σχετικά έγγραφα
If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π 2, π 2

PARTIAL NOTES for 6.1 Trigonometric Identities

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Trigonometric Formula Sheet

Section 8.3 Trigonometric Equations

Section 7.7 Product-to-Sum and Sum-to-Product Formulas

Section 7.6 Double and Half Angle Formulas

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Areas and Lengths in Polar Coordinates

TRIGONOMETRIC FUNCTIONS

Derivations of Useful Trigonometric Identities

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

Math221: HW# 1 solutions

Trigonometry 1.TRIGONOMETRIC RATIOS

Areas and Lengths in Polar Coordinates

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

Trigonometry (4A) Trigonometric Identities. Young Won Lim 1/2/15

F-TF Sum and Difference angle

Inverse trigonometric functions & General Solution of Trigonometric Equations

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

2 Composition. Invertible Mappings

10.4 Trigonometric Identities

MathCity.org Merging man and maths

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

derivation of the Laplacian from rectangular to spherical coordinates

Trigonometry Functions (5B) Young Won Lim 7/24/14

Homework 8 Model Solution Section

C.S. 430 Assignment 6, Sample Solutions

is like multiplying by the conversion factor of. Dividing by 2π gives you the

Homework 3 Solutions

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Section 9.2 Polar Equations and Graphs

Example Sheet 3 Solutions

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

EE512: Error Control Coding

Srednicki Chapter 55

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Second Order Partial Differential Equations

CBC MATHEMATICS DIVISION MATH 2412-PreCalculus Exam Formula Sheets

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Lecture 2. Soundness and completeness of propositional logic

Quadratic Expressions

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

MATH 150 Pre-Calculus

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

Chapter 6 BLM Answers

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Reminders: linear functions

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Matrices and Determinants

Answer sheet: Third Midterm for Math 2339

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,

Second Order RLC Filters

Section 8.2 Graphs of Polar Equations

Tridiagonal matrices. Gérard MEURANT. October, 2008

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Finite Field Problems: Solutions

On an area property of the sum cota + cotb + cotγ in a triangle

Solution to Review Problems for Midterm III

CYLINDRICAL & SPHERICAL COORDINATES

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Review Exercises for Chapter 7

Chapter 7 Analytic Trigonometry

Strain gauge and rosettes

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Solutions to Exercise Sheet 5

w o = R 1 p. (1) R = p =. = 1

Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x.

Evaluation of some non-elementary integrals of sine, cosine and exponential integrals type

Rectangular Polar Parametric

Approximation of distance between locations on earth given by latitude and longitude

4.6 Autoregressive Moving Average Model ARMA(1,1)

The Simply Typed Lambda Calculus

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

SOLVING CUBICS AND QUARTICS BY RADICALS

1 String with massive end-points

D Alembert s Solution to the Wave Equation

Differentiation exercise show differential equation

Principles of Mathematics 12 Answer Key, Contents 185

Logsine integrals. Notes by G.J.O. Jameson. log sin θ dθ = π log 2,

Parametrized Surfaces

Math 6 SL Probability Distributions Practice Test Mark Scheme

Concrete Mathematics Exercises from 30 September 2016

CORDIC Background (2A)

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

Differential equations

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Transcript:

CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai

Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter 5-7.

LECTURE 7. TRIGONOMETRY: PART II This lecture is the second part of reviewing high school trigonometry: addition and subtraction, double and half angle, product-to-sum formulas and sum-to-product formulas for trigonometric functions and some of their applications; and area formulas and the laws of sines and cosines for general triangles.

Addition and Subtraction Formulas for Trig. Function sin(α + β) = sin α cos β + cos α sin β Formulas for Sine: sin(α β) = sin α cos β cos α sin β cos(α + β) = cos α cos β sin α sin β Formulas for Cosine: cos(α β) = cos α cos β + sin α sin β tan α + tan β tan(α + β) = Formulas for Tangent: 1 tan α tan β tan α tan β tan(α β) = 1 + tan α tan β

Some Proofs of the Formulas Proof of Subtraction Formula for Sine: By the addition formula for sine and even-odd identities, sin(α β) = sin [α + ( β)] = sin α cos( β) + cos α sin( β) = sin α cos β cos α sin β. Proof of Subtraction Formula for Cosine: By the addition formula for cosine and even-odd identities, cos(α β) = cos [α + ( β)] = cos α cos( β) sin α sin( β) = cos α cos β + sin α sin β. Proof Addition Formula for Tangent: By Addition Formula for Sine and Cosine and Reciprocal Identities, sin(α + β) tan(α + β) = cos(α + β) sin α cos β+cos α sin β cos α cos β cos α cos β sin α sin β cos α cos β = = sin α cos β + cos α sin β cos α cos β sin α sin β = tan α + tan β 1 tan α tan β

Examples 1. sin 7π 1 =? sin 7π 1 = sin (3π + 4π 1 ) = sin ( π 4 + π 3 ) = 1 + sin π 4 cos π 3 + cos π 4 sin π 3 =. cos π 9 cos π 9 sin π 9 sin π 9 =? 3 = (1 + 3). 4 cos π 9 cos π 9 sin π 9 sin π 9 = cos (π 9 + π 9 ) = cos π 3 = 1. 3. Prove the identity 1 + tan θ 1 tan θ = tan (π 4 + θ). 1 + tan θ 1 tan θ = tan π 4 + tan θ 1 tan π 4 tan θ = tan (π 4 + θ).

Examples 4. Express sin(cos 1 x + tan 1 y) as an algebraic expression in x and y, where x [ 1, 1] and y R. Let α = cos 1 x and β = tan 1 y. Then cos α = x, tan β = y and sin(cos 1 x + tan 1 y) = sin(α + β) = sin α cos β + cos α sin β. cos α = x sin α = 1 x. y tan β = y sin β = and cos β = 1. Hence 1+y 1+y sin(cos 1 x + tan 1 y) = 1 x 1 + x y = 1 + y 1 + y 1 x + xy 1 + y = ( 1 x + xy) 1 + y 1 + y.

Examples 5. Use the addition and subtraction for sine to simplify 1 3 sin θ + cos θ in terms of a single trigonometric function. 1 3 sin θ + cos θ = cos π 3 sin θ + sin π 3 cos θ = sin (θ + π 3 ). On the other hand, 1 3 sin θ + cos θ = sin π 6 sin θ + cos π 6 cos θ = sin (θ π 6 ). More generally, we can write, for any A, B R with A + B 0, A cos θ + B sin θ = A + B A ( A + B cos θ + B sin θ) A + B = A + B (cos ϕ 1 cos θ + sin ϕ 1 sin ϕ 1 ) = A + B cos(θ ϕ 1 ) = A + B (sin ϕ cos θ + cos ϕ sin ϕ ) = A + B sin(θ + ϕ )

Sum of Sines and Cosines For any A, B R with A + B 0 A cos θ + B sin θ = A + B cos(θ ϕ 1 ) = A + B sin(θ + ϕ ) cos ϕ 1 = where sin ϕ 1 = A A +B B A +B and sin ϕ = cos ϕ = A A +B B A +B We note that by knowing the values any two distinct trigonometric functions of the six trigonometric functions, as long as they are not from the three reciprocal identities, the values of remaining four trigonometric functions are also determined.

An Example Prove the identity cos θ sin θ cos θ + sin θ = tan (π 4 θ). cos θ sin θ ( cos θ + sin θ = cos θ sin θ) = ( cos θ + sin θ) cos θ sin θ cos θ + sin θ = sin π 4 cos θ cos π 4 sin θ cos π 4 cos θ + sin π 4 sin θ = sin ( π 4 θ) cos ( π 4 θ) = tan (π 4 θ)

Double Angle Formulas for Trigonometric Functions With α = β = θ in the addition formulas for sine, cosine and tangent functions, we have Formula for Sine Function: Formula for Cosine Function: sin θ = sin θ cos θ cos θ sin θ cos θ = 1 sin θ cos θ 1 Formula for Tangent Function: tan θ = tan θ 1 tan θ.

Half Angle Formula for Sine and Cosine Functions 1 sin θ Using cos θ = cos θ 1, replacing θ, θ by θ, θ correspondingly and rearrange terms, we obtain and so sin θ = 1 cos θ, cos θ = 1 + cos θ sin θ 1 cos θ = ±, cos θ 1 + cos θ = ± The choice of + or sign depends on the quadrant in which θ lies.

Half Angle Formula for Tangent Function Using tan θ = tan θ 1 tan θ tan θ = tan θ 1 tan θ t 1 t, where t = tan θ, and = we choose b = t and a = 1 t, so c = (t) + (1 t ) = 4t + 1 t + t 4 = 1 + t + t 4 = (1 + t ) = 1 + t. Therefore,

Half Angle Formula for Tangent Function sin θ = tan θ 1 + tan θ cos θ = 1 tan θ 1 + tan θ tan θ = tan θ 1 tan θ csc θ = 1 + tan θ tan θ sec θ = 1 + tan θ 1 tan θ cot θ = 1 tan θ tan θ

Examples 1. sin π 1 =? Note that sin π π 1 = sin 6 and π 1 we see that. tan 7π 8 =? sin π 1 = 1 cos π 6 = lies in the first quadrant, 1 3 = 3 tan 7π 8 = tan (π + 3π 8 ) = tan [π ( 3π 8 )] = cot ( 3π 8 ) = cot 3π 8 = cos 3π 8 sin 3π 8 Hence tan 7π 8 = and 3π 3π 8 = 4 1+cos 3π 4 1 cos 3π 4 is in the the first quadrant. = 1 = 1 + + =

Examples 3. Write sin( cos 1 x) as an algebraic expression in x only, where x [ 1, 1]. Let θ = cos 1 x. Then cos θ = x and sin( cos 1 x) = sin θ = sin θ cos θ. Using we have sin θ = 1 x. Hence sin( cos 1 x) = x 1 x.

Product-to-Sum Formulas sin(α + β) = sin α cos β + cos α sin β Idea: Recalling sin(α β) = sin α cos β cos α sin β and adding the left- and right-sides of these formulas, gives sin(α + β) + sin(α β) = sin α cos β So sin(α + β) + sin(α β) sin α cos β = Similarly, by subtracting them on both sides, gives cos α sin β = sin(α + β) sin(α β) Apply similar techniques to the addition and subtraction formulas of cosine function to see

Product-to-Sum Formulas sin(α + β) + sin(α β) sin α cos β = sin(α + β) sin(α β) cos α sin β = cos(α + β) + cos(α β) cos α cos β = cos(α β) sin(α + β) sin α sin β =

Examples 1. Express sin 3x cos 5x as a sum of trigonometric functions. = sin 3x cos 5x = = sin 8x + sin( x) sin(3x + 5x) + sin(3x 5x) = sin 8x sin x sin 3x cos 5x = cos 5x sin 3x sin(5x + 3x) sin(5x 3x) = or sin 8x sin x. Express sin 3x sin 5x as a sum of trigonometric functions. sin 3x sin 5x = = cos( x) cos 8x cos(3x 5x) cos(3x 5x) = cos x cos 8x

Sum-to-Product Formulas By applying the Product-to-Sum formulas, with α = x+y x = α + β β = x y, and rearranging terms, we obtain y = α β sin x + sin y = sin x + y cos x y sin x sin y = cos x + y sin x y cos x + cos y = cos x + y cos x y cos x cos y = sin x + y sin x y

Examples 1. Write sin 7x + sin 3x as a multiple of trigonometric functions. 7x + 3x 7x 3x sin 7x + sin 3x = sin cos = sin 5x cos x. sin 3x sin x. Simply the fractional expression cos 3x + cos x. 3x+x sin 3x sin x cos sin 3x x cos x sin x = cos 3x + cos x cos 3x+x cos 3x x = cos x cos x = sin x = tan x. cos x

Area Formulas for General Triangles Given a triangle with side lengths a and b, and included angle θ, then the area A = 1 ab sin θ

Area Formulas for General Triangles Heron s Formula: A = s(s a)(s b)(s c) where s = a + b + c is the semiperimeter of the triangle; that is half of the perimeter.

Laws of Sines and Cosines for General Triangles Law of Sines: In ABC we have sin α a Law of Cosines: In ABC = sin β b = sin γ c a = b + c bc cos α b = a + c ac cos β c = a + b ab cos γ