ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ

Σχετικά έγγραφα
ANGELOPOULOS KOUKOUSELIS

P.KANNAVOS L.ZOTOS BIDDING SYSTEM VERSION 1.2 (Jan 18)

SUPPLEMENTARY NOTES A. SAPOUNAKIS L. ZOTOS

ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ

Σύνοψη του συστήματος

Σύνοψη του συστήματος

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

2-2 : forcing, όχι καρά Συνέχειες όπως στο Cbs -2 : non forcing

Approximation of distance between locations on earth given by latitude and longitude

EE512: Error Control Coding

The challenges of non-stable predicates

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

2 Composition. Invertible Mappings

Section 8.3 Trigonometric Equations

derivation of the Laplacian from rectangular to spherical coordinates

Homework 8 Model Solution Section

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Matrices and Determinants

C.S. 430 Assignment 6, Sample Solutions

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

Other Test Constructions: Likelihood Ratio & Bayes Tests

Math 6 SL Probability Distributions Practice Test Mark Scheme

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Second Order RLC Filters

Every set of first-order formulas is equivalent to an independent set

The Simply Typed Lambda Calculus

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Advanced Subsidiary Unit 1: Understanding and Written Response

Section 9.2 Polar Equations and Graphs

ST5224: Advanced Statistical Theory II

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

2nd Training Workshop of scientists- practitioners in the juvenile judicial system Volos, EVALUATION REPORT

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

Finite Field Problems: Solutions

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Homework 3 Solutions

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Problem Set 3: Solutions

Example Sheet 3 Solutions

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Πώς μπορεί κανείς να έχει έναν διερμηνέα κατά την επίσκεψή του στον Οικογενειακό του Γιατρό στο Ίσλινγκτον Getting an interpreter when you visit your

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

Statistical Inference I Locally most powerful tests

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

5.4 The Poisson Distribution.

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

STARTING STEPS IN GRAMMAR, FINAL TEST C TERM 2012 UNITS 1-18

LESSON 14 (ΜΑΘΗΜΑ ΔΕΚΑΤΕΣΣΕΡΑ) REF : 202/057/34-ADV. 18 February 2014

Εγκατάσταση λογισμικού και αναβάθμιση συσκευής Device software installation and software upgrade

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

CRASH COURSE IN PRECALCULUS

Μηχανική Μάθηση Hypothesis Testing

1) Formulation of the Problem as a Linear Programming Model

Strain gauge and rosettes

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016

Code Breaker. TEACHER s NOTES

Right Rear Door. Let's now finish the door hinge saga with the right rear door

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

A Note on Intuitionistic Fuzzy. Equivalence Relation

Congruence Classes of Invertible Matrices of Order 3 over F 2

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Οδηγίες Αγοράς Ηλεκτρονικού Βιβλίου Instructions for Buying an ebook

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

1 ο μέρος - Το Ρωμαϊκό Σπαθί (Romano)

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible.

Συστήματα Διαχείρισης Βάσεων Δεδομένων

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Inverse trigonometric functions & General Solution of Trigonometric Equations

Modbus basic setup notes for IO-Link AL1xxx Master Block

Στο εστιατόριο «ToDokimasesPrinToBgaleisStonKosmo?» έξω από τους δακτυλίους του Κρόνου, οι παραγγελίες γίνονται ηλεκτρονικά.

Fractional Colorings and Zykov Products of graphs

Srednicki Chapter 55

ΑΛΕΞΑΝΔΡΟΣ ΠΑΛΛΗΣ SCHOOLTIME E-BOOKS

Block Ciphers Modes. Ramki Thurimella

Instruction Execution Times

Section 7.6 Double and Half Angle Formulas

Οι αδελφοί Montgolfier: Ψηφιακή αφήγηση The Montgolfier Βrothers Digital Story (προτείνεται να διδαχθεί στο Unit 4, Lesson 3, Αγγλικά Στ Δημοτικού)

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Areas and Lengths in Polar Coordinates

ΓΗΠΛΧΜΑΣΗΚΖ ΔΡΓΑΗΑ ΑΡΥΗΣΔΚΣΟΝΗΚΖ ΣΧΝ ΓΔΦΤΡΧΝ ΑΠΟ ΑΠΟΦΖ ΜΟΡΦΟΛΟΓΗΑ ΚΑΗ ΑΗΘΖΣΗΚΖ

From the finite to the transfinite: Λµ-terms and streams

SPEEDO AQUABEAT. Specially Designed for Aquatic Athletes and Active People

Space-Time Symmetries

4.6 Autoregressive Moving Average Model ARMA(1,1)

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Areas and Lengths in Polar Coordinates

Math221: HW# 1 solutions

Transcript:

ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ 1. GAZZILLI OVER 1-1 AND 1 / -1NT A. 1-1 Συνέχεια αγοράς: 1ΧΑ= 11-15π, ομαλή κατανομή 2 =Gazzilli, φόρσιγκ, υπόσχεται ή 11-15π με τουλάχιστον 3 ή 16+π με οποιαδήποτε κατανομή 2 =11-15π, τουλάχιστον 4 2 =11-15π, τουλάχιστον 6 2 =11-14π, 4 2ΧΑ= 19+ hcp, 6c one suited hand, or with 4 c side suit 3 =18+π, τουλάχιστον 5, φόρσιγκ μανς 3 =18+π, τουλάχιστον 5, φόρσιγκ μανς 3 =12-15π, τουλάχιστον 6, καλό παικτικό χέρι 3 =13-15π, καλό παικτικό χέρι 3ΧΑ= 19-21π, 6 4 =σπλίντερ 4 = σπλίντερ 4 = hope to make it Συνέχεια αγοράς: 1-1 2 2 =8+π 2 =5-7π, μπορεί και σόλο 2 =5-7π, τουλάχιστον 5 2ΧΑ=5-7π, 0-1, όχι 6 φυλο μινέρ 3 =5-7π, 4 +6 3 =5-7π, 4 +6 3 =5-7π, 5 +4 3 =5-7π, 7 Συνέχεια αγοράς: 1-1 2-2 2 =11-15π, 5 +3 + 2 =16-18π+, 5 +4 ή 6 +4 2ΧΑ=15-16π, ομαλή κατανομή 3 =16+π, τουλάχιστον 5 +4 + 3 =16+π, τουλάχιστον 5 +4 + 3 =16-18π, τουλάχιστον 6 3 =17-19 hcp, με 3φ 3ΧΑ=17-19 hcp, με 2 1

Β. 1-1ΧΑ Συνέχεια αγοράς: 2 =Gazzilli, όχι φόρσιγκ, υπόσχεται ή 11-15π με τουλάχιστον 3 ή 16+π με οποιαδήποτε κατανομή 2 =11-15π, τουλάχιστον 3 2 =11-15π, τουλάχιστον 6 2 =11-14π, 6 +5 2ΧΑ=19+ hcp, 6c one suited hand, or with 4 c side suit 3 =18+π, τουλάχιστον 5, φόρσιγκ μανς 3 =19+π, τουλάχιστον 5, φόρσιγκ μανς 3 =12-15π, καλό παικτικό χέρι 3 =14+π, 6 +5 Συνέχεια αγοράς: 1-1ΧΑ 2 2 =8-10π, οποιαδήποτε κατανομή 2 =5-7π, μπορεί και σόλο 2ΧΑ=5-7π, με τα μινέρ 3 =5-7π, 6 + 3 =5-7π, 6 + Συνέχεια αγοράς: 1-1ΧΑ 2-2 2 =11-15π, 5 min any distribution 2 =16-18π+, 2ΧΑ=15-16π, ομαλή κατανομή 3 =16+π, τουλάχιστον 5 +4 3 =16+π, τουλάχιστον 5 +4 3 =16-18π, τουλάχιστον 6 3 =singleton, 16-18p, 3-3min, 6 3NT=6 with 3 top honors, 16-18p 2

Γ. 1-1ΧΑ Συνέχεια αγοράς: 2 =Gazzilli, φόρσιγκ, υπόσχεται ή 11-15π με τουλάχιστον 4 ή 16-18π με οποιαδήποτε κατανομή 2 =11-15π, τουλάχιστον 3 2 =11-15π, τουλάχιστον 4 2 =11-14π, 6 2ΧΑ=19+ hcp, 6c one suited hand, or with 4 c side suit 3 =19+π, τουλάχιστον 5, φόρσιγκ μανς 3 =19+π, τουλάχιστον 5, φόρσιγκ μανς 3 =19+π, 5 +, φόρσιγκ μανς Συνέχεια αγοράς: 1-1ΧΑ 2 2 =8-10π, οποιαδήποτε κατανομή 2 =5-7π, 5+ 2 =5-7π, μπορεί και σόλο 2ΧΑ=5-7π, με τα μινέρ 3 =5-7π, 6 + 3 =5-7π, 6 + 3 =5-7π, 7 + Συνέχεια αγοράς: 1-1ΧΑ 2-2 2 = 3 cards in 11-15π 2 =11-15π, without 3c in 2ΧΑ=15-16π, ομαλή κατανομή 3 =16+π, τουλάχιστον 5 +4 3 =16+π 1M-1NT-2NT=GF, artificial 1-1NT 2NT 3 = natural, 5c+ 3 = natural, 5c+ 3 = 3-card support, limit 3 = 2, tending to suggest 3-2-4-4 3NT= 5-5 in the minors 1-1NT 2NT 3 = unknown 5+ card minor (στη συνέχεια 3 ρωτάει ποιο: 3 =,3 = ) 3 = 4 card heart suit ( ) 3 = 5 card + 3 = 2, tending to suggest 2-3-4-4 3NT= 5-5 in the minors 3

2. CAPP OVER MAJOR OPENING DOUBLED 1 -X- 1 : 1NT: natural 4+ card, forcing 6-9 HCP, 6card or 10-11 HCP with 3 card support and values in (opener accepts transfer with any minimum) 2 : 6-9 HCP, 6card or 10-11 HCP with 3 card support and values in (opener accepts transfer with any minimum) 2 : 8-10 HCP, 3 card support 2 : 5-7 HCP, 3 card support 2 : 7-9 HCP, 4 card support 2NT: 10-11 HCP, 4 card support 3 / : invitational with good 6 card suit 3 : 0-6 HCP, 4 card support 3XA: 13+ HCP with 3 card support and balanced 3,4 / : splinter 1 -X-1NT: 6-9 HCP, 6card or 10-11 HCP with 3 card support and values in (opener accepts transfer with any minimum) 2 : 6-9 HCP, 6card or 10-11 HCP with 3 card support and values in (opener accepts transfer with any minimum) 2 : 6-9 HCP, 6 card or 10-11 HCP with 3 card support and values in (opener accepts transfer with any minimum) 2 : 8-10 HCP, 3 card support 2 : 5-7 HCP, 3 card support 2NT: 10-11 HCP, 4 card support 3 / : invitational with good 6 card suit 3 : 7-9 HCP, 4 card support 3 : 0-6 HCP, 4 card support 3NT: 13+, 3c sp, balanced 4 / / : splinter SPECIAL SEQUENCE 1M Dbl 2 P 2 P 2M= 10-11HCP with 5, unbalanced, 3 card support in M 4

3. CHECK BACK STAYMAN When opener rebids 1nt even over interference we use two conventional rebids 2 and 2. 2 is a puppet to 2 in order to play 2 or it initiates an invitational sequence. 2 is always a GF RELAY that asks distribution. 1m 1M 1nt 2 = PUPPET to 2 2 = RELAY GF 2M = 5+M (7)-(10) HCP 2OM = a) if M is 5+ -4 no game b) if M is 4-4 10/12 HCP 2nt = 2ntT See continuations 3m = 4M-5+m GI 3om = 4M-5+om GI 3M = 6+M GF 3OM = a) if M is 5-5 GF not SI b) if M is 6-5 GF not SI 3nt = Natural 4 = GERBER CONTINUATIONS AFTER 2 1m 1M 1nt 2 2 P = 4M-5+ 5/9 HCP 2M = 5M 10/11 HCP 2OM = a) if M is 5-4/5 9/11 HCP b) if M is 5-4 10/11 HCP 2nt = 10/11 HCP BAL 3m = 5M-4+m 9/11 HCP 3om = 5M-5om 9/11 HCP 3M = 6+M 9/11 HCP 3OM = a) if OM is 5-5 9/11 HCP GI stronger than previous CONTINUATIONS AFTER 2 1m 1M 1nt 2 Priority : a) Bid other major b) Raise with 3 cards in responder's suit c) Rebid a bad six-card suit 5

d) Show 5-4 e) Bid 2nt Particular sequences : 1m 1M 1nt 2 2x 2M = weak 5+M useful hand for NT 2nt = Asking for further info ( e.g. : Do you have 4 a? ) 4y = 6M with SGL y SI if a jump 3M = 6+M if the bid is not available at the 2 level '2ntT' STRUCTURE This convention forces opener to bid 3 over which responder can : a) Pass with 4x-6+ b) Bid a new suit at 3 level showing 5-5 GF c) Repeat one's own suit with 5x-5 GF d) Bid 3nt showing 4Μ+5+c in opening minor light SI 4. DRURY Σε άνοιγμα σε 3 η και 4 η θέση ένα σε μαζέρ η αγορά 2 σπαθιά υπόσχεται 10-11π και φιτ. 1 / -2 2 / =for pass 1 / -2 4 / =sign off 1 / -2 3 / / = at least game try with at least 3c 1 / -2 4 / / = splinter 1 / -2 2 =minimum opening bid---2 / : 3c with 10-11hcp ---3 / : 4c with 10-11hcp ---3 / /other major=splinter 1 / -2 2NT= invitation with balanced hand 1-2 2 =at least 4c in hearts, at least min opening bid 6

5. PUPPET STAYMAN 2NT- 3C: Stayman 3D: Transfer to hearts 3H: Transfer to spades 3S: Transfer to 3NT 3NT: 5 spades+4hearts 4C=Gerber 4D/H: Transfer 4S: Transfer for 5 clubs 4NT: Invitational. 5C: Transfer for 5 diamonds 3D : Have at least one 4 card major suit. 3H : 5 Hearts. 3S : 5 Spades. 3NT : Denies 4/5 card major. 3D - 3H: 4 Spades not 4 Hearts. 3S: 4 Hearts not 4 Spades. 3NT: To play. à4c=5+ SI àbid in the 4 level=cue-bid, 4NT=to play, 5C= to play 4C: 4-4 in major. Slam invitational. 4D: 4-4 in major. 4H: 3-1-5-4 (singl H), slam try 8hcp+ à 4S= cue-bid, 4NT= no interesting 4S: 1-3-5-4 (singl S), slam try 8hcp+ à4nt=no interesting, 5C=for aces 3D-3H 3D- 3S 3S : Slam invitational. 3NT : To play. 3NT : To play 4C/4D : Cue-bid. 4C/4D : Cue-bid. 4H : To play. 4S : To play. 3D-4C 4D : Slam invitational in Hearts. 4H : To play. 4S : To play. 4NT : RKCB with Spades as trump. 7

3H - 3S: Slam invitational in Hearts. 4C: 5C+4D or 6C+OM with singleton H slam try à4nt: To play, other=cue-bid 4D: 5D+4C or 6C+OM with singleton H slam try Slam invitational. ---> 4NT: To play. 4H: to play 4S/5C/5D: exclusion blackwood 4NT: invitational 3S - 4C: 5C+4D with singleton S, Slam invitational. ---> 4NT: To play. 4D: 5D+4C with singleton S, Slam invitational. ---> 4NT: To play. 4H: Slam invitational in Spades. 4S: to play 4NT: invitational 3NT-4C: at least 5c, slam tryà4d: aces, 4NT: not interesting 4D: the same as above 4H: singleton H, 5-4 the minorsà4nt: to stop, 4S: aces 4S: singleton S, 5-4 the minors 4NT: invitational (when we accept we bid our first 4c in the 5 level, 5c in the 6 level) 2NT-3D= trf, new suit is slam try with 4c at least 3H- 4H=slam try 2NT-3D 3S=5C in S+2c in H 4 / =4H, cue-bid 3NT=3cH, 21-22hcp, desire to play NT 2NT-3Hà4H=5c in H, 2c in S à4 / =4c in S, cue-bid 2NT-3S=trf for 3NT 2NT-3S 3NT-4C/D= 6c slam tryànext bid asks for aces, 4NT: stop, 4H/S: cue-bid 4H/S= singleton H/S, with 5-5 the minors 4NT= slam try with 5-4 in minors and 2-2 in majors (5NT from the opener asks to Bid the 5c minor) 5C=5-5 min p/c 8

6. LANDY 1NT-2 -P-2 =asks p to bid his longer M 1NT-2 -Dbl P=club length 2 =diamond length 2 / =to play Rdbl= asks p to bid his longer M 3 / =game try Anything else=to play 1NT-2 -P-2NT=ASKING-P 3 =medium strength, 4-5 or 5-4 3 =maximum strength, 4-5 or 5-4 4 =asks to bid with transfer the 5cM, and 4 =to bid the 5cM 3 =5-5 rag 3 =5-5 medium strength 3NT=5-5 maximum strength 1NT-2 -P-2NT P-3 -P-3 =asks for 5M 7. 1NT Dbl=4cM+5cm 2 =6cM or strong two suited (5M+4m) 2 / =p/c, 2NT 3 / =weak /, 3 / =strong 2-2 / -2ΝΤ=5 +m 2-2 / -3 =5 + 2-2 / -3 =5 + 2 / =5c M +4+c m-ανάπτυξη όπως άνοιγμα 2 / 2NT=5-5 m 1NT Dbl P 2 =preference for m 2 = preference for M 2 / =6c (for pass) 2NT=asks for m (strong bid) 9

8. AFTER 1m -1M-2NT A. 1m-1M-2NT-? a. 3 puppet for 3 with all weak hands for pass b. 3 : shows 5 if the M was or asks for 3c fit c. 3 : shows 4 if the M was, 5 if the M was d. 3 : shows the other m e. 3-3 and then 3NT shows fit in the opening m f. 3-3 and then 3 denies stopper in the other minor AFTER 1-1 -2NT-3 = puppet (trf to 3 ), 3 / : shows the next suit, 3 : 6c indiamonds slammish 9. After 2 opening (weak with majors) 2 =strong one-suited with 2 =strong one-suited with 3 / =strong / Dbl=13-15 hcp balanced 2NT=16-18 hcp balanced 1

SEQUENCE 1-2 1-2 2 = 5332 MIN; 5 +4 /4 MIN; 5 +4 MIN/MAX 2 = 6+ ; Denies 4 2 = 5+ - 4 MAX 2NT = BAL MAX 16+ 3 = 5 +4 MAX or 5 +5 /6 +4 MIN 3 = 5 +5 MIN/MAX (3 asks strenght 3 =min, 3NT=max; 3 shows support to the minor) 3 = Solid suit (12+, one loser, almost 7 tricks) 3 = 6 +5 MAX 3NT = BAL 18-19 with xx in 1-2 2-2 = Asks 2 = 4 MIN 2NT = 5332 MIN 3 = 4 MIN 3 = 4 MIN/MAX (3 asks strength 3 =min, 3NT=max; 3 shows support) 3 = 5332 MIN; Very good suit 3 = 1-5 - 4-3 3NT=14-15, 5=3=3=2 1-2 2-2NT = Asks 3 = Hxx 3 = 6 +4 MIN/MAX 3 = One-suited 3 = 6 +4 MIN 3NT = 6 MIN 1

- SEQUENCE 1-2 1-2 2 = 5332 MIN; 5 +4 MIN; 5 +4 MIN/MAX 2 = 4 ; If 6 +4 = MAX 2 = 6+ ; If 6 +4 = MIN 2NT = BAL MAX 3 = 5 +4 MAX or 5 +5 /6 +4 MIN 3 = 5 +5 MIN/MAX (3 asks strenght; 3 shows support) 3 = 5 +5 MAX 3 = Solid suit 3NT = BAL 18-19 with xx in 1-2 2-2 = Asks 2 = 5332 MIN (usually good suit) 2NT = 5332 MIN 3 = 4 MIN 3 = 4 MIN/MAX (3 asks strength; 3 shows support) 3 = 5-1 - 4-3 3 = 5332 MIN; Very good suit 3NT=5332, 14-15 hcp 1-2 2-2NT = Asks 3 = Hxx 3 = 6 +4 MIN/MAX 3 = 6 +4 MIN 3 = One-suited 3NT = 6 MIN MODIFIED JACOBY 2NT After our 1-MAJ opening and 2NT response (Game-Forcing 4+-card raise): 4 of our MAJOR = the absolute worst dreck imaginable (always 5-3-3-2) 3 = any other minimum (could be 5-3-3-2, but at least some redeeming feature) 3 = non-minimum, with a side singleton or void somewhere 3 = non-minimum, any 5-4-2-2 distribution 3 = non-minimum, 6+ trumps (no singletons or voids) 3NT = non-min., 5-3-3-2 (you can use this to show a HCP range such as 18-19) 4 new suit = decent 5-card side suit (nat.--should have ace or king) Follow-ups: If responder ever jumps to game in the major, it is a sign-off--no further interest. If responder still has slam interest, he can ask further as follows: 1

AFTER opener's 3 : Responder bids 3 to ask, then (note the similarity to the original responses by opener): 4 of our MAJOR = 5-3-3-2 min., but not total dreck (maybe nice controls) 3 = minimum, with a side singleton or void somewhere 3 = minimum, any 5-4-2-2 distribution 3NT = minimum, 6+ trumps (no singletons or voids) 4 new suit = min., decent 5-card side suit (natural--should have ace or king) (After opener's 3 or 3 answer to 3, next step asks, using same schedule as below) AFTER opener's 3 : Responder bids 3 to ask, then: Step 1=A VOID somewhere Step 2= singleton in lowest side suit ( ) Step 3 = singleton in next side suit ( ) Step 4 = singleton in highest side suit (other major) After Step 1 (VOID) Next bid asks where and S1=, S2=, S3=other major AFTER opener's 3 : Responder bids 3 to ask, then: Step 1= 4 cards in lowest side suit ( ) Step 2 = 4 cards in next side suit ( ) Step 3 = 4 cards in highest side suit (other major) This looks a bit complex, but there isn't too much memory. The first set of answers to 2NT must be memorized. After that, the same principle covers all the memory: Next step asks, and answers are "up-the-line." INTERFERENCE: As stated above, this convention is never on if they interfere after our 1MAJ opening. However, we do need to cope if they interfere after the 2NT response: Opener's double = Shortness in suit doubled. Opener's new suits=natural or a control 3NT=Balanced Maximum (Ace or King in their suit). Opener's Pass = Nothing special-- flat hand, could be 5x3x2 awfu lafter which,responder'sx=penalty. Opener's jump to 4M = dead minimum, but 6x3x2. If theydouble Asks or re-asks:xx=business, Pass=S1,etc. If they bid after Ask or re-ask : X=Penalty, Pass=S1, etc. (except when double = short as above) 1