ΒΑΘΜΟΛΟΓΙΑ ΟΜΑΔΑΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 4 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΧΗΜΕΙΑΣ Α ΛΥΚΕΙΟΥ Παρασκευή διαλύματος ορισμένης συγκέντρωσης Αραίωση διαλυμάτων ΣΧΟΛΕΙΟ 1 ο ΓΕΛ ΑΜΠΕΛΟΚΗΠΩΝ ΤΜΗΜΑ ΗΜΕΡΟΜΗΝΙΑ ΟΜΑΔΑ ΜΑΘΗΤΩΝ 1 2 3 4 5 Ορίστε συντονιστή ομάδας. Συνεργαστείτε σύγχρονα ή ασύγχρονα δια ζώσης ή εξ αποστάσεως και απαντήστε στις προκαταρκτικές ερωτήσεις. Ετοιμαστείτε για να δουλέψετε συνεργατικά στο εργαστήριο. Διαβάστε το στόχους και την εισαγωγή στο θέμα πριν να ξεκινήσετε το εργαστήριο, στο σπίτι. Θα γίνουν δύο πειράματα. Το πρώτο θα το κάνετε μόνοι σας. Το δεύτερο θα γίνει από έναν συμμαθητή σας. Παρακολουθήστε τον προσεκτικά για να μπορέσετε να απαντήσετε στις ερωτήσεις που ακολουθούν. Το φύλλο εργασίας βρίσκεται στο e_class (η τάξη) και μπορείτε να το τυπώσετε. Στόχοι Στο τέλος του πειράματος αυτού θα πρέπει να μπορείτε : 1. Να εφαρμόζετε το ζυγό. 2. Να μετράτε τον όγκο ενός υγρού. 3. Να παρασκευάζετε διαλύματα ορισμένης συγκέντρωσης. Εισαγωγή στο θέμα Διάλυμα είναι το ομογενές μίγμα δύο ή περισσοτέρων συστατικών. Διαλύτης είναι το συστατικό που βρίσκεται συνήθως στη μεγαλύτερη αναλογία στο διάλυμα και που διατηρεί τη φυσική του κατάσταση μετά την ανάμιξη. Διαλυμένη ουσία είναι το συστατικό που βρίσκεται σε μικρότερη αναλογία στο διάλυμα. Molality ή μοριακή κατά βάρος συγκέντρωση τη συμβολίζουμε με το (m) είναι τα mol της διαλυμένης ουσίας που υπάρχουν στα 1000 g του διαλύτη. Molarity ή μοριακή κατ όγκο συγκέντρωση τη συμβολίζουμε με το (M) ή το (C) είναι τα mol της διαλυμένης ουσίας που υπάρχουν στα 1000 ml του διαλύματος. Από τα διαλύματα τα πιο σημαντικά είναι τα υδατικά. Το νερό έχει την ικανότητα να διαλύει τόσο τις ομοιοπολικές ενώσεις π.χ. ζάχαρη (C 12 H 22 O 11 ), όσο και τις ετεροπολικές π.χ. NaCl. H διάλυση επιτυγχάνεται με την εφυδάτωση μορίων ή ιόντων, όπως φαίνεται στο παρακάτω σχήμα. M αυτό τον τρόπο σχηματίζονται τα μοριακά και τα ιοντικά διαλύματα, αντίστοιχα. Συντάκτης: Τζαμτζής Αθανάσιος Σελίδα 1
Σχήμα 1: Το νερό διαλύει τις ομοιοπολικές και τις ετεροπολικές ενώσεις. Στη διάλυση ισχύει ο γενικός κανόνας «το όμοια διαλύουν όμοια». Αυτό σημαίνει ότι συνήθως οι πολικοί διαλύτες, όπως το νερό (το οποίο παρά το γεγονός ότι είναι ομοιοπολική ένωση, είναι πολικό μόριο) διαλύουν πολικά μόρια, όπως την ετεροπολική ένωση του NaCl. Αντίθετα οι μη πολικοί διαλύτες όπως το βενζόλιο διαλύουν μη πολικές ενώσεις όπως τη βενζίνη. H παρασκευή διαλύματος ορισμένης συγκέντρωσης, γίνεται με διάλυση προζυγισμένης ποσότητας στερεού σε ορισμένο όγκο απιοντισμένου νερού. H διαδικασία που ακολουθούμε για την παρασκευή ενός διαλύματος, περιλαμβάνει τα εξής στάδια, όπως φαίνεται στο παρακάτω σχήμα 2: α) Ποσότητα του στερεού προστίθεται στην ογκομετρική φιάλη και κατόπιν προστίθεται απιοντισμένο νερό με τη βοήθεια του υδροβολέα. β) Το στερεό διαλύεται με προσεκτική ανακίνηση της ογκομετρικής φιάλης. γ) Όταν το στερεό έχει πλήρως διαλυθεί προσθέτουμε νερό μέχρι τη χαραγή. Με βάση τον όγκο του διαλύματος και την ποσότητα του στερεού μπορούμε να υπολογίσουμε τη μοριακή κατ' όγκο συγκέντρωση (Molarity) του διαλύματος. Να σημειωθεί ότι η θερμοκρασία παίζει ιδιαίτερο ρόλο στην παρασκευή ενός διαλύματος, γιατί η θερμοκρασία επηρεάζει τον όγκο του διαλύματος. Γι' αυτό τα διαλύματα ορισμένης συγκέντρωσης αναφέρονται σε ορισμένη θερμοκρασία, που συνήθως είναι η θερμοκρασία δωματίου. Σχήμα 2: Παρασκευή διαλύματος H αραίωση ενός διαλύματος π.χ. σε δεκαπλάσιο όγκο, οδηγεί σε υποδεκαπλασιασμό της μοριακής συγκέντρωσης του διαλύματος, σύμφωνα με τη σχέση: M 1 V 1 =M 2 V 2. Όπου M1 και M 2 η μοριακή κατ' όγκο συγκέντρωση του διαλύματος πριν και μετά την αραίωση, ενώ V 1 και V 2 ο όγκος του διαλύματος πριν και μετά την αραίωση. Συντάκτης: Τζαμτζής Αθανάσιος Σελίδα 2
H διαδικασία που ακολουθούμε για την αραίωση ενός διαλύματος περιλαμβάνει τα εξής στάδια, όπως φαίνεται στο σχήμα 3: α) Παίρνουμε 100 ml του προς αραίωση διαλύματος σε ογκομετρική φιάλη β) Την ποσότητα αυτή μεταφέρουμε σε ογκομετρική φιάλη του 1 L γ) Κατόπιν προστίθεται απιοντισμένο νερό με τη βοήθεια του υδροβολέα. Σχήμα 3: Αραίωση διαλύματος Προκαταρτικές ερωτήσεις 1. Στη διάλυση ισχύει ο γενικός κανόνας «το όμοια διαλύουν όμοια». Πώς το καταλαβαίνετε αυτό; Να δώσετε σχετικά παραδείγματα. Συνήθως οι πολικοί διαλύτες όπως το νερό (το οποίο παρά το γεγονός ότι είναι ομοιοπολική ένωση είναι πολικό μόριο) διαλύουν πολικά μόρια όπως την ετεροπολική ένωση του NaCl. Αντίθετα οι μη πολικοί διαλύτες όπως το βενζόλιο διαλύουν μη πολικές ενώσεις όπως τη βενζίνη. 2. Να υπολογίσετε την % κ.β. και τη molality του διαλύματος που έχει σχηματιστεί, όπως φαίνεται παρακάτω: (Δίδεται ότι η πυκνότητα του νερού είναι ρ=1 g/ml) Συντάκτης: Τζαμτζής Αθανάσιος Σελίδα 3
Αφού η πυκνότητα του νερού είναι 1 g/ml και ρ=m/v, άρα 1000 ml Η 2 Ο είναι 1000 g. Άρα το διάλυμα έχει μάζα 1000+142,1=1142,1 g. Mr Na 2 SO 4 = 2*23+32+4*16 = 142 Άρα τα 142,1 g είναι n=m/mr άρα n = 142,1/142 άρα n=1 mol Άρα στα 1000 g διαλύτη έχω 1 mol. Άρα molality = 1 m Στα 1142,1 g διαλύματος έχω 142,1 g Na 2 SO 4 Στα 100 ; = 142,1*100/1142,1 άρα 12,44 Άρα 12,44 % β/β. 3. Να υπολογίσετε την % βάρος κατ' όγκο,w/v, και την Molarity του διαλύματος που έχει σχηματιστεί, όπως φαίνεται παρακάτω: Στα 1000 ml διαλύματος έχω 142,1 g. Άρα στα 100 ml θα έχω 14,21 g. Άρα w/v = 14,21% Επίσης Mr Na 2 SO 4 = 2*23+32+4*16 = 142 Άρα τα 142,1 g είναι n=m/mr άρα n = 142,1/142 άρα n=1 mol Άρα στα 1000 ml διαλύματος έχω 1 mol. Άρα Molarity = 1 M Όργανα και χημικές ουσίες 1. Αναλυτικός ζυγός. 2. Υάλινο χωνί. 3. Μία ογκομετρική φιάλη των 100 ml και μία του 1 L. 4. Υδροβολέας με απιοντισμένο νερό. 5. Ύαλος ωρολογίου. 6. CuSO 4 5H 2 0 περίπου 5 g. Συντάκτης: Τζαμτζής Αθανάσιος Σελίδα 4
Πειραματική διαδικασία 1 ο Πείραμα: Παρασκευή διαλύματος CuSO 4 0,1 M Ζυγίζουμε ύαλο ωρολογίου και στη συνέχεια προσθέτουμε 2,50 g CuSO 4 5H 2 O. To Mr του CuSO 4 5H 2 O είναι 250, άρα τα 2,5 g είναι 2,5/250 mol. Δηλ. ζυγίσαμε 0,01 mol CuSO 4 5H 2 O. Την ποσότητα αυτή, μεταφέρουμε σε ογκομετρική των 100 ml και τη διαλύουμε προσθέτοντας ποσότητα απιοντισμένου νερού (πωματίζουμε τη φιάλη και ανακινούμε). Μετά την διάλυση συνεχίζουμε την προσθήκη H 2 O, μέχρις ότου ο όγκος του διαλύματος να γίνει 100 ml, δηλ. μέχρι τη χαραγή (πρέπει η εφαπτομένη της κορυφής του υγρού μηνίσκου να περνά από τη χαραγή). Ο CuSO 4 5H 2 O όταν διαλυθεί στο νερό της ογκομετρικής φιάλης διίσταται σύμφωνα με τη χημική εξίσωση: CuSO 4 5H 2 O CuSO 4 + 5H 2 O Άρα τα 0,01 mol CuSO 4 5H 2 O θα δώσουν τελικά τα 0,01 mol CuSO 4 που θα είναι στα 100 ml διαλύματος. Άρα στα 1000 ml θα έχουμε 0,1 mol. Άρα η συγκέντρωση θα είναι CuSO 4 0,1 Μ. Με ανάλογο τρόπο να παρασκευαστεί διάλυμα 0,05 M CuSΟ 4. Ζυγίστε 1,25 g CuSO 4 5H 2 O. (Διότι n=cv άρα n=0,05*0,1 άρα n=0,005 άρα m=n*m r άρα m=0,005*250 άρα m=1,25 g) Μετρήσεις Διάλυμα CuSO 4 0,1 Μ CuSO 4 0,05 Μ Μάζα υάλου ωρολογίου (g) 8,8 8,8 Μάζα υάλου ωρολογίου και CuSO 4 5H 2 O (g) 11,3 10,05 Μάζα CuSO 4 5H 2 O (g) 2,5 1,25 mol CuSO 4 (στο διάλυμα) 0,01 0,005 Μάζα ογκομετρικής φιάλης των 100 ml (g) 53,5 53,5 Μάζα διαλύματος και ογκομετρικής φιάλης των 100 ml (g) 155,1 154,3 Μάζα διαλύματος (g) 101,6 100,8 Όγκος διαλύματος (ml) 100 100 Θερμοκρασία o C 25 25 Υπολογισμοί (Mr CuSO 4 = 63,5+32+4*16=159,5) Διάλυμα CuSO 4 0,1 Μ CuSO 4 0,05 Μ Πυκνότητα διαλύματος (g/ml) Μοριακή κατά βάρος συγκέντρωση (molality) (m) % w/w ρ= mm VV =101,6 100 =1,016 ρ=mm VV =100,8 100 =1,008 0,01 1000 101,6 0,01 159,5 101,6 1,595 100,005 =0,09 0,005 1000 = 5 = 5 100,8 0,005 159,5 100,8 0,7995 100,0005 =0,09 =1,569 % w/w 101,6 =0,79 % w/w 100,8 % w/v =1,595 % w/v 100 =1,59 % w/v 100 Συντάκτης: Τζαμτζής Αθανάσιος Σελίδα 5
2 ο Πείραμα: Αραίωση διαλύματος Παίρνουμε τα 100 ml του διαλύματος CuSO 4 0,1 Μ, που έχουμε παρασκευάσει και τα μεταφέρουμε προσεκτικά σε ογκομετρική φιάλη του 1 L. Στη συνέχεια προστίθεται απιονισμένο νερό με τη βοήθεια του υδροβολέα, μέχρι το διάλυμα να φθάσει τη χαραγή. M' αυτό τον τρόπο δεκαπλασιάζεται ο όγκος του διαλύματος και συνεπώς, με βάση τη σχέση M 1 V 1 =M 2 V 2, η μοριακή κατ' όγκο συγκέντρωση του διαλύματος υποδεκαπλασιάζεται. Με αντίστοιχο τρόπο να παρασκευαστεί διάλυμα 0,005 Μ. Μετρήσεις Διάλυμα CuSO 4 0,1 Μ CuSO 4 0,05 Μ Όγκος πυκνού διαλύματος (ml) 100 100 Μάζα ογκομετρικής φιάλης των 1000 ml (g) 183 183 Μάζα αραιού διαλύματος και ογκομετρικής φιάλης των 1000 ml (g) 1184 1183 Μάζα αραιού διαλύματος (g) 1001 1000 mol CuSO 4 (στο διάλυμα) 0,01 0,005 Θερμοκρασία αραιού διαλύματος o C 25 25 Όγκος αραιού διαλύματος (ml) 1000 1000 Όγκος νερού που προσθέσαμε (ml) 900 900 Θερμοκρασία πυκνού διαλύματος o C 25 25 Υπολογισμοί (Mr CuSO 4 = 63,5+32+4*16=159,5) Διάλυμα Αραίωση CuSO 4 0,1 Μ Αραίωση CuSO 4 0,05 Μ Πυκνότητα διαλύματος (g/ml) Μοριακή κατά βάρος συγκέντρωση (molality) (m) % w/w ρ= mm VV =1000,1 1000 =1,000 ρ=mm VV =1000 1000 =1,000 0,01 1000 1001 0,01 159,5 1001 1,595 999,405 =0,01 0,005 1000 = 5 1000 0,005 159,5 1000 0,797 999,203 =0,005 =0,1593 % w/w 1001 =0,0797 % w/w 1000 % w/v =0,1595 % w/v 1000 =0,0797 % w/v 1000 Συντάκτης: Τζαμτζής Αθανάσιος Σελίδα 6
Ερωτήσεις 1. Ποια από τα παρακάτω μεγέθη επηρεάζονται από τη θερμοκρασία και γιατί; α) molality. β) πυκνότητα διαλύματος. γ) διαλυτότητα. ε) pη διαλύματος. Όλα γιατί η θερμοκρασία επηρεάζει τον όγκο του διαλύματος. 2. Πόσα ml 0,1M NaOH θα πρέπει να αραιωθούν σε 1,00 L με νερό, ώστε να σχηματιστεί διάλυμα 5,0*10-3 M ΝαΟΗ; Έστω χ ml τότε: χ*0,1/1000 = 1*5,0*10-3 άρα χ*0,1=5 άρα χ=50 ml Συντάκτης: Τζαμτζής Αθανάσιος Σελίδα 7