Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2009

Σχετικά έγγραφα
Supporting Information

Novel and Selective Palladium-Catalyzed Annulation of 2-Alkynylphenols to Form 2-Substituted 3-Halobenzo[b]furans. Supporting Information

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

Electronic Supplementary Information

Supporting Information

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

phase: synthesis of biaryls, terphenyls and polyaryls

Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%.

Supporting Information

Facile construction of the functionalized 4H-chromene via tandem. benzylation and cyclization. Jinmin Fan and Zhiyong Wang*

# School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan , China.

and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Supporting Information

Direct Palladium-Catalyzed Arylations of Aryl Bromides. with 2/9-Substituted Pyrimido[5,4-b]indolizines

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran

Eur. J. Inorg. Chem WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007 ISSN SUPPORTING INFORMATION

Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process

Supporting Information. for. A novel application of 2-silylated 1,3-dithiolanes for the. synthesis of aryl/hetaryl-substituted ethenes and

Supporting information

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

Tributylphosphine-Catalyzed Cycloaddition of Aziridines with Carbon Disulfide and Isothiocyanate

Room Temperature Highly Diastereoselective Zn-Mediated. Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled

Divergent synthesis of various iminocyclitols from D-ribose

Rh(III)-Catalyzed C-H Amidation with N-hydroxycarbamates: A. new Entry to N-Carbamate Protected Arylamines

Eco-friendly synthesis of diverse and valuable 2-pyridones by catalyst- and solvent-free thermal multicomponent domino reaction

D-Glucosamine-derived copper catalyst for Ullmann-type C- N coupling reaction: theoretical and experimental study

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

Protease-catalysed Direct Asymmetric Mannich Reaction in Organic Solvent

Synthesis of novel 1,2,3-triazolyl derivatives of pregnane, androstane and D-homoandrostane. Tandem Click reaction/cu-catalyzed D-homo rearrangement

Supporting Information

SUPPORTING INFORMATION

Supporting Information. Consecutive hydrazino-ugi-azide reactions: synthesis of acylhydrazines bearing 1,5- disubstituted tetrazoles

Supporting Information

ESI for. A simple and efficient protocol for the palladium-catalyzed. ligand-free Suzuki reaction at room temperature in aqueous DMF.

Ligand-free Cu(II)-mediated aerobic oxidations of aldehyde. hydrazones leading to N,N -diacylhydrazines and 1,3,4-oxadiazoles

Supporting Information

Supplementary Data. Engineering, Nanjing University, Nanjing , P. R. China;

A New Type of Bis(sulfonamide)-Diamine Ligand for a Cu(OTf) 2 -Catalyzed Asymmetric Friedel-Crafts Alkylation Reaction of Indoles with Nitroalkenes

Supporting Information

Rhodium-Catalyzed Oxidative Decarbonylative Heck-type Coupling of Aromatic Aldehydes with Terminal Alkenes

A straightforward metal-free synthesis of 2-substituted thiazolines in air

Supporting Information

Supporting Information. for. Angew. Chem. Int. Ed. Z Wiley-VCH 2003

Supporting Information

Supplementary Information for. Singlet excited state of BODIPY promoted aerobic crossdehydrogenative-coupling

Chiral Brønsted Acid Catalyzed Enantioselective Intermolecular Allylic Aminations. Minyang Zhuang and Haifeng Du*

Iodine-catalyzed synthesis of sulfur-bridged enaminones and chromones via double C(sp 2 )-H thiolation

Hiyama Cross-Coupling of Chloro-, Fluoroand Methoxy- pyridyl trimethylsilanes : Room-temperature Novel Access to Functional Bi(het)aryl

Efficient Synthesis of Ureas by Direct Palladium-Catalyzed. Oxidative Carbonylation of Amines

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Supplementary information

Supplement: Intramolecular N to N acyl migration in conformationally mobile 1 -acyl-1- systems promoted by debenzylation conditions (HCOONH 4

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

using metal-organic framework Cu-MOF-74 as an efficient heterogeneous catalyst Hanh T. H. Nguyen, Oanh T. K. Nguyen, Thanh Truong *, Nam T. S.

Supporting Information

The Free Internet Journal for Organic Chemistry

SUPPORTING INFORMATION. Polystyrene-immobilized DABCO as a highly efficient and recyclable organocatalyst for Knoevenagel condensation

Supporting Information

Available online at

Supporting Information

Supporting Information for

Supporting information

Supporting Information for

Supporting Information

Supporting Information

Vilsmeier Haack reagent-promoted formyloxylation of α-chloro-narylacetamides

H-NMR (300 MHz, DMSO-d6): δ 5.23 (s, 1H), (m, 2H), (m, 2H), 3.04 (s, 9H).

Supporting Information

SUPPLEMENTARY DATA. Waste-to-useful: Biowaste-derived heterogeneous catalyst for a green and sustainable Henry reaction

Supporting information

Supporting Information

Cu-Catalyzed/Mediated Synthesis of N-Fluoroalkylanilines from Arylboronic Acids: Fluorine Effect on the Reactivity of Fluoroalkylamines

Peptidomimetics as Protein Arginine Deiminase 4 (PAD4) Inhibitors

Supporting Information. Synthesis and in vitro pharmacological evaluation of N-[(1-benzyl-1,2,3-triazol-4-

Supplementary Information for

Supporting Information for

Fischer Indole Synthesis in Low Melting Mixtures

Supporting Information for Fe-Catalyzed Reductive Coupling of Unactivated Alkenes with. β-nitroalkenes. Contents. 1. General Information S2

Supporting Information

Zuxiao Zhang, Xiaojun Tang and William R. Dolbier, Jr.* Department of Chemistry, University of Florida, Gainesville, FL

Heterobimetallic Pd-Sn Catalysis: Michael Addition. Reaction with C-, N-, O-, S- Nucleophiles and In-situ. Diagnostics

Supporting Information

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Electronic Supplementary Information (ESI)

Available online at shd.org.rs/jscs/

Pd Catalyzed Carbonylation for the Construction of Tertiary and

Supporting Information

Ionic liquid effect over the Biginelli reaction under homogeneous and heterogeneous catalysis

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007

Studies on Synthesis and Biological Activities of 2( 1 H21,2,42 Triazol212yl)2 2Arylthioethyl Substituted Phenyl Ketones

Phosphorus Oxychloride as an Efficient Coupling Reagent for the Synthesis of Ester, Amide and Peptide under Mild Conditions

Supporting Information. for. Highly Selective Hydroiodation of Alkynes Using. Iodine-Hydrophosphine Binary System

Supporting Information

Fluorinative Ring-opening of Cyclopropanes by Hypervalent Iodine Reagents. An Efficient Method for 1,3- Oxyfluorination and 1,3-Difluorination

Transcript:

Supporting Information Copyright Wiley-VC Verlag Gmb & Co. KGaA, 69451 Weinheim, 2009

Supporting Information for Graphite-Supported Gold anoparticles as Efficient Catalyst for Aerobic xidation of Benzylic Amines to Imines and -Substituted 1,2,3,4-Tetrahydroisoquinolines to Amides: Synthetic Applications and Mechanistic Study Man-o So, Yungen Liu, Chi-Ming o, and Chi-Ming Che* Department of Chemistry and pen Laboratory of Chemical Biology of the Institute of Molecular Technology for Drug Discovery and Synthesis, The University of ong Kong, Pokfulam Road, ong Kong SAR, China. Part I. List of Figures P. 2 Part II. List of Tables P. 3 Part III. Characterization of Compounds P. 4 1

Part I. List of Figures Figure S1. Plot of reaction rate (Ro) against oxygen partial pressure (P 2 ) on the aerobic oxidation of dibenzylamine (1a) catalyzed by AuPs/C. Reaction conditions: dibenzylamine (0.4 mmol), AuPs/C (Au: 5 mol %), toluene (5 ml), 2 (0.1-1.0 atm) bubbling, 110 o C. 2

Part II. List of Tables Table S1. Listing of log k rel and σ values for the AuPs/C catalyzed aerobic oxidation of para-substituted -phenylbenzylamines. Y AuPs/C (Au: 5 mol %), 2 bubbling toluene, 1.5 h, 110 o C Y Entry Y log k rel σ 1 Me 0.622-0.268 2 Me 0.384-0.170 3 0 0 4 Cl -0.274 +0.226 5 CF 3-1.103 +0.540 3

Part III. Characterization of Compounds: Compound Reference C. A. ewman, J. C. Antilla, P. Chen, A. V. Predeus, L. Fielding, W. D. Wulff, J. Am. Chem. Soc. 2007, 129, 7216-7217. 2a Z. Zhu, J.. Espenson, J. Am. Chem. Soc. 1996, 118, 9901-9907. 2b J. L. G. Ruano, J. Alemán, I. Alonso, A. Parra, V. Marcos, J. Aguirre, Chem. Eur. J. 2007, 13, 6179-6195. 2c Z. Zhu, J.. Espenson, J. Am. Chem. Soc. 1996, 118, 9901-9907. 2e R. Torregrosa, I. M. Pastor, M. Yus, Tetrahedron 2005, 61, 11148-11155. Cl 2f M.. Ibrahim,. K. AL-Deeb, E-J. Chem. 2006, 3, 257-261. Br 2g 2h V. Koleva, T. Dudev, I. Wawer, J. Mol. Struct. 1997, 412, 153-159. M.. Ibrahim,. K. AL-Deeb, E-J. Chem. 2006, 3, 257-261 2i 2j Z. Zhu, J.. Espenson, J. Am. Chem. Soc. 1996, 118, 9901-9907. 4

M. J. Tomaszewski, J. Warkentin,.. Werstiuk, Aust. J. Chem. 1995, 48, 291-321. 2k K. C. icolaou, C. J.. Mathison, T. Montagnon, J. Am. Chem. Soc. 2004, 126, 5192-5201. 2l. aeimi, F. Salimi, K. Rabiei, J. Mol. Catal. A-Chem. 2006, 260, 100-104. Me 5 6 14a 2m 2p Me K. C. icolaou, C. J.. Mathison, T. Montagnon, J. Am. Chem. Soc. 2004, 126, 5192-5201. K. C. icolaou, C. J.. Mathison, T. Montagnon, J. Am. Chem. Soc. 2004, 126, 5192-5201. W. uang, J. Li, L. u, Synthetic Commun. 2007, 37, 2137-2143. J. Almena, F. Foubelo, M. Yus, Tetrahedron 1996, 52, 8545-8564. 14b C. Perrio-uard, C. Aubert, M.-C. Lasne, J. Chem. Soc., Perkin Trans. 1 2000, 311-316.. J. Kumpaty, S. Bhattacharyya, Synthesis 2005, 2205-2209. 14c 14d 14f C. Perrio-uard, C. Aubert, M.-C. Lasne, J. Chem. Soc., Perkin Trans. 1 2000, 311-316. C. Perrio-uard, C. Aubert, M.-C. Lasne, J. Chem. Soc., Perkin Trans. 1 2000, 311-316. A. P. Venkov, S. M. Statkova-Abeghe, Tetrahedron 1996, 52, 1451-1460. 15a 5

15c 15f K. rito, A. oribata, T. akamura,. Ushito,. agasaki, M. Yuguchi, S. Yamashita, M. Tokuda, J. Am. Chem. Soc. 2004, 126, 14342-14343. K. rito, A. oribata, T. akamura,. Ushito,. agasaki, M. Yuguchi, S. Yamashita, M. Tokuda, J. Am. Chem. Soc. 2004, 126, 14342-14343. A. P. Venkov, S. M. Statkova-Abeghe, Tetrahedron 1996, 52, 1451-1460. 16a A. P. Venkov, S. M. Statkova-Abeghe, Tetrahedron 1996, 52, 1451-1460. 16b A. P. Venkov, S. M. Statkova-Abeghe, Tetrahedron 1996, 52, 1451-1460. 16f Z. Li, C.-J. Li, J. Am. Chem. Soc. 2005, 127, 6968-6969. Ph 17 Z. Li, C.-J. Li, Eur. J. rg. Chem. 2005, 3173-3176. Ph Et Et 19 Z. Li, C.-J. Li, J. Am. Chem. Soc. 2005, 127, 6968-6969. Ph 22 Z. Li, C.-J. Li, J. Am. Chem. Soc. 2005, 127, 6968-6969. Ph 24 6

27a Me. Sharghi, M.. Beyzavi, M. M. Doroodmand, Eur. J. rg. Chem. 2008, 4126-4138. 27d 27e 27f Cl Br. Sharghi, M.. Beyzavi, M. M. Doroodmand, Eur. J. rg. Chem. 2008, 4126-4138.. Sharghi, M.. Beyzavi, M. M. Doroodmand, Eur. J. rg. Chem. 2008, 4126-4138. L.-. Du, Y.-G. Wang, Synthesis 2007, 675-678. 2. Sharghi, M.. Beyzavi, M. M. Doroodmand, Eur. J. rg. Chem. 2008, 4126-4138. 27g Cl. Sharghi, M.. Beyzavi, M. M. Doroodmand, Eur. J. rg. Chem. 2008, 4126-4138. Cl 27h D. Mizuno, K. Yamaguchi, Catal. Today 2008, 132, 18-26. 28 7

2d -(4-tert-butylbenzylidene)benzenamine (2d) Yellow oil. 1 MR (300 Mz, CDCl 3, 25 o C, TMS): δ = 8.42 (s, 1), 7.84 (d, 3 J(,) = 8.4 z, 2), 7.49 (d, 3 J(,) = 8.4 z, 2), 7.38 (m, 2), 7.21 (m, 3), 1.35 ppm (s, 9); 13 C MR (75 Mz, CDCl 3, 25 o C): δ = 160.7, 130.1, 129.5, 129.1, 126.4, 126.2, 126.1, 121.3, 35.4, 31.6 ppm; MS (EI) m/z 237 (M + ); RMS (EI) m/z for C 17 19 1 (M + ), calcd 237.1517, found 237.1515. 2 2n -(4-nitrobenzylidene)cyclohexanamine (2n) Yellow Solid. 1 MR (300 Mz, CDCl 3, 25 o C, TMS): δ = 8.39 (s, 1), 8.25 (d, 3 J(,) = 8.7 z, 2), 7.89 (d, 3 J(,) = 8.7 z, 2), 3.34 3.23 (m, 1), 1.90 1.53 (m, 7), 1.46 1.20 ppm (m, 3); 13 C MR (75 Mz, CDCl 3, 25 o C): δ = 156.6, 149.2, 142.6, 129.1, 124.2, 70.5, 34.6, 25.97, 25.96 ppm; MS (EI) m/z 232 (M + ); RMS (EI) m/z for C 13 16 2 2 (M + ), calcd 232.1212, found 232.1214. 2o -(4-methoxybenzylidene)cyclohexanamine (2o) Colourless liquid. 1 MR (400 Mz, CDCl 3, 25 o C, TMS): δ = 8.24 (s, 1), 7.66 (d, 3 J(,) = 8.7 z, 2), 6.91 (d, 3 J(,) = 8.7 z, 2), 3.83 (s, 3), 3.18 3.10 (m, 1), 1.85 1.79 (m, 2), 1.75 1.64 (m, 3), 1.62 1.55 (m, 2), 1.39 1.19 ppm (m, 3); 13 C MR (100 Mz, CDCl 3, 25 o C): δ = 157.9, 129.6, 113.9, 69.9, 55.3, 34.5, 25.7, 24.9 ppm; MS (EI) m/z 217 (M + ); RMS (EI) m/z for C 14 19 1 1 (M + ), calcd 217.1467, found 217.1458. 8

2q -(4-tert-butylbenzylidene)(4-tert-butylphenyl)methanamine (2q) White solid. 1 MR (400 Mz, CDCl 3, 25 o C, TMS): δ = 8.36 (s, 1), 7.71 (d, 3 J(,) = 8.4 z, 2), 7.43 (d, 3 J(,) = 8.4 z, 2), 7.36 (d, 3 J(,) = 8.4 z, 2), 7.26 (d, 3 J(,) = 8.4 z, 2), 4.78 (s, 2), 1.33 (s, 9), 1.31 ppm (s, 9); 13 C MR (100 Mz, CDCl 3, 25 o C): δ = 161.7, 154.1, 149.8, 136.4, 133.6, 128.1, 127.7, 125.5, 125.4, 64.8, 34.9, 34.5, 31.4, 31.2 ppm; MS (EI) m/z 307 (M + ); RMS (EI) m/z for C 22 29 1 (M + ), calcd 307.2300, found 307.2294. Me 8a 6-methoxyquinoline (8a) Yellow oil. 1 MR (400 Mz, CDCl 3, 25 o C, TMS): δ = 8.64 (dd, J(,) = 4.2, 1.6 z, 1), 7.89 (d, 3 J(,) = 8.7 z, 2), 7.25 (dd, J(,) = 9.2, 2.8 z, 1), 7.22 7.18 (m, 1), 6.91 (d, 3 J(,) = 2.8 z, 1), 3.78 ppm (s, 3); 13 C MR (100 Mz, CDCl 3, 25 o C): δ = 157.7, 147.9, 144.4, 134.7, 130.8, 129.3, 122.2, 121.3, 105.1, 55.5 ppm; MS (EI) m/z 159 (M + ); RMS (EI) m/z for C 10 9 1 1 (M + ), calcd 159.0684, found 159.0682. 8b Quinoline (8b) Yellow oil. 1 MR (400 Mz, CDCl 3, 25 o C, TMS): δ = 8.92 (dd, J(,) = 4.2, 1.7 z, 1), 8.17 8.11 (m, 2), 7.82 (m, 1), 7.74 7.69 (m, 1), 7.57 7.53 (m, 1), 7.40 ppm (dd, J(,) = 8.3, 4.2 z, 1); 13 C MR (100 Mz, CDCl 3, 25 o C): δ = 150.4, 148.2, 136.1, 129.5, 129.4, 128.3, 127.8, 126.6, 121.1 ppm; MS (EI) m/z 129 (M + ); RMS (EI) m/z for C 9 7 1 (M + ), calcd 129.0578, found 129.0575. 9

8c Indole (8c) White solid. 1 MR (400 Mz, CDCl 3, 25 o C, TMS): δ = 7.79 (brs, 1), 7.63 (d, 3 J(,) = 7.8 z, 1), 7.26 (d, 3 J(,) = 8.1 z, 1), 7.20 7.14 (m, 1), 7.13 7.08 (m, 1), 7.04 7.02 (m, 1), 6.52 6.50 ppm (m, 1); 13 C MR (100 Mz, CDCl 3, 25 o C): δ = 135.8, 127.9, 124.4, 122.1, 120.8, 119.9, 111.2, 102.6 ppm; MS (EI) m/z 117 (M + ); RMS (EI) m/z for C 8 7 1 (M + ), calcd 117.0578, found 117.0581. 10 & 11 10. Yellow oil. 1 MR (500 Mz, CDCl 3, 25 o C, TMS): δ = 7.53 7.51 (m, 1), 7.21 7.17 (m, 2), 7.12 7.08 (m, 3), 7.07 7.03 (m, 1), 6.99 (d, 3 J(,) = 7.5 z, 1), 5.29 (s, 1), 4.52 (d, 3 J(,) = 9.6 z, 1), 4.04 (d, 3 J(,) = 9.6 z, 1), 3.88 3.77 (m, 2), 3.66 3.59 (m, 1), 3.52 3.45 (m, 1), 3.33 3.28 (m, 1), 3.23 3.07 (m, 3), 2.84 (dt, J(,) = 15.8, 2.9 z, 1), 2.57 (dt, J(,) = 16.7, 3.6 z, 1), 0.86 ppm (t, 3 J(,) = 7.1 z, 3); 13 C MR (125 Mz, CDCl 3, 25 o C): δ = 173.0, 136.3, 135.7, 135.4, 132.1, 128.42, 128.37, 127.2, 127.0, 126.7, 126.6, 125.1, 82.9, 66.6, 62.4, 60.5, 46.9, 44.4, 29.4, 22.7, 13.7 ppm; MS (EI) m/z 348 (M + ); RMS (EI) m/z for C 22 24 2 2 (M + ), calcd 348.1838, found 348.1812. 11. Yellow oil. 1 MR (500 Mz, CDCl 3, 25 o C, TMS): δ = 7.38 7.36 (m, 1), 7.29 7.22 (m, 2), 7.20 7.06 (m, 5), 5.09 (s, 1), 4.50 (d, 3 J(,) = 8.9 z, 1), 4.40 4.32 (m, 2), 3.66 (d, 3 J(,) = 9.0 z, 1), 3.25 3.20 (m, 1), 3.09 3.03 (m, 1), 2.95 2.83 (m, 3), 2.82 2.65 (m, 3), 1.37 ppm (t, 3 J(,) = 7.2 z, 3); 13 C MR (125 Mz, CDCl 3, 25 o C): δ = 174.2, 137.3, 134.8, 134.7, 132.4, 128.7, 128.4, 127.4, 126.8, 126.15, 126.07, 125.95, 79.4, 71.0, 64.9, 61.2, 49.9, 43.2, 29.5, 29.1, 14.3 ppm; MS (EI) m/z 348 (M + ); RMS (EI) m/z for C 22 24 2 2 (M + ), calcd 348.1838, found 348.1812. 10

13a 4,4-dimethyl-3,4,6,7-tetrahydro-1-pyrido[2,1-a]isoquinolin-2(11b)-one (13a) Yellow oil. 1 MR (400 Mz, CDCl 3, 25 o C, TMS): δ = 7.18 7.11 (m, 3), 7.09 6.99 (m, 1), 4.23 (dd, 3 J(,) = 11.8, 3.4 z, 1), 3.27 3.21 (m, 1), 3.10 2.97 (m, 1), 2.87 2.79 (m, 2), 2.70 2.63 (m, 1), 2.61 2.47 (m, 2), 2.25 (dd, 3 J(,) = 13.5, 2.2 z, 1), 1.37 (s, 3), 1.10 ppm (s, 3); 13 C MR (125 Mz, CDCl 3, 25 o C): δ = 209.1, 137.9, 134.6, 128.8, 126.3, 126.1, 125.7, 57.7, 56.4, 53.9, 47.5, 41.2, 30.6, 30.1, 19.7 ppm; MS (EI) m/z 229 (M + ); RMS (EI) m/z for C 15 19 1 1 (M + ), calcd 229.1467, found 229.1458. 13b 1-(1,2,3,4-tetrahydroisoquinolin-1-yl)hexan-2-one (13b) Yellow oil. 1 MR (500 Mz, CDCl 3, 25 o C, TMS): δ = 7.27 7.12 (m, 2), 7.11 7.08 (m, 1), 7.06 7.03 (m, 1), 4.51 (dd, 3 J(,) = 8.5, 3.9 z, 1), 3.20 3.15 (m, 1), 3.03 2.97 (m, 1), 2.93 2.84 (m, 3), 2.77 2.71 (m, 1), 2.51 2.40 (m, 2), 1.62 1.55 (m, 2), 1.37 1.28 (m, 2), 0.91 ppm (t, 3 J(,) = 7.3 z, 3); 13 C MR (125 Mz, CDCl 3, 25 o C): δ = 210.8, 137.9, 135.5, 129.5, 126.2, 125.9, 125.6, 52.0, 49.5, 43.4, 41.1, 29.8, 25.8, 22.3, 13.9 ppm; MS (EI) m/z 231 (M + ); RMS (EI) m/z for C 15 21 1 1 (M + ), calcd 231.1623, found 231.1616. 13c 1-phenyl-2-(1,2,3,4-tetrahydroisoquinolin-1-yl)ethanone (13c) Yellow oil. 1 MR (500 Mz, CDCl 3, 25 o C, TMS): δ = 7.99 (d, 3 J(,) = 7.3 z, 2), 7.57 (t, 3 J(,) = 7.4 z, 1), 7.47 (t, 3 J(,) = 7.7 z, 2), 7.18 7.12 (m, 4), 4.74 (dd, 3 J(,) = 9.2, 3.2 z, 1), 3.54 (dd, J(,) = 17.6, 9.2 z, 1), 3.46 (dd, J(,) = 17.6, 3.2 z, 1), 3.26 3.20 (m, 1), 3.09 3.03 (m, 1), 2.96 2.89 (m, 1), 2.83 2.56 ppm (m, 1); 13 C MR (125 Mz, CDCl 3, 25 o C): δ = 199.4, 137.8, 137.0, 135.5, 133.3, 129.5, 128.7, 128.1, 126.3, 126.0, 125.8, 52.1, 45.5, 40.9, 29.7 ppm; MS (EI) m/z 251 (M + ); RMS (EI) m/z for C 17 17 1 1 (M + ), calcd 251.1310, found 251.1300. 11

14e 2-octyl-1,2,3,4-tetrahydroisoquinoline (14e) Yellow oil. 1 MR (400 Mz, CDCl 3, 25 o C, TMS): δ = 7.13 7.07 (m, 3), 7.02 7.00 (m, 1), 3.62 (s, 2), 2.91 (t, 3 J(,) = 5.9 z, 2), 2.72 (t, 3 J(,) = 5.9 z, 2), 2.49 (t, 3 J(,) = 7.7 z, 2), 1.37 1.22 (m, 12), 0.88 ppm (t, 3 J(,) = 6.9 z, 3); 13 C MR (100 Mz, CDCl 3, 25 o C): δ = 128.6, 126.6, 126.0, 125.5, 58.6, 56.3, 51.0, 31.9, 29.6, 29.3, 29.1, 27.7, 27.2, 22.7, 14.1 ppm; MS (EI) m/z 245 (M + ); RMS (EI) m/z for C 17 27 1 (M + ), calcd 245.2143, found 245.2137. 15b 2-ethyl-3,4-dihydroisoquinolin-1(2)-one (15b) Yellow oil. 1 MR (400 Mz, CDCl 3, 25 o C, TMS): δ = 8.08 (dd, 3 J(,) = 7.7, 1.2 z, 1), 7.43 7.37 (m, 1), 7.36 7.31 (m, 1), 7.16 (d, 3 J(,) = 7.4 z, 1), 3.63 (q, 3 J(,) = 7.2 z, 2), 3.55 (t, 3 J(,) = 6.7 z, 2), 2.99 (t, 3 J(,) = 6.6 z, 2), 1.22 ppm (t, 3 J(,) = 7.2 z, 3); 13 C MR (125 Mz, CDCl 3, 25 o C): δ = 164.1, 138.0, 131.4, 128.2, 127.0, 126.8, 45.5, 42.2, 28.2, 12.8 ppm; MS (EI) m/z 175 (M + ); RMS (EI) m/z for C 11 13 1 1 (M + ), calcd 175.0997, found 175.0993. 12

15d 2-butyl-3,4-dihydroisoquinolin-1(2)-one (15d) Yellow oil. 1 MR (300 Mz, CDCl 3, 25 o C, TMS): δ = 8.04 (dd, 3 J(,) = 7.6, 1.2 z, 1), 7.39 7.32 (m, 1), 7.31 7.25 (m, 1), 7.12 (d, 3 J(,) = 7.3 z, 1), 3.56 3.47 (m, 4), 2.93 (t, 3 J(,) = 6.6 z, 2), 1.61 1.52 (m, 2), 1.41 1.28 (m, 2), 0.92 ppm (t, 3 J(,) = 7.3 z, 3); 13 C MR (75 Mz, CDCl 3, 25 o C): δ = 164.1, 137.8, 131.3, 129.6, 128.0, 126.8, 126.7, 47.1, 45.9, 29.7, 28.1, 20.1, 13.8 ppm; MS (EI) m/z 203 (M + ); RMS (EI) m/z for C 13 17 1 1 (M + ), calcd 203.1310, found 203.1302. 15e 2-octyl-3,4-dihydroisoquinolin-1(2)-one (15e) Yellow oil. 1 MR (400 Mz, CDCl 3, 25 o C, TMS): δ = 8.08 (dd, 3 J(,) = 7.6, 1.2 z, 1), 7.42 7.37 (m, 1), 7.35 7.30 (m, 1), 7.16 (d, 3 J(,) = 7.4 z, 1), 3.58 3.52 (m, 4), 2.97 (t, 3 J(,) = 6.6 z, 2), 1.65 1.58 (m, 2), 1.34 1.25 (m, 10), 0.87 ppm (t, 3 J(,) = 7.0 z, 3); 13 C MR (100 Mz, CDCl 3, 25 o C): δ = 164.2, 137.9, 131.4, 129.7, 128.2, 126.9, 126.7, 47.5, 46.0, 31.8, 29.4, 29.2, 28.2, 27.7, 27.0, 22.6, 14.1 ppm; MS (EI) m/z 259 (M + ); RMS (EI) m/z for C 17 25 1 1 (M + ), calcd 259.1936, found 259.1926. 16c 2-propylisoquinolin-1(2)-one (16c) Yellow oil. 1 MR (400 Mz, CDCl 3, 25 o C, TMS): δ = 8.43 (d, 3 J(,) = 8.1 z, 1), 7.64 7.59 (m, 1), 7.51 7.44 (m, 2), 7.06 (d, 3 J(,) = 7.3 z, 1), 6.48 (d, 3 J(,) = 7.3 z, 1), 3.96 (t, 3 J(,) = 7.3 z, 2), 1.86 1.76 (m, 2), 0.98 ppm (t, 3 J(,) = 7.5 z, 3); 13 C MR (100 Mz, CDCl 3, 25 o C): δ = 162.1, 137.0, 132.0, 131.8, 127.8, 126.7, 125.8, 105.9, 50.9, 22.5, 11.2 ppm; MS (EI) m/z 187 (M + ); RMS (EI) m/z for C 12 13 1 1 (M + ), calcd 187.0997, found 187.0995. 13

16d 2-butylisoquinolin-1(2)-one (16d) Yellow oil. 1 MR (400 Mz, CDCl 3, 25 o C, TMS): δ = 8.44 (d, 3 J(,) = 8.1 z, 1), 7.62 (t, 3 J(,) = 7.5 z, 1), 7.52 7.45 (m, 2), 7.06 (d, 3 J(,) = 7.3 z, 1), 6.49 (d, 3 J(,) = 7.3 z, 1), 4.01 (t, 3 J(,) = 7.4 z, 2), 1.81 1.73 (m, 2), 1.46 1.36 (m, 2), 0.96 ppm (t, 3 J(,) = 7.4 z, 3); 13 C MR (100 Mz, CDCl 3, 25 o C): δ = 162.2, 137.1, 132.1, 131.8, 127.9, 126.8, 125.9, 106.0, 49.3, 31.5, 20.1, 13.9 ppm; MS (EI) m/z 201 (M + ); RMS (EI) m/z for C 13 15 1 1 (M + ), calcd 201.1154, found 201.1144. 16e 2-octylisoquinolin-1(2)-one (16e) Yellow oil. 1 MR (400 Mz, CDCl 3, 25 o C, TMS): δ = 8.44 (d, 3 J(,) = 8.1 z, 1), 7.62 (t, 3 J(,) = 7.5 z, 1), 7.52 7.45 (m, 2), 7.06 (d, 3 J(,) = 7.3 z, 1), 6.49 (d, 3 J(,) = 7.3 z, 1), 3.99 (t, 3 J(,) = 7.4 z, 2), 1.80 1.73 (m, 2), 1.40 1.21 (m, 10), 0.87 ppm (t, 3 J(,) = 6.8 z, 3); 13 C MR (100 Mz, CDCl 3, 25 o C): δ = 162.3, 137.1, 132.1, 131.8, 127.9, 126.8, 125.9, 106.0, 49.6, 31.9, 29.43, 29.38, 29.3, 26.9, 22.7, 14.2 ppm; MS (EI) m/z 257 (M + ); RMS (EI) m/z for C 17 23 1 1 (M + ), calcd 257.1780, found 257.1777. Ph CF 3 21 2-phenyl-1-(2-(4-(trifluoromethyl)phenyl)ethynyl)-1,2,3,4-tetrahydroisoquinoline (21) Yellow oil. 1 MR (400 Mz, CDCl 3, 25 o C, TMS): δ = 7.45 (d, 3 J(,) = 7.9 z, 2), 7.38 7.29 (m, 5), 7.26 7.17 (m, 3), 7.11 (d, 3 J(,) = 7.5 z, 2), 6.92 6.80 (m, 1), 5.65 (s, 1), 3.78 3.71 (m, 1), 3.68 3.59 (m, 1), 3.18 3.09 (m, 1), 3.00 2.94 ppm (m, 1); 13 C MR (100 Mz, CDCl 3, 25 o C): δ = 149.5, 134.9, 134.5, 132.1, 129.3, 129.1, 127.51, 127.47, 126.5, 125.15, 125.11, 125.08, 125.04, 120.0, 116.8, 91.4, 83.6, 52.5, 43.5, 29.0 ppm; MS (EI) m/z 377 (M + ); RMS (EI) m/z for C 24 18 F 3 1 (M + ), calcd 377.1391, found 377.1368. 14

27b Me Me 2-(3,4-dimethoxyphenyl)-1-benzimidazole (27b) White solid. 1 MR (400 Mz, CD 3 D, 25 o C, TMS): δ = 7.65 (d, 3 J(,) = 2.0 z, 1), 7.59 (dd, J(,) = 8.38, 1.0 z, 1), 7.51 7.48 (m, 2), 7.18 7.13 (m, 2), 7.01 (d, 3 J(,) = 8.4 z, 1), 3.88 (s, 3), 3.82 ppm (s, 3); 13 C MR (100 Mz, CD 3 D, 25 o C): δ = 153.5, 152.4, 150.8, 123.7, 120.9, 112.8, 111.2, 56.49, 56.45 ppm; MS (EI) m/z 254 (M + ); RMS (EI) m/z for C 15 14 2 2 (M + ), calcd 254.1055, found 254.1051. 27c 2-mesityl-1-benzimidazole (27c) White solid. 1 MR (400 Mz, CD 3 D, 25 o C, TMS): δ = 7.51 (brs, 2), 7.21 7.16 (m, 2), 6.92 (s, 2), 2.26 (s, 3), 2.03 ppm (s, 6); 13 C MR (100 Mz, CD 3 D, 25 o C): δ = 153.5, 140.7, 138.9, 129.4, 129.2, 123.5, 21.3, 19.9 ppm; MS (EI) m/z 236 (M + ); RMS (EI) m/z for C 16 16 2 (M + ), calcd 236.1313, found 236.1311. 15