Ψηφιακή Επεξεργασία Εικόνας

Σχετικά έγγραφα
ECE 468: Digital Image Processing. Lecture 8

derivation of the Laplacian from rectangular to spherical coordinates

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Section 9.2 Polar Equations and Graphs

Areas and Lengths in Polar Coordinates

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Μηχανική Μάθηση Hypothesis Testing

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Reminders: linear functions

Math221: HW# 1 solutions

Section 8.3 Trigonometric Equations

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

Section 7.6 Double and Half Angle Formulas

D Alembert s Solution to the Wave Equation

Τίτλος Μαθήματος: Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές. Ενότητα: Μαθηματικές εκφράσεις στον κειμενογράφο

Example Sheet 3 Solutions

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Ηλεκτρονικοί Υπολογιστές IV

EE512: Error Control Coding

Second Order Partial Differential Equations

PARTIAL NOTES for 6.1 Trigonometric Identities

Areas and Lengths in Polar Coordinates

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Lecture 26: Circular domains

Ψηφιακή Επεξεργασία Εικόνας

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Homework 3 Solutions

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ

C.S. 430 Assignment 6, Sample Solutions

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Spherical Coordinates

Matrices and Determinants

Ηλεκτρονικοί Υπολογιστές IV

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ

Parametrized Surfaces

[1] P Q. Fig. 3.1

4.6 Autoregressive Moving Average Model ARMA(1,1)

Solutions to Exercise Sheet 5

Homework 8 Model Solution Section

2 Composition. Invertible Mappings

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Μικροβιολογία & Υγιεινή Τροφίμων

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 8η: Producer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

The Simply Typed Lambda Calculus

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Section 8.2 Graphs of Polar Equations

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

the total number of electrons passing through the lamp.

Inverse trigonometric functions & General Solution of Trigonometric Equations

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

CRASH COURSE IN PRECALCULUS

Ψηφιακή Οικονομία. Διάλεξη 11η: Markets and Strategic Interaction in Networks Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Numerical Analysis FMN011

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

1 String with massive end-points

Strain gauge and rosettes

Business English. Ενότητα # 9: Financial Planning. Ευαγγελία Κουτσογιάννη Τμήμα Διοίκησης Επιχειρήσεων

Srednicki Chapter 55

Approximation of distance between locations on earth given by latitude and longitude

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ

Solution Series 9. i=1 x i and i=1 x i.

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Ηλεκτρονικοί Υπολογιστές IV

Space-Time Symmetries

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Answer sheet: Third Midterm for Math 2339

Other Test Constructions: Likelihood Ratio & Bayes Tests

Derivation of Optical-Bloch Equations

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Every set of first-order formulas is equivalent to an independent set

European Human Rights Law

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 13η: Multi-Object Auctions Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Εισαγωγή στην Διατροφή

If we restrict the domain of y = sin x to [ π 2, π 2

Συστήματα Διαχείρισης Βάσεων Δεδομένων

Fractional Colorings and Zykov Products of graphs

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

6.3 Forecasting ARMA processes

Γενικά Μαθηματικά Ι. Ενότητα 15: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Τμήμα Φυσικής

Problem Set 3: Solutions

Ιστορία νεότερων Μαθηματικών

Ηλεκτρονικοί Υπολογιστές I

Second Order RLC Filters

CORDIC Background (2A)

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

Transcript:

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Αποκατάσταση και ανακατασκευή εικόνας Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς.

Digital Image Processing Image Restoration and Reconstruction (Image Reconstruction from Projections) Christophoros h Nikou cnikou@cs.uoi.gr University of Ioannina - Department of Computer Science 2 Contents In this lecture we will look at image reconstruction from projections The reconstruction problem Principles of Computed Tomography (CT) The Radon transform The Fourier-slice theorem filtered back-projections 1

3 The Image Reconstruction Problem Consider a single object on a uniform background (suppose that this is a cross section of 3D region of a human body). Background represents soft, uniform tissue and the object is also uniform but with higher absorption characteristics. 4 The Image Reconstruction Problem (cont...) A beam of X-rays is emitted and part of it is absorbed by the object. The energy of absorption is detected t d by a set of detectors. The collected information is the absorption signal. 2

5 The Image Reconstruction Problem (cont...) A simple way to recover the object is to back-project the 1D signal across the direction the beam came. This simply means to duplicate the signal across the 1D beam. 6 The Image Reconstruction Problem (cont...) We have no means of determining the number of objects from a single projection. We now rotate the position of the source-detector pair and obtain another 1D signal. We repeat the procedure and add the signals from the previous back-projections. We can now tell that the object of interest is located at the central square. 3

7 The Image Reconstruction Problem (cont...) By taking more projections: the form of the object becomes clearer as brighter regions will dominate the result back-projections with few interactions with the object will fade into the background. 8 The Image Reconstruction Problem (cont...) The image is blurred. Important problem! We only consider projections from 0 to 180 degrees as projections differing 180 degrees are mirror images of each other. 4

9 The Image Reconstruction Problem (cont...) 10 Principles of Computerized Tomography The goal of CT is to obtain a 3D representation of the internal structure of an object by X-raying it from many different directions. Imagine the traditional chest X-ray obtained by different directions. The image is the 2D equivalent of a line projections. Back-projecting the image would result in a 3D volume of the chest cavity. 5

11 Principles of Computerized Tomography (cont...) CT gets the same information by generating slices through the body. A 3D representation is then obtained by stacking the slices. More economical due to fewer detectors. Computational burden and dosage is reduced. Theory developed in 1917 by J. Radon. Application developed in 1964 by A. M. Cormack and G. N. Hounsfield independently. They shared the Nobel prize in Medicine in 1979. 12 Principles of Computerized Tomography (cont...) 6

13 The Radon Transform A straight line in Cartesian coordinates may be described by its slope-intercept p form: y = ax+ b or by its normal representation: xcosθ + ysinθ = ρ 14 The Radon Transform (cont...) The projection of a parallel-ray beam may be modelled d by a set of such lines. An arbitrary point (ρ j,θ k ) in the projection signal is given by the ray-sum along the line xcosθ k +ysinθ k =ρ j. 7

15 The Radon Transform (cont...) The ray-sum is a line integral: + + g ( ρ, θ ) = f( x, y) δ( xcos θ + ysin θ ρ ) dxdy j k k k j 16 The Radon Transform (cont...) For all values of ρ and θ we obtain the Radon transform: + + g( ρθ, ) = f( x, y) δ( x cosθ + y sin θ ρ) dxdy 8

17 The Radon Transform (cont...) The representation of the Radon transform g(ρ,θ) as an image with ρ and θ as coordinates is called a sinogram. It is very difficult to interpret a sinogram. 18 The Radon Transform (cont...) Why is this representation called a sinogram? R φ (X ) 150 100 50 X 0 50 100 150 0 20 40 60 80 100 120 140 160 φ(degrees) Image of a single point The Radon transform 9

19 The Radon Transform (cont...) The objective of CT is to obtain a 3D representation of a volume from its projections. The approach is to back-project each projection and sum all the back-projections to generate a slice. Stacking all the slices produces a 3D volume. We will now describe the back-projection operation mathematically. 20 The Radon Transform (cont...) For a fixed rotation angle θ k, and a fixed distance ρ j, back-projecting the value of the projection g(ρ j,θ k ) is equivalent to copying the value g(ρ j,θ k ) to the image pixels belonging to the line xcosθ k +ysinθ k =ρ j. 10

21 The Radon Transform (cont...) Repeating the process for all values of ρ j, having a fixed angle θ k results in the following expression for the image values: fθ ( x, y) = g( ρ, θ ) = g( xcosθ + ysin θ, θ ) k k k k k This equation holds for every angle θ: fθ ( x, y) = g( ρ, θ) = g( xcosθ + ysin θ, θ) 22 The Radon Transform (cont...) The final image is formed by integrating over all the back-projected images: π f ( xy, ) = fθ ( xyd, ) θ 0 Back-projection provides blurred images. We will reformulate the process to eliminate blurring. 11

23 The Fourier-Slice Theorem The Fourier-slice theorem or the central slice theorem relates the 1D Fourier transform of a projection with the 2D Fourier transform of the region of the image from which the projection was obtained. It is the basis of image reconstruction methods. 24 The Fourier-Slice Theorem (cont...) Let the 1D F.T. of a projection with respect to ρ (at a given angle) be: + j 2πωρ G(, ) g(, ) e d ω θ = ρ θ ρ Substituting the projection g(ρ,θ) by the ray-sum: + + + j 2 πωρ G (, θ ) = f ( xy, ) δ ( xcosθ ysin θ ) dxdye d d + ωθ δ θ θ ρ ρ = + + + + j2πωρ f ( xy, ) δ( xcosθ ysin θ ρ) e dρ dxdy + + = f ( xye, ) j2 πω ( xcosθ + ysin θ ) dxdy 12

25 The Fourier-Slice Theorem (cont...) j2 πω ( xcosθ ysin θ ) G( ωθ, ) = + + + f( x, y) e dxdy Let now u=ωcosθ and v=ωsinθ : = + + j2 π ( ux+ vy) G( ωθ, ) f( x, y) e dxdy u= ω cos θ, v= ωsinθ which is the 2D F.T. of the image f(x,y) evaluated at the indicated frequencies u,v: [ ] u= cos, v= sin G( ω, θ ) = F( u, v) = F( ω cos θ, ω sin θ ) ω θ ω θ 26 The Fourier-Slice Theorem (cont...) The resulting equation G( ω, θ) = F( ωcos θ, ωsin θ) is known as the Fourier-slice theorem. It states that the 1D F.T. of a projection (at a given angle θ) is a slice of the 2D F.T. of the image. 13

27 The Fourier-Slice Theorem (cont...) We could obtain f(x,y) by evaluating the F.T. of every yprojection and inverting them. However, this procedure needs irregular interpolation which introduces inaccuracies. 28 Filtered Back-Projections The 2D inverse Fourier transform of F(u,v) is j2 ( ux vy) f ( x, y) = + + π + F( u, v) e du dv Letting u=ωcosθ and v=ωsinθ then the differential and du dv = ω dω dθ 2π + 2 ( cos sin ) (, ) ( cos, sin ) j πω f xy F e x θ + y θ = d d 0 0 ω θω θ ω ω θ 14

29 Using the Fourier-slice theorem: 2π + j2 2 ( cos sin ) f ( xy, ) G(, ) e πω x θ + = ω θ y θ d d 0 0 ω ω θ With some manipulation (left as an exercise, see the textbook): π + 2 ( cos sin ) j πω x θ + y θ f( x, y) = G(, ) e d d 0 ω ω θ ω θ The term xcosθ+ysinθ=ρ and is independent of ω: f ( xy, ) = ω G( ωθ, ) e j dω dθ x y π + 2πωρ 0 ρ= cosθ+ sinθ 30 f xy ω Gωθe dω dθ π + 2 (, ) (, ) j πωρ = 0 ρ = xcosθ+ y sinθ For a given angle θ, the inner expression is the 1-D Fourier transform of the projection multiplied by a ramp filter ω. This is equivalent in filtering the projection with a high-pass filter with Fourier Transform ω before back-projection. 15

31 f xy ω Gωθe dω dθ π + 2 (, ) (, ) j πωρ = 0 ρ= xcosθ+ ysinθ Problem: the filter H(ω)= ω is not integrable in the inverse Fourier transform as it extends to infinity in both directions. It should be truncated in the frequency domain. The simplest approach is to multiply it by a box filter in the frequency domain. Ringing will be noticeable. Windows with smoother transitions are used. 32 An M-point discrete window function used frequently is 2πω c + ( c 1)cos 0 ω M 1 h( ω) = M 1 0 otherwise When c=0.54, it is called the Hamming window. When c=0.5, 5 it is called the Hann window. By these means ringing decreases. 16

33 Ramp filter multiplied by a box window Hamming window Ramp filter multiplied by a Hamming window 34 The complete back-projection is obtained as follows: 1. Compute the 1-D Fourier transform of each projection. 2. Multiply each Fourier transform by the filter function ω (multiplied by a suitable window, e.g. Hamming). 3. Obtain the inverse 1-D Fourier transform of each resulting filtered transform. 4. Back-project and integrate all the 1-D inverse transforms from step 3. 17

35 Because of the filter function the reconstruction approach is called filtered back-projection (FBP). Sampling issues must be taken into account to prevent aliasing. The number of rays per angle which determines the number of samples for each projection. The number of rotation angles which determines the number of reconstructed images. 36 Box windowed FBP Hamming windowed FBP Ringing is more pronounced in the Ramp FBP image 18

37 Box windowed FBP Hamming windowed FBP 38 Box windowed FBP 19

39 Hamming windowed FBP 40 Box windowed FBP Hamming windowed FBP There are no sharp transitions in the Shepp-Logan phantom and the two filters provide similar results. 20

41 Back-projection Ramp FBP Hamming FBP Notice the difference between the simple back-projection and the filtered back-projection. 21

Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Ιωαννίνων» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους.

Σημειώματα Σημείωμα Ιστορικού Εκδόσεων Έργου Το παρόν έργο αποτελεί την έκδοση 1.0. Έχουν προηγηθεί οι κάτωθι εκδόσεις: Έκδοση 1.0 διαθέσιμη εδώ. http://ecourse.uoi.gr/course/view.php?id=1126.

Σημείωμα Αναφοράς Copyright Πανεπιστήμιο Ιωαννίνων, Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος. «Ψηφιακή Επεξεργασία Εικόνας. Αποκατάσταση και ανακατασκευή εικόνας». Έκδοση: 1.0. Ιωάννινα 2014. Διαθέσιμο από τη δικτυακή διεύθυνση: http://ecourse.uoi.gr/course/view.php?id=1126. Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά Δημιουργού - Παρόμοια Διανομή, Διεθνής Έκδοση 4.0 [1] ή μεταγενέστερη. [1] https://creativecommons.org/licenses/by-sa/4.0/