10-COMMUTATOR AND 13-COMMUTATOR A.S. DZHUMADIL DAEV arxiv:math-ph/0603054v1 22 Mar 2006 Abstract. Skew-symmetric sum of N! compositions of N vector fields in all possible order is called N -commutator. We construct 10 -commutator and 13 -commutator on V ect(3) and 10 - commutator on a space of divergenceless vector fields V ect 0 (3). We show that 2 -commutator, 10 -commutator and 13 -commutator form final list of N -commutators on V ect(3) and under these polylinear operations V ect(3) has a structure of sh-lie algebra. We establish that the list of 2 -and 10 -commutators on V ect 0 (3) is also final. Constructions are based on calculations of powers of odd derivations. Let (A, ) be an algebra with vector space A and multiplication. Let C < t 1,..., t k > be a space of non-commutative non-associative polynomials. Any f C < t 1,..., t k > induces a k -ary map f : A A A, }{{} k that corresponds to any a 1,..., a k A element f(a 1,..., a k ) calculated in terms of multiplication. If this map is trivial, i.e., f(a 1,..., a k ) = 0, for any a 1,..., a k A then f = 0 is said an identity on (A, ). If f is polylinear, then f induces a k -ary multiplication on A. For example, if s 2 = t 1 t 2 t 2 t 1 C < t 1, t 2 >, then s 2 (a, b) = a b b a is an ordinary commutator. Let s k = sign σ t σ(1) ( (t σ(k 1) t σ(k) ) ) σ Sym k be standard skew-symmetric polynomial. Let Diff n be a space of differential operators with n variables. For simplicity assume that variables are from C[x 1,..., x n ]. Let Diff n [d] be a subspace of differential operators of order d : n Diff n u [d] = α α = α i = d. 1 i=1
2 A.S. DZHUMADIL DAEV We can interpret differential operators of first order as vector fields and identify Diff n [1] with a space of vector fields V ect(n). Consider s k as a k -ary operation on a space of differential operators Diff n. So, s k (X 1,..., X k ) is a skew-symmetric sum of compositions of k operators X σ(1) X σ(k) by all k! permutations. In general, composition of k operators of orders d 1,..., d k is a differential operator of order d 1 + + d k. Therefore, X 1 Diff [d 1] n,..., X k Diff [d k] n s k (X 1,..., X k ) Diff [d 1+ +d k ] n. In fact differential order of s k (X 1,..., X k ) is less than d 1 +...+d k. For example, differential order of s k (X 1,..., X k ) is no more than n, if all X 1,..., X k are operators of order 1 (vector fields) on n -dimensional manifold for any k [2]. Moreover, for some k might happen that s k will be well-defined operation on Diff n [1] : X 1,..., X k Diff [1] n s k (X 1,..., X k ) Diff [1] n. In [1] is established that s n 2 +2n 2 is well-defined on V ect(n) = Diff n [1] and in [2] is proved that s n 2 +2n 1 = 0 is identity on V ect(n). For example, V ect(2) has 6 -commutator and skew-symmetric identity of degree 7. Space of Hamiltonian vector fields on 2 -dimensional plane V ect 0 (2) has 5 -commutator and skew-symmetric identity of degree 6. Question 1. (n > 1). Is it true that N = n 2 + 2n 1 is index of nilpotency for operator D, i.e., D n2 +2n 1 = 0, but D n2 +2n 2 0? We think that coefficient at i η i (i,j) (n,n) i η j i n i 2 η i n of D n2 +2n 2 is non-zero. Computer calculations on Mathematica shows that this coefficient is equal 1, 2, 3600 for n = 2, 3, 4. Question 2. (n > 3). Is it true that s n 2 +2n 2 is a unique N - commutator well-defined on V ect(n), for N > 2? In other words, is it true that D N Der L n, n > 3, N = 2 or n 2 + 2n 2? In our paper we prove that for n = 3 answer to this question is negative. According to our results V ect(3) has 2-commutator, 10-commutator and 13-commutator and this list of N -commutators is complete. Notice that 13-commutator is connected with a skewsymmetric identity of degree 14, but 10-commutator has no such connection with skew-symmetric identity of degree 11: s 11 even is not well-defined operation on V ect(3). Let us give some quantitive parameters about D 10 and D 13. D 10 has three escort invariants. They have types (2, 7, 1), (3, 5, 2) and (3, 6, 0, 1). It has 489 terms of type (2, 7, 1), 3093 terms of type (3, 5, 2), 480 terms of type (3, 6, 0, 1) and all together 4062 terms.
10 -COMMUTATOR AND 13 -COMMUTATOR 3 D 13 has one escort invariant. It has type (3, 8, 2) and has 261 terms. In other words, s 10 (X 1,..., X 10 ) can be presented as a sum of 4062 10 10 -determinants of three types. Similarly, s 13 (X 1,..., X 13 ) can be presented as a sum of 261 matrices of order 13 13. To see that D 10 is well-defined on V ect 0 (3), we change all terms of D 10 like α η 3 3, α 3 > 0, to α ε 3+ε 1 η 1 1 α ε 3+ε 2 η 2 2. We obtain element with 864 terms, among them 82 has type (2, 7, 1), 76 has type (3, 6, 0, 1) and 706 has type (3, 5, 2). It is easy to see that D k is a sum of compositions of the form D 1 (D 2 (D k 1 D) ), where ( 1,..., k 1 ) is a sequence of two symbols or such that there are no two consequative and whole number of is no more than I. In particular we see that the differential order of D k is no more than min(k + 1/2, I ). This estimate is not strong. One can see that, for n = 2, 3 differential orders of D k are given as follows n = 2 k 1 2 3 4 5 6 7 deg D k 1 1 2 2 2 1 n = 3 k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 deg D k 1 1 2 2 3 3 3 3 3 1 2 2 1 If D Der 0 L n, i.e., Div D = 0, then the growth of differential orders of D k given as n = 2 k 1 2 3 4 5 6 7 deg D k 1 1 2 2 1 n = 3 k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 deg D k 1 1 2 2 3 3 3 3 3 1 2 We pay attention to a drammatical jumping of deg D k in (n, k) = (3, 10). Here we see that D 10 is a derivation or that the 10-commutator is defined correctly on V ect(3). One can check that Div D 10 = 0 and hence 10 -commutator is a well defined commutator on V ect 0 (3) also. Theorem 0.1. Let D = 3 i=1 η i i Der L 3 be odd derivation. Then D 10 Der L 3 C[x 1, x 2, x 3 ], D 13 Der L 3 C[x 1, x 2, x 3 ],
4 A.S. DZHUMADIL DAEV D 14 = 0. If D N Der L 3 C[x 1, x 2, x 3 ], then N = 2, 10, 13. Theorem 0.2. Let D = 3 i=1 η i i Der L 3 be odd derivation and Div D = 3 i=1 i η i = 0. Then D 10 Der L 3 C[x 1, x 2, x 3 ], Div D 10 = 0, D 11 = 0. If D N Der L 3 C[x 1, x 2, x 3 ], and Div D = 0, then N = 2 or 10. 1. sl n -module structure on U = C[x 1,..., x n ] and Diff n (U) Endow U by a structure of module over Lie algebra gl n =< x i j : i, j = 1,..., n, i j >. Define an action of gl n on generators of U by n x i j ( α (u s )) = δ i,s α (u j ) + α j α ǫ j+ǫ i (u s ) i=1 and prolong this action to U as an even derivation: a(xy ) = a(x)y + Xa(Y ), for any X, Y U. Prolong the gl n -module structure by natural way to Diff n (U). Notice that gl n acts on Diff n (U) as a derivation a(fg) = a(f)g + Fa(G), and as gl n -module subspaces < u i j : i, j = 1,..., n > Diff n (U) and < i (u j ) : i, j = 1,..., n > are isomorphic to adjoint module. Denote by π 1,..., π n 1 fundamental weights of sl n and by R(γ) the irreducible sl n -module with highest weight γ. Let D [s] =< α : α Z n +, α = s > and U s =< α u i : α Z n +, α = s, i = 1,..., n >. Since i are even and u i are odd elements, take place the following isomorphisms of sl n -modules In particular, D [s] = R(sπ1 ), U s = R(sπ1 ) = R(π n 1 ). D :=< i : i = 1,..., n > = R(π n 1 ), D [2] :=< i j : i, j = 1,..., n > = R(2π 1 ), U 0 =< u i : i = 1,..., n > = R(π 1 ),
10 -COMMUTATOR AND 13 -COMMUTATOR 5 U 1 =< i (u j ) : i, j = 1,..., n > = R(π 1 ) R(π n 1 )R(π 1 +π n 1 ) R(0), U 2 =< i j (u s ) : i, j, s = 1,..., n > = R(2π 1 ) R(π n 1 ) = R(2π 1 +π n 1 ) R(π 1 ). We use the following well-known isomorphisms without special mentioning: n 1 R(π 1 ) = R(π n 1 ), n R(π 1 ) = R(0), n2 1 R(π 1 + π n 1 ) = R(π 1 + π n 1 ), n2 R(π 1 + π n 1 ) = R(0). Lemma 1.1. a(d k ) = 0 for any a gl n. Proof. If k = 1 then action of a gl n corresponds to adjoint derivation and D corresponds to Euler operator. Therefore, n a(d) = [a, u i i ] = 0. i=1 If our statement is true for k 1 then a(d k ) = kd k 1 [a, D] = 0. 2. Escort invariants of N -commutators Let L = W n be Witt algebra and U = C[x 1,..., x n ] be natural L -module. Then L = i 1 L i is a graded Lie algebra, L s =< x α j : α = s + 1 >, U = i 0 U i be associative commutative graded algebra with 1, U s =< x α : α = s >, L acts on U as a derivation algebra, i.e., X(uv) = X(u)v + u(xv), for any X L, u, v U and this action is graded: L i U j U i+j, i 1, j 0.
6 A.S. DZHUMADIL DAEV In particular, L 0 is a Lie algebra isomorphic to gl n and all homogeneous components L s and U s have structures of gl n -modules. Then as sl n -modules, L 1 =< i : i = 1,..., n > = R(π n 1 ), L 0 =< x i j : i, j = 1,..., n > = R(π 1 ) R(π n 1 ) R(0), L 1 =< x i x j s : i, j, s = 1,..., n > = R(2π 1 + π n 1 ) R(π 1 ). Let M be graded L -module. It is called (L, U)-module if it has additional structure of graded module over U such that X(um) = X(u)m + ux(m), for any X L, u U, m M. Call M (L, U) -module with a base N if N = M L 1 =< m M : X(m) = 0, X L 1 > and M is free U -module with base N. If M 1,..., M k and M are (L, U) - modules with bases and N is a base of M, then a space of polylinear maps C(M 1,..., M k ; M) =< ψ : M 1 M k M > is (L, U) -module with base and this base as a vector space is isomorphic to C(M 1,..., M k ; M). In particular, to any L 1 -invariant polylinear map ψ C(M 1,..., M k ; M) one can correspond some polylinear map esc(ψ) C(M 1,..., M k ; N) called escort of ψ, by esc(ψ)(m 1,..., m k ) = pr(ψ(m 1,..., m k )), where pr : M N, is a projection map to N, i.e., pr(x α m) = δ α,0 m. Inversly, for any φ C(M 1,..., M k ; N) one can correspond some L 1 -invariant polylinear map ψ = Eφ C(M 1,..., M k ; M) by Eφ(X 1,..., X k ) = E a1 (X 1 ) E ak (X k )φ(a 1,..., a k ), a 1 M 1,...,a k M k where a i run basic elements of M i of the form x α n i, n i run basic elements of a base of M i. If M 1 = = M k = L all are adjoint modules then α (v) E x α i (v j ) = δ i,j. α! Details of such constructions see [3]. Apply this theory for L -module of differential operators M = Diff n =< u α : u U, α Z n + >. Endow M = Diff n by grading: M s =< x α β : α = s >. Diff n has a structure of associative algebra, in particular, it is a Lie algebra under commutator. As a Lie algebra it has a subalgebra isomorphic to W n, and hence it has a structure of adjoint module over
10 -COMMUTATOR AND 13 -COMMUTATOR 7 W n. Make Diff n U -module under action u(v β ) = uv β. We see that M L 1 =< α : α Z n + > and M is free U -module with base M L 1. Therefore, Diff n is (L, U) -module. Define s k C k (L, M) by s k (X 1,..., X k ) = sign σ X σ(1) X σ(k). σ Sym k We see that s k is L 1 -invariant and graded: k i (s k (X 1,..., X k )) = s k (X 1,..., X s 1, [ i, X s ], X s+1,..., X k ), s=1 for any i L 1, X 1,..., X k L, and s k (L i1,..., L ik ) M i1 + +i k, Fix some ordering on the set of basic elements of W n. Let us take, for example, the following ordering: x α i < X β j, if i < j or α < β if i = j or α < β in lexicographic order if i = j and α = beta. As we mentioned above any L 1 -invariant cochain C k (W n, Diff n ) can be restored by its escort. In particular, s k can be restored by its escort. Any escort is defined as a polylinear map on its support. Call a subspace of k -chains a 1 a k k L generated by basic vectors a 1,..., a k such that s k (a 1,..., a k ) < α : α Z n + > as a support of s k. Then supp(s k ) has a structure of sl n -module as a sl n -submodule of k L. We know that sl n -module Diff L 1 n =< α : α Z n + > is isomorphic to a direct sum of sl n -modules R(pπ n 1 ): < α : α = p, α Z n + > = R(pπ n 1 ) >. Then supp(s k ) is also a direct sum of sl n -submodules supp p (s k ), where supp p (s k ) is a sl n -submodule of k L generated by suppport k -chains a 1 a k such that s k (a 1,..., a k ) < α : α Z n +, α = p >. So, we see that any standard skew-symmetric polynomial s k induces a serie of sl n -invariant maps supp p (s k ) R(pπ n 1 ). Call such maps escort invariants. So, the calculation problem of k - commutators is equivalent to the problem of finding escort invariants. Example. esc(s k ) = 0 if k n 2 +2n 1 and s n 2 +2n 2 has exactly one escort invariant R(π 1 ) R(π n 1 ) n 1 R(2π 1 +π n 1 ) R(π n 1 ).
8 A.S. DZHUMADIL DAEV 3. Differential polynomials super-agebra L n Let Z be set of integers, Z + a set of non-negative integers, Z n a set of n-typles α = (α 1,..., α n ), α i Z, i I, and Z n + = {α Z n α i 0, i I}. Let ε i Z n with i -th component 1 and other components are 0. Then α = n i=1 α i ε i, for any α Z n. Set n α = α i. Endow sets Z n + and Zn + {1,..., n} by linear ordering: α < β, if or i=1 α < β α = β, α 1 = β 1,..., α s 1 = β s 1, α s > β s, for some s = 1,, n. Set (α, i) < (β, j), if i < j or i = j, α < β. Let L n be an super-commutative associative algebra over a field K generated by odd elements e α,i, where α Z n +, i I. Then e α,i e β,j = e β,j e α,i, e α,i (e β,j e γ,s ) = (e α,i e β,j )e γ,s, for any α, β, γ Z n +, i, j, s I. Elements e α,ie β,j e γ,s with (α, i) < (β, j) < < (γ, s) form base of L n. We fix this base and call such elements base elements of L n. Call number of indexes i, j,, s of base element e as its length and denote l(e). Any base element of L n can be presented as e = e [ 1] e [0] e [1] e [r], where e [s] is a product of ordered generators of a form e α,i with α = s+1. Call e [s] s-component of e and its length l(e [s] ), denote it l s (e), call as s-length of e. Thus, l(e) = l i (e). i 1 Let i = i, i I, are partial derivations of U = K[x 1,..., x n ]. Prolong these maps to maps of L n by i e β,j = e α+εi,j. It is easy to see that i satisfies Leibniz rule i (e β,j e γ,s ) = ( i e β,j )e γ,s + e β,j ( i e γ,s ), for any β, γ Z n +. So, we have constructed commuting even derivations 1,..., n Der(L n U) and e α,i = α e 0,i, for any α Z n +, i I. Here 0 = (0,..., 0) Z n +.
10 -COMMUTATOR AND 13 -COMMUTATOR 9 Space L n has three kinds of gradings. The first one, Z n -grading is defined by e α,i = α ε i and for other base elements are prolonged by multiplicativity, e α,i e β,j e γ,s = α ε i + β ε j + + γ ε s. The second grading is induced by Z n -grading. It is Z -grading defined on base element e = e α,i e β,j e γ,s by e = l(e) + α + β + + γ. The third grading is defined by length. Let l(ξ) = s, if ξ is a nontrivial linear combination of homogeneous base elements of length s. Call wt(e) = α + + β l(e) weight of e. A parity on L n is defined by length. Let L [l] n span of base elements u with l(u) = l. Let L [l,w] n base elements u with l(e) = l, wt(e) = w. Example. L [1] n = e α,i α Z n, i = 1,..., n, L [n] n = e 0,1 e 0,n, L [1, 1] n = e 0,i. be linear be a linear span of Proposition 3.1. L n is associative, super-commutative graded algebra: (uv)w = u(vw), uv = ( 1) q(u)q(v) vu, L n = l 1,w n L [l,w] n, for any u, v, w L n. L [l,w] n L l 1,w 1 ] n L [l+l 1,w+w 1 ] n. Note that any base element u L n can be presented in a form u 1 u 0 u r where u s, s = 1, 0,..., r are base elemenents and u s are products of generators of weight s. We say that base element u L n has type (l 1, l 0,..., l r ), if u is a product of l s generators of weight s, for s = 1, 0,..., r.
10 A.S. DZHUMADIL DAEV Lemma 3.2. Any base element u L n satisfy the following conditions l i (u) = l(u), i 1 i 1 i l i (u) = wt(u), ( ) n + i l i (u) n, i 1. i + 1 Proof. First two relations are reformulations of grading property of L n (proposition 3.1). As far as last two relations, they follow from the fact ( ) n + i {α Z n + α = i + 1} =. i + 1 Example. Let u = η 1 1 2η 2 1 2 η 2. Then u is odd base element of type (1, 0, 2) and l(u) = 3, wt(u) = 1. Let Diff n be an algebra of differential operators on L n. It has a base consisting differential operators of a form u α, where α Z n + and u is a base element of L n. Endow Diff n by multiplication given by u α v β = γ ( ) α u γ v α+β γ. γ Here ( ) ( ) β n βi + γ i =. γ i=1 γ i Multiplication corresponds to composition of differential operators. Endow Diff n also by two more multiplications and. They are given by the following rules u α v β = γ 0 ( ) α u γ v α+β γ, γ u α v β = uv α+β. We see that X Y = X Y + X Y, for any X, Y Diff n. For a base element X = u α Diff n define length l(x), weight wt(x), parity q(x) and differential order deg(x) by l(x) = l(u), wt(x) = wt(u) + α, q(x) = l(u),
Let 10 -COMMUTATOR AND 13 -COMMUTATOR 11 Diff [d] n Diff [l,w] n deg(x) = α. = X deg(x) = d. = X l(x) = l, wt(x) = w, Diff n [l,w,d] = X l(x) = l, wt(x) = w, deg(x) = d. Denote a space of differential operators of first order Diff n [1] by W n. For a differential operator X = α Z n v α α Diff + n, define its differential order deg(x) as maximal α, such that v α 0. Proposition 3.3. Space of differential operators under different multiplications have the following properties. The algebra (Diff n, ) is associative super-algebra: X (Y Z) = (X Y ) Z, for any X, Y, Z Diff n. This agebra is graded, Diff n = l>0,w n Diff [l,w] n, Diff [l,w] n Diff [l 1,w 1 ] n Diff [l+l 1,w+w 1 ] n. The algebra (W n, ) is super-left-symmetric: (X, Y, Z) = ( 1) q(x)q(y ) (Y, X, Z), for any differential operators of first order X, Y, Z, where (X, Y, Z) = X (Y Z) (X Y ) Z is associator. Moreover, super-left-symmetric rule is true for any X, Y Diff n [1], Z Diff n. This algebra is graded, W n = l>0,w n W [l,w] n, W [l,w] n W [l 1,w 1 ] n W [l+l 1,w+w 1 ] n. The algebra (Diff n, ) is associative super-commutative: X Y = ( 1) q(x)q(y ) Y X, X (Y Z) = (X Y ) Z, for any X, Y, Z Diff n. This algebra is graded under length, weight and differential order, Diff n = l>0,w n,d 0 Diff [l,w,d] n, Diff [l,w,d] n Diff [l 1,w 1,d 1 ] n Diff [l+l 1,w+w 1,d+d 1 ] n. Any differential operator of first order under multiplication acts on (Diff n, ) as a derivation: X (Y Z) = (X Y ) Z + ( 1) q(x)q(y ) Y (X Z), for any X W n, Y, Z Diff n.
12 A.S. DZHUMADIL DAEV Proof. Notice that natural action of W n on L n coincides with left-symmetric product: X(η) = X η, for any X W n, η L n. Therefore, we have the following connection between composition and left-symmetric multiplications: (X Y )(η) (X Y )(η)) but (X Y )(η) = X Y (η), for any X, Y Diff n, η L n. Moreover,composition of differential operators of first order can be expressed in terms of left-symmetric multiplication, (X Y )(η) = X (Y η), for any X, Y W n, η L n. Thus, (X Y + X Y )(η) = X (Y η), and X (Y η) (X Y )(η) = (X Y )(η). Since X Y W n, this means that X (Y η) (X Y ) η = (X Y )(η). (1) for any X, Y W n, η L n. By these facts we see that ([X, Y ] Z)(η) = (X Y ( 1) q(x)q(y ) Y X)(Z(η)) = (X Y + X Y ( 1) q(x)q(y ) Y X ( 1) q(x)q(y ) Y X) (Z(η)) = (X Y ( 1) q(x)q(y ) Y X) (Z(η)). On the other hand Hence, ([X, Y ] Z)(η) = (X (Y Z) ( 1) q(x)q(y ) Y (X Z))(η) = X (Y Z)(η) ( 1) q(x)q(y ) Y (X Z)(η) = X (Y Z(η)) ( 1) q(x)q(y ) Y (X Z(η)). (X Y ( 1) q(x)q(y ) Y X) (Z(η)) = X (Y Z(η)) ( 1) q(x)q(y ) Y (X Z(η)). In other words, (X Y ( 1) q(x)q(y ) Y X) Z = X (Y Z) ( 1) q(x)q(y ) Y (X Z), for any X, Y W n, Z Diff n. Other statements of our proposition are evident. For a base element X = u α Diff n say that it has type (l 1, l 0, l 1,..., l r ; d) if u has type (l 1, l 0,..., l r ) and α = d.
10 -COMMUTATOR AND 13 -COMMUTATOR 13 Example. Let X = η 1 η 3 1 η 1 2 η 1 2 η 2 1 2 3 η 3 1 2. Then X is base element of Diff 3 of type (2, 3, 0, 1; 1), weight 2 and differential order 2. Lemma 3.4. Any base element X Diff n conditions: l i (X) = l(x), i 1 i 1 i l i (X) + deg(x) = wt(x), ( ) n + i l i (X) n, i 1. i + 1 satisfies the following Proof. Follows from proposition 3.3 and Lemma 3.2. Let Diff (l 1,l 0,...,l r;d) n be a subspace of Diff n generated by base elements of type (l 1, l 0,..., l r ; d). Let τ (l 1,l 0,...,l r;d) : Diff n Diff (l 1,l 0,...,l r;d) n, τ d : Diff n Diff n [d] be projection maps. Polynomial space U = K[x 1,..., x n ] has natural gradings: x α = α, x α = α. It has standard base {x α = n i=1 x α i i α Z n }. These gradings on L n and U induce gradings on L n U. In previous section we define parity q on L n U. Below we set η i = e 0,i. So, instead of e α,i we can write α η i. Then for η = α 1 η i1 α k ηik we have l(η) = k. We identitfy L n with L n 1 and consider L n as a subalgebra of L n U. 4. Differential operators of first order on L n W n = Diff n [1] has two algebraic structures. The first one, a structure of super-lie algebra, is well-known. Let be super-commutator. Then [D 1, D 2 ] = D 1 D 2 ( 1) q(d 1)q(D 2 ) D 2 D 1. [D 1, D 2 ] = ( 1) q(d 1)q(D 2 ) [D 2, D 1 ], [D 1, [D 2, D 3 ]] = [[D 1, D 2 ], D 3 ] + ( 1) q(d 1)q(D 2 ) [D 2, [D 1, D 3 ]].
14 A.S. DZHUMADIL DAEV Notice that q(ξ i ) = q(ξ), for any ξ L n. Recall that for any D W n, corresponding adjopint operator ad D : W n W n is a derivation of W n. Therefore, W n can be interpretered as a derivation super-lie algebra of L n. The second structure of algebra on W n can be done by left-symmetric multiplication. It is less known. Define a product by Then for ant D 1, D 2, D 3 W n, (ξ i ) (η j ) = ξ i (η) j. (D 1, D 2, D 3 ) = ( ) q(d 1)q(D 2 ) (D 2, D 1, D 3 ) (left-symmetric identity). Here (D 1, D 2, D 3 ) = D 1 (D 2 D 3 ) (D 1 D 2 ) D 3 is associator. Remark. Let Diff n (k) k. Well known that be subspace of Diff n of order no more than Diff (0) 0 = U Diff (1) n Diff (2) n is an increasing filtration on Diff n, Diff (k) n Diff (s) n Diff (k+s) n, k, s 0. So, Diff n (k) has a structure of algebra under composition operation, if k = 0, Diff n (1) has an algebraic structure under commutator. One cas ask about algebraic structures on Diff n (k) for k > 0. In other words, is it possible to find some N = N(n, k), such that X 1,..., X N Diff (k) n One can prove the following s N (X 1,..., X N ) Diff (k) n. Theorem 4.1. Let n > 1. Then s (n+1) 2 = 0 is identity on Diff n (1) and s n 2 +2n, s n 2 +2n 1 are well-defined operations on Diff n (1). Moreover, s n 2 +2n(X 1,..., X n 2 +2n) Diff n (0), for all X 1,..., X n 2 +2n Diff n (1).
10 -COMMUTATOR AND 13 -COMMUTATOR 15 5. Calculation of D n Let η 1,..., η n are odd elements and n D = η i i, F = D D = i=1 n i,j=1 η i i η j j.. Notice that D W n [1,0] F is even element of W n l 1 (F) = 1, l 0 (F) = 1, l s (F) = 0, s > 0. Therefore, D k Diff n [k,0]. Define left-symmetric power D k by D k = D D (k 1), if k > 1, D 1 = D. Similarly one defines bullet power D k and associative power D k. Since multiplications and are associative, in last cases D k and D k have usual properties of powers D k D s = D (k+s), D k D s = D (k+s), These facts are not true for left-symmetric powers. For example, but Lemma 5.1. D 2 = F. Proof. D (D D 2 ) = (D D) D 2, D D 2 D) (D D 2 ) D. D 2 = D D = n i,j=1 η i i η j j + Since η i η j = η j η i and i j = j i, we have n η i η j i j = 0. Thus, i,j=1 n i,j=1 n D 2 = η i i η j j = D D = F. i,j=1 η i η j i j.
16 A.S. DZHUMADIL DAEV Lemma 5.2. D (2n) = F n for any n = 1, 2, 3, Proof. We use induction on n. If n = 1, then nothing is to prove. Suppose that D (2(n 1)) = F (n 1) for some n > 1. Then by definition D (2n) = D (D D 2(n 1) ) Since D is odd, by left-symmetric property of (W n, ) (proposition 3.3) (D, D, G) = for any G W n. Thus, D (D G) = (D D) G. Therefore, D (2n) = (D D) D (2(n 1)). By inductive suggestion, D (2n) = F F (n 1) = F n. Lemma 5.3. F F k = kf (k 1) F 2 Proof. Since F W n is even derivation, any any left-symmetric multiplication operator acts on (Diff n, ) as a super-derivation (proposition 3.3) we have F (F F) = (F F) F + F (F F). By commutativity of bullet-multiplication this means that F F 2 = 2F F 2. Easy induction on k based on a such arguments shows that our lemma is true in general case. Lemma 5.4. D 4 = F 2 + F 2 Proof. By Lemma 5.1 and by associativity of, D 4 = D 2 D 2 = F F = F F + F F. Lemma 5.5. D 6 = F 3 + 3F F 2 + F 3. Proof. By Lemma 5.1 and Lemma 5.4, D 6 = D 2 D 4 = D 2 D 4 + D 2 D 4 = F (F 2 + F 2 ) + F (F 2 + F 2 ) F 3 + F F 2 + F F 2 + F 3.
Thus by Lemma 5.3, 10 -COMMUTATOR AND 13 -COMMUTATOR 17 D 6 = F 3 + 3F F 2 + F 3. Lemma 5.6. D 8 = F 4 + 3F 2 F 2 + 4F F 3 + 6F 2 F 2 + F 4. Proof. By Lemma 5.3 F F 3 = 3F 2 F 2. Therefore, by Lemma 5.1, Lemma 5.5 Lemma 5.7. D 8 = D 2 D 6 = D 2 D 6 + D 2 D 6 = F (F 3 + 3F F 2 + F 3 ) +F (F 3 + 3F F 2 + F 3 ) = F 4 + 3F 2 F 2 + 3F F 3 + 3F 2 F 2 +F F 3 + 3F 2 F 2 + F 4 = F 4 + 3F 2 F 2 + 4F F 3 + 6F 2 F 2 + F 4. D 10 = F 5 +5(F 2 F 3 + F (F F 3 )) +5(2F 3 F 2 + 3F F 2 F 2 ) +4F 2 F 3 + 6F 2 F 3 + F 5 Proof. By Lemma 5.6 and Lemma 5.3 D 10 = D 2 D 8 = D 2 D 8 + D 2 D 8 = F (F 4 + 3F 2 F 2 + 4F F 3 + 6F 2 F 2 + F 4 ) +F (F 4 + 3F 2 F 2 + 4F F 3 + 6F 2 F 2 + F 4 ) = F 5 +3F (F 2 F 2 )+4F (F F 3 )+6F (F 2 F 2 )+F (F 4 ) +F F 4 + 3F F 2 F 2 + 4F 2 F 3 + 6F 2 F 3 + F 5 ) = F 5 + 6F 2 F 3 + 4F 2 F 3 + 4F F 4 +6F 3 F 2 + 12F 2 F 2 F + 4F 2 F 3 +F F 4 + 3F F 2 F 2 + 4F 2 F 3 + 6F 2 F 3 + F 5 ) = F 5
18 A.S. DZHUMADIL DAEV By Lemma 5.3, +10F 2 F 3 + 5F F 4 +10F 3 F 2 + 15F F 2 F 2 +4F 2 F 3 + 6F 2 F 3 +F 5. F (F 3 F) = F 4 F + F 3 F 2. Thus 2F 2 F 3 + F F 4 = F 2 F 3 + F (F F 3 ). Our lemma is proved. Lemma 5.8. For any G Diff n, n F ( η r G) = 0. Proof. We have where If s i, then where Since η i η i = 0, this means that r=1 η i i (η j ) j (η 1 η n ) n = ξ s, s=1 ξ s = η i i η j η 1 η s 1 j (η s )η s+1 η n. ξ s = ±η i η i ξ i,s, ξ i,s = i η j j η s if s i. If s = i, then ξ s = ±η i i η j j η i We have where n i,j=1 ξ s = 0, r i,s η r. r i η r = i η j j η i ( r i η j j η i = θ 1 + θ 2 + θ 3, θ 1 = i<j i η j j η i, η r ). θ 2 = i i η i i η i,
10 -COMMUTATOR AND 13 -COMMUTATOR 19 θ 3 = i>j i η j j η i, Since elements i η j and j η i are odd, Thus, Let θ 1 + θ 3 = 0, θ 2 = 0. n n F ( η r G) = ( i η j j η i ) r=1 i,j=1 r η r G = 0. Diff [s] n =< u α u L n, α Γ n, α = s > be a space of differential operators of order s and be projection map. τ s : Diff n Diff [s] n Lemma 5.9. If n = 3, D = n i=1 u i i, and u i are odd, then τ 1 D = F 5, τ 2 D 10 = 5(F 2 F 3 + F (F F 3 )), τ 3 D 10 = 5(2F 3 F 2 + 3F F 2 F 2 ), τ s D 10 = 0, s > 3. Proof. Follows from Lemma 5.7 and from the fact that F s = 0, if s > n. Conclusion. To find D 10 we need to calculate F s, for s = 1, 2, 3 and F 2. 6. Second bullet-power of F The following calculations are not difficult. F 2 η 1 η 2 ; 2 1 = 2η 1 η 2 1 η 1 2 η 1, F 2 η 1 η 3 ; 2 1 = η 1 η 3 2 1 η 1 3 η 1 2 1, F 2 η 2 η 3 ; 2 1 = 2η 2 η 3 2 η 1 3 η 1 2 1,
20 A.S. DZHUMADIL DAEV 7. Second left-symmetric power of F It is not hard to obtain the following results. F 2 η 1 ; 1 = η 1 ( 2 1 η 1 2 η 1 1 η 2 2 1 η 1 3 η 1 1 η 3 + 2 η 1 1 η 2 2 η 2 2 η 1 3 η 2 1 η 3 + 3 η 1 1 η 2 2 η 3 + 3 η 1 1 η 3 3 η 3 ) 1, F 2 η 2 ; 1 = η 2 ( 1 η 1 2 η 1 2 η 2 1 η 1 3 η 1 2 η 3 2 η 1 3 η 1 1 η 3 2 η 1 3 η 2 2 η 3 + 3 η 1 2 η 2 2 η 3 + 3 η 1 2 η 3 3 η 3 ) 1, F 2 η 3 ; 1 = η 3 ( 1 η 1 2 η 1 3 η 2 1 η 1 3 η 1 3 η 3 2 η 1 2 η 2 3 η 2 + 2 η 1 3 η 1 1 η 2 2 η 1 3 η 2 3 η 3 + 3 η 1 3 η 2 2 η 3 ) 1, F 2 η 1 η 2 ; 1 = η 1 η 2 ( 1 η 1 1 2 η 1 1 η 2 2 2 η 1 1 η 3 2 3 η 1 + 2 η 1 2 1 η 1 + 2 η 2 1 2 η 1 + 2 η 3 1 3 η 1 ) 1, F 2 (η 1 η 3 ; 1 ) = η 1 η 3 ( 1 η 1 1 3 η 1 1 η 2 2 3 η 1 1 η 3 2 3 η 1 + 3 η 1 2 1 η 1 + 3 η 2 1 2 η 1 + 3 η 3 1 3 η 1 ) 1, F 2 η 2 η 3 ; 1 = η 2 η 3 ( 2 η 1 1 3 η 1 2 η 2 2 3 η 1 2 η 3 2 3η 1 + 3 η 1 1 2 η 1 + 3 η 2 2 2η 1 + 3 η 3 2 3 η 1 ) 1.
10 -COMMUTATOR AND 13 -COMMUTATOR 21 8. Third left-symmetric power of F In this section we give results of some calculations concerning F 3 = F (F F) F 3 η 1 ; 1 = η 1 (2 1 η 1 2 η 1 1 η 2 3 η 2 2 η 3 +2 1 η 1 2 η 1 2 η 2 3 η 2 1 η 3 6 1 η 1 2 η 1 3 η 1 1 η 2 1 η 3 2 1 η 1 2 η 1 3 η 2 1 η 3 3 η 3 2 1 η 1 3 η 1 1 η 2 2 η 2 2 η 3 2 1 η 1 3 η 1 1 η 2 2 η 3 3 η 3 +2 1 η 1 3 η 1 3 η 2 1 η 3 2 η 3 2 2 η 1 1 η 2 2 η 2 3 η 2 2 η 3 + 2 η 1 1 η 2 3 η 2 2 η 3 3 η 3 2 η 1 2 η 2 3 η 2 1 η 3 3 η 3 +2 2 η 1 3 η 1 1 η 2 1 η 3 3 η 3 2 2 η 1 3 η 1 1 η 2 2 η 2 1 η 3 + 3 η 1 1 η 2 2 η 2 2 η 3 3 η 3 3 η 1 2 η 2 3 η 2 1 η 3 2 η 3 2 3 η 1 3 η 2 1 η 3 2 η 3 3 η 3 ) 1 (all together 15 terms ) F 3 η 2 ; 1 = η 2 (2 1 η 1 2 η 1 2 η 2 3 η 2 2 η 3 2 1 η 1 2 η 1 3 η 1 1 η 2 2 η 3 2 1 η 1 2 η 1 3 η 1 2 η 2 1 η 3 1 η 1 2 η 1 3 η 2 2 η 3 3 η 3 1 η 1 3 η 1 2 η 2 2 η 3 3 η 3 2 2 η 1 3 η 1 1 η 2 2 η 2 2 η 3 + 2 η 1 3 η 1 2 η 2 1 η 3 3 η 3 + 2 η 1 3 η 1 3 η 2 1 η 3 2 η 3 ) 1. (all together 8 terms) F 3 η 3 ; 1 = η 3 ( 1 η 1 2 η 1 2 η 2 3 η 2 3 η 3 2 1 η 1 2 η 1 3 η 1 1 η 2 3 η 3 2 1 η 1 2 η 1 3 η 1 3 η 2 1 η 3 + 1 η 1 3 η 1 2 η 2 3 η 2 2 η 3 2 1 η 1 3 η 1 3 η 2 2 η 3 3 η 3 2 η 1 3 η 1 1 η 2 2 η 2 3 η 3 2 η 1 3 η 1 1 η 2 3 η 2 2 η 3 + 2 2 η 1 3 η 1 3 η 2 1 η 3 3 η 3 ) 1. (all together 8 terms) F 3 η 1 η 2 ; 1 = η 1 η 2 (3 1 η 1 1 η 2 2 η 2 2 2η 1 + 3 1 η 1 1 η 2 2 η 3 2 3 η 1 + 4 1 η 1 1 η 3 2 η 3 2 3η 1 1 η 1 1 η 3 3 η 3 2 3 η 1 2 1 η 1 2 η 1 1 η 2 1 2 η 1 + 1 η 1 2 η 1 1 η 2 2 2 η 2 5 1 η 1 2 η 1 1 η 3 1 3 η 1 + 1 η 1 2 η 1 1 η 3 2 3 η 2 2 1 η 1 2 η 1 2 η 2 1 2 η 2 + 1 η 1 2 η 1 2 η 2 2 1η 1 3 1 η 1 2 η 1 2 η 3 1 3 η 2 + 3 1 η 1 2 η 1 3 η 1 2 1η 3 + 1 η 1 2 η 1 3 η 2 1 2 η 3 4 1 η 1 2 η 2 1 η 3 2 3 η 1 2 1 η 1 2 η 2 2 η 3 1 3 η 1 2 1 η 1 2 η 3 3 η 3 1 3 η 1 + 1 η 1 3 η 1 1 η 2 2 2η 3 + 3 1 η 1 3 η 1 1 η 3 1 2 η 1 + 1 η 1 3 η 1 1 η 3 2 3 η 3 3 1 η 1 3 η 1 2 η 2 1 2 η 3 + 1 η 1 3 η 1 2 η 3 1 2 η 2 3 1 η 1 3 η 1 2 η 3 1 3 η 3 + 1 η 1 3 η 1 2 η 3 2 1η 1 + 1 η 1 3 η 1 3 η 3 1 2 η 3
22 A.S. DZHUMADIL DAEV + 1 η 1 3 η 2 1 η 3 2 2 η 1 + 2 1 η 1 3 η 2 2 η 3 1 2 η 1 3 1 η 2 2 η 2 2 η 3 2 3 η 1 3 1 η 2 2 η 3 3 η 3 2 3 η 1 + 3 1 η 2 3 η 2 2 η 3 2 2η 1 4 1 η 3 2 η 3 3 η 3 2 3η 1 +2 2 η 1 1 η 2 1 η 3 2 3 η 1 2 2 η 1 1 η 2 2 η 2 1 2 η 1 + 2 η 1 1 η 2 2 η 2 2 2 η 2 +2 2 η 1 1 η 2 2 η 3 2 3 η 2 2 η 1 1 η 2 3 η 2 2 2η 3 + 2 2 η 1 1 η 3 2 η 3 2 3η 2 +3 2 η 1 1 η 3 3 η 3 1 3 η 1 + 2 η 1 2 η 2 1 η 3 1 3 η 1 2 η 1 2 η 2 1 η 3 2 3 η 2 2 η 1 2 η 2 2 η 3 1 3 η 2 + 2 η 1 2 η 2 3 η 2 1 2 η 3 + 2 2 η 1 3 η 1 1 η 2 1 2 η 3 +2 2 η 1 3 η 1 1 η 3 1 3 η 3 4 2 η 1 3 η 1 1 η 3 2 1 η 1 2 η 1 3 η 1 2 η 3 2 1 η 2 2 η 1 3 η 1 3 η 3 2 1η 3 2 2 η 1 3 η 2 1 η 3 1 2 η 1 + 2 η 1 3 η 2 1 η 3 2 3 η 3 2 η 1 3 η 2 2 η 3 1 3 η 3 2 η 1 3 η 2 2 η 3 2 1 η 1 + 2 2 η 2 1 η 3 2 η 3 2 3 η 1 +2 2 η 2 1 η 3 3 η 3 2 3 η 1 + 2 η 2 2 η 3 3 η 3 1 3 η 1 2 η 2 3 η 2 1 η 3 2 2 η 1 2 2 η 2 3 η 2 2 η 3 1 2 η 1 2 3 η 1 1 η 2 1 η 3 2 2 η 1 + 2 3 η 1 1 η 2 2 η 2 2 2 η 3 2 3 η 1 1 η 2 2 η 3 1 2 η 1 + 2 3 η 1 1 η 2 2 η 3 2 3 η 3 3 η 1 1 η 2 2 η 3 2 2 η 2 3 η 1 1 η 2 3 η 3 2 2η 3 4 3 η 1 1 η 3 2 η 3 1 3 η 1 3 η 1 1 η 3 2 η 3 2 3 η 2 +2 3 η 1 1 η 3 2 η 3 2 3 η 3 3 η 1 1 η 3 3 η 3 1 2 η 1 3 η 1 1 η 3 3 η 3 2 3 η 3 +3 3 η 1 2 η 2 1 η 3 1 2 η 1 2 3 η 1 2 η 2 1 η 3 2 3 η 3 + 3 η 1 2 η 2 2 η 3 1 2 η 2 + 3 η 1 2 η 2 2 η 3 2 1η 1 + 3 η 1 2 η 2 3 η 3 1 2 η 3 + 3 η 1 2 η 3 3 η 3 1 3 η 3 + 3 η 1 2 η 3 3 η 3 2 1 η 1 3 3 η 2 1 η 3 2 η 3 2 3 η 1 3 η 2 1 η 3 3 η 3 2 2 η 1 + 3 η 2 2 η 3 3 η 3 1 2 η 1 ) 1. (all together 76 terms) F 3 η 1 η 3 ; 1 = η 1 η 3 ( 1 η 1 1 η 2 2 η 2 2 3 η 1 1 η 1 1 η 2 2 η 3 2 3 η 1 + 4 1 η 1 1 η 2 3 η 2 2 2 η 1 +4 1 η 1 1 η 2 3 η 3 2 3 η 1 + 3 1 η 1 1 η 3 3 η 3 2 3 η 1 + 3 1 η 1 2 η 1 1 η 2 1 3 η 1 + 1 η 1 2 η 1 1 η 2 2 3 η 2 + 1 η 1 2 η 1 1 η 3 2 3η 2 + 1 η 1 2 η 1 2 η 2 1 3 η 2 3 1 η 1 2 η 1 3 η 1 2 1 η 2 3 1 η 1 2 η 1 3 η 2 1 2 η 2 + 1 η 1 2 η 1 3 η 2 1 3 η 3 + 1 η 1 2 η 1 3 η 2 2 1η 1 3 1 η 1 2 η 1 3 η 3 1 3 η 2 + 2 1 η 1 2 η 2 3 η 2 1 2 η 1 5 1 η 1 3 η 1 1 η 2 1 2 η 1 + 1 η 1 3 η 1 1 η 2 2 3 η 3 2 1 η 1 3 η 1 1 η 3 1 3 η 1 + 1 η 1 3 η 1 1 η 3 2 3η 3 + 1 η 1 3 η 1 2 η 3 1 3 η 2 3 1 η 1 3 η 1 3 η 2 1 2 η 3 2 1 η 1 3 η 1 3 η 3 1 3 η 3 + 1 η 1 3 η 1 3 η 3 2 1 η 1 3 1 η 1 3 η 2 1 η 3 2 3 η 1 2 1 η 1 3 η 2 2 η 3 1 3 η 1 + 2 1 η 1 3 η 2 3 η 3 1 2 η 1 1 η 2 2 η 2 2 η 3 2 3η 1 +4 1 η 2 2 η 2 3 η 2 2 2 η 1 + 2 1 η 2 2 η 2 3 η 3 2 3 η 1 + 1 η 2 2 η 3 3 η 3 2 3 η 1 3 1 η 2 3 η 2 2 η 3 2 3 η 1 + 2 1 η 2 3 η 2 3 η 3 2 2η 1 + 2 2 η 1 1 η 2 1 η 3 2 3η 1 2 η 1 1 η 2 2 η 2 1 3 η 1 2 η 1 1 η 2 2 η 2 2 3 η 2 4 2 η 1 1 η 2 3 η 2 1 2 η 1 2 η 1 1 η 2 3 η 2 2 3 η 3 + 2 2 η 1 1 η 2 3 η 2 2 2η 2 3 2 η 1 1 η 2 3 η 3 1 3 η 1
10 -COMMUTATOR AND 13 -COMMUTATOR 23 +2 2 η 1 1 η 2 3 η 3 2 3 η 2 + 2 2 η 1 1 η 3 3 η 3 2 3 η 2 + 2 η 1 2 η 2 1 η 3 2 3 η 2 2 η 1 2 η 2 3 η 2 1 2 η 2 2 η 1 2 η 2 3 η 2 2 1η 1 2 η 1 2 η 2 3 η 3 1 3 η 2 2 2 η 1 3 η 1 1 η 2 1 2 η 2 + 4 2 η 1 3 η 1 1 η 2 2 1 η 1 2 2 η 1 3 η 1 1 η 3 1 3 η 2 + 2 η 1 3 η 1 2 η 2 2 1η 2 + 2 η 1 3 η 1 3 η 2 2 1η 3 + 2 2 η 1 3 η 2 1 η 3 1 3 η 1 2 2 η 1 3 η 2 1 η 3 2 3 η 2 + 2 η 1 3 η 2 1 η 3 2 3 η 3 2 η 1 3 η 2 3 η 3 1 3 η 3 2 η 1 3 η 2 3 η 3 2 1η 1 + 3 2 η 2 3 η 2 1 η 3 2 3 η 1 2 η 2 3 η 2 2 η 3 1 3 η 1 2 η 2 3 η 2 3 η 3 1 2 η 1 2 3 η 1 1 η 2 1 η 3 2 3 η 1 + 3 3 η 1 1 η 2 2 η 2 1 2 η 1 +2 3 η 1 1 η 2 2 η 3 1 3 η 1 3 η 1 1 η 2 2 η 3 2 3 η 2 + 2 3 η 1 1 η 2 3 η 2 2 2 η 3 3 η 1 1 η 2 3 η 3 1 2 η 1 + 3 η 1 1 η 2 3 η 3 2 3 η 3 3 η 1 1 η 3 2 η 3 2 3η 2 2 3 η 1 1 η 3 3 η 3 1 3 η 1 + 3 η 1 1 η 3 3 η 3 2 3 η 3 3 η 1 2 η 3 3 η 3 1 3 η 2 2 3 η 1 3 η 2 1 η 3 2 3 η 3 + 3 η 1 3 η 2 2 η 3 1 2 η 2 + 3 η 1 3 η 2 2 η 3 2 1 η 1 + 3 η 1 3 η 2 3 η 3 1 2 η 3 + 3 3 η 2 1 η 3 2 η 3 2 3 η 1 3 3 η 2 1 η 3 3 η 3 2 3 η 1 +2 3 η 2 2 η 3 3 η 3 1 3 η 1 ) 1. (all together 76 terms) F 3 η 2 η 3 ; 1 = η 2 η 3 ( 1 η 1 2 η 1 1 η 2 2 3 η 1 + 1 η 1 2 η 1 1 η 3 2 3 η 1 + 1 η 1 2 η 1 2 η 2 1 3 η 1 + 1 η 1 2 η 1 2 η 2 2 3 η 2 + 1 η 1 2 η 1 2 η 3 2 3 η 2 1 η 1 2 η 1 3 η 1 1 2 η 2 1 η 1 2 η 1 3 η 1 1 3 η 3 2 1 η 1 2 η 1 3 η 1 2 1η 1 1 η 1 2 η 1 3 η 2 1 2 η 1 1 η 1 2 η 1 3 η 2 2 2 η 2 1 η 1 2 η 1 3 η 3 2 3 η 2 + 2 1 η 1 2 η 2 3 η 2 2 2 η 1 +2 1 η 1 2 η 2 3 η 3 2 3 η 1 + 2 1 η 1 2 η 3 3 η 3 2 3η 1 1 η 1 3 η 1 1 η 2 2 2η 1 1 η 1 3 η 1 1 η 3 2 3 η 1 + 1 η 1 3 η 1 2 η 2 2 3 η 3 + 1 η 1 3 η 1 2 η 3 1 3 η 1 + 1 η 1 3 η 1 2 η 3 2 3 η 3 1 η 1 3 η 1 3 η 2 2 2 η 3 1 η 1 3 η 1 3 η 3 1 2 η 1 1 η 1 3 η 1 3 η 3 2 3 η 3 2 1 η 1 3 η 2 2 η 3 2 3 η 1 2 η 1 1 η 2 2 η 2 2 3 η 1 +2 2 η 1 1 η 2 3 η 2 2 2 η 1 + 2 η 1 1 η 2 3 η 3 2 3 η 1 + 2 η 1 1 η 3 3 η 3 2 3 η 1 + 2 η 1 2 η 2 1 η 3 2 3η 1 + 2 η 1 2 η 2 2 η 3 2 3η 2 3 2 η 1 2 η 2 3 η 2 1 2 η 1 2 η 1 2 η 2 3 η 2 2 3 η 3 + 2 η 1 2 η 2 3 η 2 2 2 η 2 2 2 η 1 2 η 2 3 η 3 1 3 η 1 + 2 η 1 2 η 2 3 η 3 2 3 η 2 + 2 2 η 1 2 η 3 3 η 3 2 3η 2 2 2 η 1 3 η 1 1 η 2 1 2 η 1 2 2 η 1 3 η 1 1 η 3 1 3 η 1 2 η 1 3 η 1 2 η 2 1 2 η 2 + 2 2 η 1 3 η 1 2 η 2 2 1 η 1 2 η 1 3 η 1 2 η 3 1 3 η 2 2 η 1 3 η 1 3 η 2 1 2 η 3 2 η 1 3 η 1 3 η 3 1 3 η 3 +2 2 η 1 3 η 1 3 η 3 2 1 η 1 2 2 η 1 3 η 2 1 η 3 2 3 η 1 + 2 η 1 3 η 2 2 η 3 1 3 η 1 2 2 η 1 3 η 2 2 η 3 2 3 η 2 + 2 η 1 3 η 2 2 η 3 2 3η 3 + 2 η 1 3 η 2 3 η 3 1 2 η 1 2 η 1 3 η 2 3 η 3 2 3 η 3 + 2 η 2 2 η 3 3 η 3 2 3 η 1 2 η 2 3 η 2 2 η 3 2 3 η 1 + 2 η 2 3 η 2 3 η 3 2 2η 1 3 η 1 1 η 2 2 η 2 2 2η 1 2 3 η 1 1 η 2 2 η 3 2 3 η 1
24 A.S. DZHUMADIL DAEV + 3 η 1 1 η 2 3 η 3 2 2 η 1 2 3 η 1 1 η 3 2 η 3 2 3 η 1 + 3 η 1 1 η 3 3 η 3 2 3 η 1 + 3 η 1 2 η 2 1 η 3 2 3 η 1 + 3 η 1 2 η 2 2 η 3 1 3 η 1 3 η 1 2 η 2 2 η 3 2 3 η 2 +2 3 η 1 2 η 2 3 η 2 2 2 η 3 2 3 η 1 2 η 2 3 η 3 1 2 η 1 + 3 η 1 2 η 2 3 η 3 2 3 η 3 3 3 η 1 2 η 3 3 η 3 1 3 η 1 3 η 1 2 η 3 3 η 3 2 3 η 2 + 3 η 1 2 η 3 3 η 3 2 3η 3 + 3 η 1 3 η 2 2 η 3 1 2 η 1 2 3 η 1 3 η 2 2 η 3 2 3 η 3 + 3 η 1 3 η 2 2 η 3 2 2 η 2 + 3 η 1 3 η 2 3 η 3 2 2 η 3 3 η 2 2 η 3 3 η 3 2 3 η 1 ) 1. (all together 71 terms) 9. Quadratic differential part of D 10 For G Diff n denote by G ηi1 η ik ; α projection to subspace of Diff n generated by differential operators of the form η i1 η ik s,β 0 β u s α. For example, if G = 5η 1 2 η 2 3 η 2 1 2 3 η 3 1 + η 1 η 3 2 η 1 1 η 3 1 3 2 η 3 2 3 η 1 η 3 1 η 1 2 η 1 2 η 3 1 2 3 η 3 2 + 9η 1 η 3 1 η 1 2 η 1 2 η 3 1 2 3 η 3 2 7η 1 η 3 1 η 1 3 η 2 1 η 3 2 1 2 2 3η 3 2 3, then G η1 η 3 ; 2 3 = η 1η 3 2 η 1 1 η 3 1 3 2 η 3 2 3 7η 1η 3 1 η 1 3 η 2 1 η 3 2 1 2 2 3 η 3 2 3. Lemma 9.1. F 2 F 3 + F (F F 3 ) = 0. Proof. Let Q = F 2 F 3 + F (F F 3 ). It is enough to prove that 1 2 -part of Q is equal to 0. Then by symmetry 2 2 -, 3 2 -parts of Q should be 0, and 1 2 -, 1 3 -, 2 3 -parts of G also will vanish. Let us show how to calculate η 1 η 2 η 3 1 2 -part of Q. Notice that η 1 η 2 η 3 1 2 -part of F 2 F 3, denote it by G 1, is equal to G 1 = Fη 2 1 ; 1 Fη 3 2 η 3 ; 1 + Fη 2 2 ; 1 Fη 3 1 η 3 ; 1 + Fη 2 3 ; 1 Fη 3 1 η 2 ; 1 + Fη 2 1 η 2 ; 1 Fη 3 3 ; 1 + Fη 2 1 η 3 ; 1 Fη 3 2 ; 1 + Fη 2 2 η 3 ; 1 Fη 3 1 ; 1. Using results of sections 7, 8 we obtain that F 2 η 1 ; 1 F 3 η 2 η 3 ; 1 + F 2 η 2 ; 1 F 3 η 1 η 3 ; 1 + F 2 η 3 ; 1 F 3 η 1 η 2 ; 1 = η 1 η 2 η 3 ( 5 1 η 1 2 η 1 1 η 2 2 η 2 2 η 3 3 η 3 2 3 η 1+14 1 η 1 2 η 1 1 η 2 2 η 2 3 η 2 2 η 3 2 3 η 1 1 η 1 2 η 1 1 η 2 2 η 2 3 η 2 3 η 3 2 2 η 1 8 1 η 1 2 η 1 1 η 2 3 η 2 2 η 3 3 η 3 2 3 η 1 +9 1 η 1 2 η 1 2 η 2 3 η 2 1 η 3 2 η 3 2 3η 1 + 4 1 η 1 2 η 1 2 η 2 3 η 2 1 η 3 3 η 3 2 3 η 1
10 -COMMUTATOR AND 13 -COMMUTATOR 25 +3 1 η 1 2 η 1 2 η 2 3 η 2 2 η 3 3 η 3 1 3 η 1 8 1 η 1 2 η 1 3 η 1 1 η 2 1 η 3 2 η 3 2 3 η 1 +8 1 η 1 2 η 1 3 η 1 1 η 2 1 η 3 3 η 3 2 3 η 1 + 8 1 η 1 2 η 1 3 η 1 1 η 2 2 η 2 1 η 3 2 3 η 1 6 1 η 1 2 η 1 3 η 1 1 η 2 2 η 2 2 η 3 2 3 η 2 1 η 1 2 η 1 3 η 1 1 η 2 2 η 2 2 η 3 2 3η 3 +10 1 η 1 2 η 1 3 η 1 1 η 2 2 η 2 3 η 2 2 2 η 3 2 1 η 1 2 η 1 3 η 1 1 η 2 2 η 2 3 η 3 1 2 η 1 +4 1 η 1 2 η 1 3 η 1 1 η 2 2 η 2 3 η 3 2 3 η 3 1 η 1 2 η 1 3 η 1 1 η 2 2 η 2 3 η 3 2 2η 2 4 1 η 1 2 η 1 3 η 1 1 η 2 2 η 3 3 η 3 1 3 η 1 8 1 η 1 2 η 1 3 η 1 1 η 2 2 η 3 3 η 3 2 3 η 2 +2 1 η 1 2 η 1 3 η 1 1 η 2 2 η 3 3 η 3 2 3η 3 8 1 η 1 2 η 1 3 η 1 1 η 2 3 η 2 1 η 3 2 2η 1 +2 1 η 1 2 η 1 3 η 1 1 η 2 3 η 2 2 η 3 1 2 η 1 8 1 η 1 2 η 1 3 η 1 1 η 2 3 η 2 2 η 3 2 3 η 3 +7 1 η 1 2 η 1 3 η 1 1 η 2 3 η 2 2 η 3 2 2 η 2 + 5 1 η 1 2 η 1 3 η 1 1 η 2 3 η 2 3 η 3 2 2 η 3 10 1 η 1 2 η 1 3 η 1 1 η 3 2 η 3 3 η 3 2 3 η 2 + 5 1 η 1 2 η 1 3 η 1 2 η 2 1 η 3 2 η 3 2 3 η 2 2 1 η 1 2 η 1 3 η 1 2 η 2 1 η 3 3 η 3 1 3 η 1 + 4 1 η 1 2 η 1 3 η 1 2 η 2 1 η 3 3 η 3 2 3 η 2 1 η 1 2 η 1 3 η 1 2 η 2 1 η 3 3 η 3 2 3η 3 + 5 1 η 1 2 η 1 3 η 1 2 η 2 2 η 3 3 η 3 1 3 η 2 +4 1 η 1 2 η 1 3 η 1 2 η 2 3 η 2 1 η 3 1 2 η 1 + 8 1 η 1 2 η 1 3 η 1 2 η 2 3 η 2 1 η 3 2 3 η 3 2 1 η 1 2 η 1 3 η 1 2 η 2 3 η 2 1 η 3 2 2η 2 7 1 η 1 2 η 1 3 η 1 2 η 2 3 η 2 2 η 3 1 2 η 2 2 1 η 1 2 η 1 3 η 1 2 η 2 3 η 2 2 η 3 1 3 η 3 5 1 η 1 2 η 1 3 η 1 2 η 2 3 η 2 3 η 3 1 2 η 3 +2 1 η 1 2 η 1 3 η 1 3 η 2 1 η 3 2 η 3 1 3 η 1 8 1 η 1 2 η 1 3 η 1 3 η 2 1 η 3 2 η 3 2 3 η 2 +7 1 η 1 2 η 1 3 η 1 3 η 2 1 η 3 2 η 3 2 3 η 3 6 1 η 1 2 η 1 3 η 1 3 η 2 1 η 3 3 η 3 2 3 η 3 1 η 1 2 η 1 3 η 1 3 η 2 1 η 3 3 η 3 2 2η 2 + 2 1 η 1 2 η 1 3 η 1 3 η 2 2 η 3 3 η 3 1 2 η 2 +7 1 η 1 2 η 1 3 η 1 3 η 2 2 η 3 3 η 3 1 3 η 3 + 13 1 η 1 2 η 1 3 η 2 1 η 3 2 η 3 3 η 3 2 3 η 1 +4 1 η 1 3 η 1 1 η 2 2 η 2 2 η 3 3 η 3 2 3 η 1 13 1 η 1 3 η 1 1 η 2 2 η 2 3 η 2 2 η 3 2 2η 1 +9 1 η 1 3 η 1 1 η 2 3 η 2 2 η 3 3 η 3 2 2 η 1 + 1 η 1 3 η 1 2 η 2 1 η 3 2 η 3 3 η 3 2 3 η 1 8 1 η 1 3 η 1 2 η 2 3 η 2 1 η 3 2 η 3 2 3 η 1 5 1 η 1 3 η 1 2 η 2 3 η 2 1 η 3 3 η 3 2 2η 1 3 1 η 1 3 η 1 2 η 2 3 η 2 2 η 3 3 η 3 1 2 η 1 14 1 η 1 3 η 1 3 η 2 1 η 3 2 η 3 3 η 3 2 3 η 1 + 2 η 1 1 η 2 2 η 2 3 η 2 2 η 3 3 η 3 2 3 η 1 + 2 η 1 2 η 2 3 η 2 1 η 3 2 η 3 3 η 3 2 3η 1 2 2 η 1 3 η 1 1 η 2 1 η 3 2 η 3 3 η 3 2 3 η 1 4 2 η 1 3 η 1 1 η 2 2 η 2 1 η 3 2 η 3 2 3 η 1 +6 2 η 1 3 η 1 1 η 2 2 η 2 1 η 3 3 η 3 2 3 η 1 8 2 η 1 3 η 1 1 η 2 2 η 2 2 η 3 3 η 3 1 3 η 1 + 2 η 1 3 η 1 1 η 2 2 η 2 2 η 3 3 η 3 2 3 η 2 + 2 η 1 3 η 1 1 η 2 2 η 2 2 η 3 3 η 3 2 3 η 3 2 2 η 1 3 η 1 1 η 2 2 η 2 3 η 2 1 η 3 2 2 η 1 + 13 2 η 1 3 η 1 1 η 2 2 η 2 3 η 2 2 η 3 1 2 η 1 2 2 η 1 3 η 1 1 η 2 2 η 2 3 η 2 2 η 3 2 3 η 3 2 2 η 1 3 η 1 1 η 2 2 η 2 3 η 2 2 η 3 2 2 η 2 +2 2 η 1 3 η 1 1 η 2 3 η 2 1 η 3 2 η 3 2 3 η 1 4 2 η 1 3 η 1 1 η 2 3 η 2 1 η 3 3 η 3 2 2 η 1 5 2 η 1 3 η 1 1 η 2 3 η 2 2 η 3 3 η 3 1 2 η 1 + 2 η 1 3 η 1 1 η 2 3 η 2 2 η 3 3 η 3 2 3 η 3 + 2 η 1 3 η 1 1 η 2 3 η 2 2 η 3 3 η 3 2 2 η 2 + 5 2 η 1 3 η 1 2 η 2 3 η 2 1 η 3 2 η 3 1 3 η 1 2 η 1 3 η 1 2 η 2 3 η 2 1 η 3 2 η 3 2 3 η 2 2 η 1 3 η 1 2 η 2 3 η 2 1 η 3 2 η 3 2 3η 3 +8 2 η 1 3 η 1 2 η 2 3 η 2 1 η 3 3 η 3 1 2 η 1 2 η 1 3 η 1 2 η 2 3 η 2 1 η 3 3 η 3 2 3 η 3 2 η 1 3 η 1 2 η 2 3 η 2 1 η 3 3 η 3 2 2η 2 + 13 2 η 1 3 η 1 3 η 2 1 η 3 2 η 3 3 η 3 1 3 η 1
26 A.S. DZHUMADIL DAEV 2 2 η 1 3 η 1 3 η 2 1 η 3 2 η 3 3 η 3 2 3 η 2 2 2 η 1 3 η 1 3 η 2 1 η 3 2 η 3 3 η 3 2 3 η 3 3 η 1 1 η 2 2 η 2 3 η 2 2 η 3 3 η 3 2 2 η 1 3 η 1 2 η 2 3 η 2 1 η 3 2 η 3 3 η 3 2 3 η 1 ) 2 1. Similarly, F 2 η 1 η 2 ; 1 F 3 η 3 ; 1 + F 2 η 1 η 3 ; 1 F 3 η 2 ; 1 + F 2 η 2 η 3 ; 1 F 3 η 1 ; 1 = η 1 η 2 η 3 ( 4 1 η 1 2 η 1 1 η 2 2 η 2 3 η 2 2 η 3 2 3 η 1 + 1 η 1 2 η 1 1 η 2 2 η 2 3 η 2 3 η 3 2 2η 1 +3 1 η 1 2 η 1 1 η 2 3 η 2 2 η 3 3 η 3 2 3 η 1 4 1 η 1 2 η 1 2 η 2 3 η 2 1 η 3 2 η 3 2 3 η 1 + 1 η 1 2 η 1 2 η 2 3 η 2 1 η 3 3 η 3 2 3 η 1 3 1 η 1 2 η 1 2 η 2 3 η 2 2 η 3 3 η 3 1 3 η 1 +8 1 η 1 2 η 1 3 η 1 1 η 2 1 η 3 2 η 3 2 3η 1 8 1 η 1 2 η 1 3 η 1 1 η 2 1 η 3 3 η 3 2 3 η 1 8 1 η 1 2 η 1 3 η 1 1 η 2 2 η 2 1 η 3 2 3 η 1 + 4 1 η 1 2 η 1 3 η 1 1 η 2 2 η 2 2 η 3 1 3 η 1 + 1 η 1 2 η 1 3 η 1 1 η 2 2 η 2 3 η 3 1 2 η 1 + 6 1 η 1 2 η 1 3 η 1 1 η 2 2 η 3 3 η 3 1 3 η 1 +8 1 η 1 2 η 1 3 η 1 1 η 2 3 η 2 1 η 3 2 2 η 1 5 1 η 1 2 η 1 3 η 1 1 η 2 3 η 2 2 η 3 1 2 η 1 + 1 η 1 2 η 1 3 η 1 2 η 2 1 η 3 3 η 3 1 3 η 1 6 1 η 1 2 η 1 3 η 1 2 η 2 3 η 2 1 η 3 1 2 η 1 +3 1 η 1 2 η 1 3 η 1 2 η 2 3 η 2 2 η 3 2 1 η 1 5 1 η 1 2 η 1 3 η 1 3 η 2 1 η 3 2 η 3 1 3 η 1 +4 1 η 1 2 η 1 3 η 1 3 η 2 1 η 3 3 η 3 1 2 η 1 3 1 η 1 2 η 1 3 η 1 3 η 2 2 η 3 3 η 3 2 1 η 1 3 1 η 1 2 η 1 3 η 2 1 η 3 2 η 3 3 η 3 2 3η 1 + 1 η 1 3 η 1 1 η 2 2 η 2 2 η 3 3 η 3 2 3 η 1 +3 1 η 1 3 η 1 1 η 2 2 η 2 3 η 2 2 η 3 2 2η 1 4 1 η 1 3 η 1 1 η 2 3 η 2 2 η 3 3 η 3 2 2η 1 1 η 1 3 η 1 2 η 2 1 η 3 2 η 3 3 η 3 2 3η 1 + 3 1 η 1 3 η 1 2 η 2 3 η 2 1 η 3 2 η 3 2 3 η 1 +3 1 η 1 3 η 1 2 η 2 3 η 2 2 η 3 3 η 3 1 2 η 1 + 4 1 η 1 3 η 1 3 η 2 1 η 3 2 η 3 3 η 3 2 3 η 1 2 η 1 1 η 2 2 η 2 3 η 2 2 η 3 3 η 3 2 3 η 1 2 η 1 2 η 2 3 η 2 1 η 3 2 η 3 3 η 3 2 3 η 1 +2 2 η 1 3 η 1 1 η 2 1 η 3 2 η 3 3 η 3 2 3 η 1 + 4 2 η 1 3 η 1 1 η 2 2 η 2 1 η 3 2 η 3 2 3 η 1 6 2 η 1 3 η 1 1 η 2 2 η 2 1 η 3 3 η 3 2 3 η 1 + 4 2 η 1 3 η 1 1 η 2 2 η 2 2 η 3 3 η 3 1 3 η 1 +2 2 η 1 3 η 1 1 η 2 2 η 2 3 η 2 1 η 3 2 2η 1 5 2 η 1 3 η 1 1 η 2 2 η 2 3 η 2 2 η 3 1 2 η 1 2 2 η 1 3 η 1 1 η 2 3 η 2 1 η 3 2 η 3 2 3 η 1 + 4 2 η 1 3 η 1 1 η 2 3 η 2 1 η 3 3 η 3 2 2 η 1 + 2 η 1 3 η 1 1 η 2 3 η 2 2 η 3 3 η 3 1 2 η 1 2 η 1 3 η 1 2 η 2 3 η 2 1 η 3 2 η 3 1 3 η 1 4 2 η 1 3 η 1 2 η 2 3 η 2 1 η 3 3 η 3 1 2 η 1 5 2 η 1 3 η 1 3 η 2 1 η 3 2 η 3 3 η 3 1 3 η 1 + 3 η 1 1 η 2 2 η 2 3 η 2 2 η 3 3 η 3 2 2 η 1 + 3 η 1 2 η 2 3 η 2 1 η 3 2 η 3 3 η 3 2 3 η 1 ) 2 1. Thus, G 1 = η 1 η 2 η 3 ( 5 1 η 1 2 η 1 1 η 2 2 η 2 2 η 3 3 η 3 2 3 η 1+10 1 η 1 2 η 1 1 η 2 2 η 2 3 η 2 2 η 3 2 3 η 1 5 1 η 1 2 η 1 1 η 2 3 η 2 2 η 3 3 η 3 2 3 η 1 + 5 1 η 1 2 η 1 2 η 2 3 η 2 1 η 3 2 η 3 2 3 η 1 +5 1 η 1 2 η 1 2 η 2 3 η 2 1 η 3 3 η 3 2 3 η 1 + 4 1 η 1 2 η 1 3 η 1 1 η 2 2 η 2 2 η 3 1 3 η 1 6 1 η 1 2 η 1 3 η 1 1 η 2 2 η 2 2 η 3 2 3 η 2 1 η 1 2 η 1 3 η 1 1 η 2 2 η 2 2 η 3 2 3η 3 +10 1 η 1 2 η 1 3 η 1 1 η 2 2 η 2 3 η 2 2 2η 3 1 η 1 2 η 1 3 η 1 1 η 2 2 η 2 3 η 3 1 2 η 1 +4 1 η 1 2 η 1 3 η 1 1 η 2 2 η 2 3 η 3 2 3 η 3 1 η 1 2 η 1 3 η 1 1 η 2 2 η 2 3 η 3 2 2η 2
10 -COMMUTATOR AND 13 -COMMUTATOR 27 +2 1 η 1 2 η 1 3 η 1 1 η 2 2 η 3 3 η 3 1 3 η 1 8 1 η 1 2 η 1 3 η 1 1 η 2 2 η 3 3 η 3 2 3 η 2 +2 1 η 1 2 η 1 3 η 1 1 η 2 2 η 3 3 η 3 2 3η 3 3 1 η 1 2 η 1 3 η 1 1 η 2 3 η 2 2 η 3 1 2 η 1 8 1 η 1 2 η 1 3 η 1 1 η 2 3 η 2 2 η 3 2 3 η 3 + 7 1 η 1 2 η 1 3 η 1 1 η 2 3 η 2 2 η 3 2 2 η 2 +5 1 η 1 2 η 1 3 η 1 1 η 2 3 η 2 3 η 3 2 2 η 3 10 1 η 1 2 η 1 3 η 1 1 η 3 2 η 3 3 η 3 2 3 η 2 +5 1 η 1 2 η 1 3 η 1 2 η 2 1 η 3 2 η 3 2 3 η 2 1 η 1 2 η 1 3 η 1 2 η 2 1 η 3 3 η 3 1 3 η 1 +4 1 η 1 2 η 1 3 η 1 2 η 2 1 η 3 3 η 3 2 3 η 2 1 η 1 2 η 1 3 η 1 2 η 2 1 η 3 3 η 3 2 3η 3 +5 1 η 1 2 η 1 3 η 1 2 η 2 2 η 3 3 η 3 1 3 η 2 2 1 η 1 2 η 1 3 η 1 2 η 2 3 η 2 1 η 3 1 2 η 1 +8 1 η 1 2 η 1 3 η 1 2 η 2 3 η 2 1 η 3 2 3 η 3 2 1 η 1 2 η 1 3 η 1 2 η 2 3 η 2 1 η 3 2 2 η 2 7 1 η 1 2 η 1 3 η 1 2 η 2 3 η 2 2 η 3 1 2 η 2 2 1 η 1 2 η 1 3 η 1 2 η 2 3 η 2 2 η 3 1 3 η 3 +3 1 η 1 2 η 1 3 η 1 2 η 2 3 η 2 2 η 3 2 1 η 1 5 1 η 1 2 η 1 3 η 1 2 η 2 3 η 2 3 η 3 1 2 η 3 3 1 η 1 2 η 1 3 η 1 3 η 2 1 η 3 2 η 3 1 3 η 1 8 1 η 1 2 η 1 3 η 1 3 η 2 1 η 3 2 η 3 2 3 η 2 +7 1 η 1 2 η 1 3 η 1 3 η 2 1 η 3 2 η 3 2 3 η 3 + 4 1 η 1 2 η 1 3 η 1 3 η 2 1 η 3 3 η 3 1 2 η 1 6 1 η 1 2 η 1 3 η 1 3 η 2 1 η 3 3 η 3 2 3 η 3 1 η 1 2 η 1 3 η 1 3 η 2 1 η 3 3 η 3 2 2η 2 +2 1 η 1 2 η 1 3 η 1 3 η 2 2 η 3 3 η 3 1 2 η 2 + 7 1 η 1 2 η 1 3 η 1 3 η 2 2 η 3 3 η 3 1 3 η 3 3 1 η 1 2 η 1 3 η 1 3 η 2 2 η 3 3 η 3 2 1η 1 + 10 1 η 1 2 η 1 3 η 2 1 η 3 2 η 3 3 η 3 2 3η 1 +5 1 η 1 3 η 1 1 η 2 2 η 2 2 η 3 3 η 3 2 3 η 1 10 1 η 1 3 η 1 1 η 2 2 η 2 3 η 2 2 η 3 2 2 η 1 +5 1 η 1 3 η 1 1 η 2 3 η 2 2 η 3 3 η 3 2 2 η 1 5 1 η 1 3 η 1 2 η 2 3 η 2 1 η 3 2 η 3 2 3 η 1 5 1 η 1 3 η 1 2 η 2 3 η 2 1 η 3 3 η 3 2 2 η 1 10 1 η 1 3 η 1 3 η 2 1 η 3 2 η 3 3 η 3 2 3 η 1 4 2 η 1 3 η 1 1 η 2 2 η 2 2 η 3 3 η 3 1 3 η 1 + 2 η 1 3 η 1 1 η 2 2 η 2 2 η 3 3 η 3 2 3 η 2 + 2 η 1 3 η 1 1 η 2 2 η 2 2 η 3 3 η 3 2 3η 3 + 8 2 η 1 3 η 1 1 η 2 2 η 2 3 η 2 2 η 3 1 2 η 1 2 2 η 1 3 η 1 1 η 2 2 η 2 3 η 2 2 η 3 2 3 η 3 2 2 η 1 3 η 1 1 η 2 2 η 2 3 η 2 2 η 3 2 2 η 2 4 2 η 1 3 η 1 1 η 2 3 η 2 2 η 3 3 η 3 1 2 η 1 + 2 η 1 3 η 1 1 η 2 3 η 2 2 η 3 3 η 3 2 3 η 3 + 2 η 1 3 η 1 1 η 2 3 η 2 2 η 3 3 η 3 2 2 η 2 + 4 2 η 1 3 η 1 2 η 2 3 η 2 1 η 3 2 η 3 1 3 η 1 2 η 1 3 η 1 2 η 2 3 η 2 1 η 3 2 η 3 2 3 η 2 2 η 1 3 η 1 2 η 2 3 η 2 1 η 3 2 η 3 2 3 η 3 +4 2 η 1 3 η 1 2 η 2 3 η 2 1 η 3 3 η 3 1 2 η 1 2 η 1 3 η 1 2 η 2 3 η 2 1 η 3 3 η 3 2 3 η 3 2 η 1 3 η 1 2 η 2 3 η 2 1 η 3 3 η 3 2 2η 2 + 8 2 η 1 3 η 1 3 η 2 1 η 3 2 η 3 3 η 3 1 3 η 1 2 2 η 1 3 η 1 3 η 2 1 η 3 2 η 3 3 η 3 2 3 η 2 2 2 η 1 3 η 1 3 η 2 1 η 3 2 η 3 3 η 3 2 3η 3 ) 2 1. Now calculate η 1 η 2 η 3 2 1 -part of F (F F 3 ). Set G = F F 3. It is easy to see that G η1 η 2 ; 2 1 = F η 1 ; 1 F 3 η 2 ; 1 + F η2 ; 1 F 3 η 1 ; 1, G η1 η 3 ; 2 1 = F η 1 ; 1 F 3 η 3 ; 1 + F η3 ; 1 F 3 η 1 ; 1, G η2 η 3 ; 2 1 = F η 2 ; 1 F 3 η 3 ; 1 + F η3 ; 1 F 3 η 2 ; 1.
28 A.S. DZHUMADIL DAEV By results of section 8, G η1 η 2 ; 1 2 = η 1η 2 H η1 η 2 1 2, G η1 η 3 ; 1 2 = η 1η 3 H η1 η 3 1, 2 where, G η2 η 3 ; 2 1 = η 2η 3 H η2 η 3 2 1, H η1 η 2 = 4 1 η 1 1 η 2 2 η 1 2 η 2 2 η 3 3 η 1 2 1 η 1 1 η 2 2 η 1 2 η 3 3 η 1 3 η 3 1 η 1 1 η 3 2 η 1 2 η 2 3 η 1 3 η 3 + 3 1 η 1 1 η 3 2 η 1 2 η 3 3 η 1 3 η 2 + 1 η 2 2 η 1 2 η 2 2 η 3 3 η 1 3 η 3 + 1 η 3 2 η 1 2 η 2 2 η 3 3 η 1 3 η 2 +2 1 η 3 2 η 1 2 η 3 3 η 1 3 η 2 3 η 3, H η1 η 3 = 1 η 1 1 η 2 2 η 1 2 η 2 3 η 1 3 η 3 + 3 1 η 1 1 η 2 2 η 1 2 η 3 3 η 1 3 η 2 2 1 η 1 1 η 3 2 η 1 2 η 2 3 η 1 3 η 2 + 4 1 η 1 1 η 3 2 η 1 3 η 1 3 η 2 3 η 3 2 1 η 2 2 η 1 2 η 2 2 η 3 3 η 1 3 η 2 1 η 2 2 η 1 2 η 3 3 η 1 3 η 2 3 η 3 1 η 3 2 η 1 2 η 2 3 η 1 3 η 2 3 η 3, H η2 η 3 = 3 1 η 1 2 η 1 2 η 2 2 η 3 3 η 1 3 η 2 3 1 η 1 2 η 1 2 η 3 3 η 1 3 η 2 3 η 3. Thus, η 1 η 2 η 3 2 1 -part of F G by Lemma 5.8 is equal to η 1η 2 η 3 2 1 - part of F (G η1 η 2 ; 2 1 + G η 1 η 3 ; 2 1 + G η 2 η 3 ; 2 1 ). So, η 1 η 2 η 3 2 1 -part of F G is equal to η 1 η 2 η 3 ( 1 (D) H η2 η 3 ; 2 1 + 2(D) H η1 η 3 ; 2 1 + 3(D) H η1 η 2 ; 2 1 ) 2 1 Calculations show that this expression is equal to G 1. So, we obtain that η 1 η 2 η 3 2 1 -part of F 2 F 3 + F (F F 3 ) is equal 0. Similar calculations show that sums of η i η j 2 1 -parts of F 2 F 3 and F (F F 3 ) are also vanish, if i j. So, we have established that F 2 F 3 + F (F F 3 ) = 0.
10 -COMMUTATOR AND 13 -COMMUTATOR 29 10. Qubic differential part of D 10 In this section we use denotions and results of calculations of section 9. Lemma 10.1. F 3 F 2 = 0 Proof. Recall that G = F F 3. By associativity and supercommutativity of bullet-multiplication (proposition??) we have F 3 (F F) = F (F F 3 ). So, η 1 η 2 η 3 2 1 -part of F 3 F 2 is equal to F (η 1 η 2 H η1 η 2 + η 1 η 3 H η1 η 3 + η 2 η 3 H η2 η 3 ) 2 1 = η 1 η 2 η 3 ( 1 η 1 1 H η2 η 3 2 1 2η 1 1 H η1 η 3 2 1 + 3η 1 1 H η1 η 2 2 1 ). By results of section 9 it is easy to obtain that 1 η 1 H η2 η 3 = 0, 2 η 1 H η1 η 3 = 0, 3 η 1 H η1 η 2 = 0. So, η 1 η 2 η 3 1 3 -part of F 3 F 2 is 0. Since number of bullets is two, η i η j 1 3 -parts and η i 1 3 -parts of F 3 F 2 are also 0. So, 1 3 -part of F 3 F 2 vanishes. By symmetry α -part of F 3 F 2 vanishes also for any α Γ 3, such that α = 3. Lemma is proved. Lemma 10.2. F F 2 F 2 = 0. Proof. Let R = F 2 F 2. We use calculations on F 2 ( section 7) to obtain R η1 η 2 ; 2 1 = η 1 η 2 (8 1 η 1 2 η 1 3 η 1 1 η 2 2 η 2 2 η 3 4 1 η 1 2 η 1 3 η 1 1 η 2 2 η 3 3 η 3 +2 1 η 1 2 η 1 3 η 1 2 η 2 1 η 3 3 η 3 + 6 1 η 1 2 η 1 3 η 1 3 η 2 1 η 3 2 η 3 2 2 η 1 3 η 1 1 η 2 2 η 2 2 η 3 3 η 3 + 2 2 η 1 3 η 1 2 η 2 3 η 2 1 η 3 2 η 3 + 4 2 η 1 3 η 1 3 η 2 1 η 3 2 η 3 3 η 3 ) 2 1, R η1 η 3 ; 2 1 = η 1 η 3 ( 2 1 η 1 2 η 1 3 η 1 1 η 2 2 η 2 3 η 3 6 1 η 1 2 η 1 3 η 1 1 η 2 3 η 2 2 η 3 4 1 η 1 2 η 1 3 η 1 2 η 2 3 η 2 1 η 3 + 8 1 η 1 2 η 1 3 η 1 3 η 2 1 η 3 3 η 3 4 2 η 1 3 η 1 1 η 2 2 η 2 3 η 2 2 η 3 + 2 2 η 1 3 η 1 1 η 2 3 η 2 2 η 3 3 η 3 2 2 η 1 3 η 1 2 η 2 3 η 2 1 η 3 3 η 3 ) 2 1, R η2 η 3 ; 2 1
30 A.S. DZHUMADIL DAEV = η 2 η 3 ( 6 1 η 1 2 η 1 3 η 1 2 η 2 3 η 2 2 η 3 + 6 1 η 1 2 η 1 3 η 1 3 η 2 2 η 3 3 η 3 ) 2 1. We have η 1 1 η 1 1 R η2 η 3 ; 2 1 = 0, η 2 2 η 1 1 R η1 η 3 ; 2 1 = 0, η 3 3 η 1 1 R η1 η 2 ; 2 1 = 0. Therefore η 1 η 2 η 3 3 1 -part of F F 2 F 2 is equal to η 1 1 η 1 1 R η2 η 3 ; 1 2 + η 2 2 η 1 1 R η1 η 3 ; 1 2 + η 3 3 η 1 1 R η1 η 2 ; 1 2 = 0. By symmetry, η 1 η 2 η 3 1 α -part of F F 2 F 2 are also 0 for any α Γ 3, such that α = 3. As we mentioned above η i - and η i η j -parts of elements obtained by two bullets are equal to 0. Lemma is proved. By Lemma 5.9 τ 3 (F 5 ) = 5(2F 3 F 2 + 3F F 2 F 2 ). Therefore, we come to the following Conclusion. τ 3 (D 10 ) = 0. Proof of Theorem 0.1 By Theorem 0.1 of [2] if η i1 η ir α -part of D 10 is nonzero, then So, α 3. D 10 = τ 1 (D 10 ). 11. N -commutators and super-derivations In this section we explain how escort invariants appear in calculating powers of odd derivations. Suppose now I = {1,..., n} and D = n i=1 u i i Der L odd super-derivation. For α Z n + set x (α) = xα α!. Denote by Supp(s k ) a set of k -typles {(α (1), i 1 ),, (α (k), i k )} with α (1),..., α (k) Z n +, i 1,..., i k I, such that k p=1 α (p) ǫ ip has a form β for some 0 β Z n +. Theorem 11.1. k!d k = α (u i1 ) β (u i2 ) γ (u ik )esc(s k )(x (α) i1, x (β) i2,..., x (γ) ik ), where summation is given by {(α, i 1 ), (β, i 2 ),..., (γ, i k )} Supp(s k ).
10 -COMMUTATOR AND 13 -COMMUTATOR 31 If we use order on basic elements x α i we can omit the coefficient k! : D k = α(1) (u i1 ) α(k) (u ik )esc(s k )(x (α(1)) i1,..., x (α(k)) ik ). (α (1),i 1 )< <(α (k),i k ) Proof. Recall that U = C[x 1,..., x n ] and i are partial derivations of U. Let Gr k be a Grassman algebra with exterior generators η 1,..., η k, i.e., it is associative super-commutative algebra of dimension 2 k. For U = C[x 1,..., x n ] take its Grassman envelope U = U Gr k. Prolong derivation i Der U to a derivation of U by i (v ω) = i (v) ω. We obtain commuting system of even derivations D = { 1,..., n } of U. For any f 1,..., f n U and α Z n + elements α u j are odd. So, we obtain D -differential super-algebra U and we can consider its algebra of super-derivations L =< f i : f U > and its algebra of super-differential operators Diff =< f α : α Z n +, f U >. We can endow Diff by composition operation, by left-symmetric multiplication and by bullet multiplication. In particular, we can consider L as a left-symmetric algebra and as a super-lie algebra. Thus, L = W n Gr k is isomorphic to a current algebra with coefficients not in Laurent polynomials as usual, but in exterior algebra. We see that for any f 1,..., f n we can consider a homomorphism L n U, u i f i, i = 1,..., n. and this homomorphism can be extended to a homomorphism of leftsymmetric or Lie algebras Der L n L and to a homomorphism of associative (left-symmetric) algebras Diff Diff We can use this homomorphism in calculating F k for F = n i=1 f i i L. In other words, in the formula for D k we can make substitutions u i f i and calculate obtained expressions in U. Use this method for calculating coefficients λ {(α,i1 ),(β,i 2 ),...,(γ,i k );µ}, where D k = λ {(α,i1 ),(β,i 2 ),...,(γ,i k );µ} α (u i1 ) β (u i2 ) γ (u ik ) µ.