Κινητά Δίκτυα Επικοινωνιών

Σχετικά έγγραφα
Τμήμα Μηχανικών Η/Υ και Πληροφορικής

Τμήμα Μηχανικών Η/Υ και Πληροφορικής

Κινητά Δίκτυα Υπολογιστών

Κινητά Δίκτυα Επικοινωνιών. Συμπληρωματικό υλικό. Προσαρμοστική Ισοστάθμιση Καναλιού

Εισαγωγή στους Αλγορίθμους

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 5 η : Αποκατάσταση Εικόνας

Στοχαστικά Σήματα και Τηλεπικοινωνιές

Εισαγωγή στους Αλγορίθμους

Βέλτιστος Έλεγχος Συστημάτων

Επεξεργασία Στοχαστικών Σημάτων

Βέλτιστος Έλεγχος Συστημάτων

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 1: Εκτιμητές και Ιδιότητες. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

Εισαγωγή στους Αλγορίθμους

Βέλτιστος Έλεγχος Συστημάτων

Ψηφιακή Επεξεργασία Εικόνων

Εισαγωγή στους Υπολογιστές

Κβαντική Επεξεργασία Πληροφορίας

Κβαντική Επεξεργασία Πληροφορίας

Συστήματα Επικοινωνιών

Στοχαστικά Σήματα και Τηλεπικοινωνιές

Συστήματα Επικοινωνιών

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής

Εισαγωγή στους Η/Υ. Ενότητα 2β: Αντίστροφο Πρόβλημα. Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών

Στοχαστικά Σήματα και Τηλεπικοινωνιές

Διοικητική Λογιστική

Ενδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας

Βέλτιστος Έλεγχος Συστημάτων

Συστήματα Επικοινωνιών

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων

Αριθμητική Ανάλυση. Ενότητα 1: Εισαγωγή Βασικές Έννοιες. Φραγκίσκος Κουτελιέρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Prim

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Στοχαστικά Σήματα και Τηλεπικοινωνιές

Βέλτιστος Έλεγχος Συστημάτων

Ψηφιακές Επικοινωνίες

Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2)

Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 4: Μελέτη ISO Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

Κβαντική Επεξεργασία Πληροφορίας

Βέλτιστος Έλεγχος Συστημάτων

Ψηφιακές Επικοινωνίες

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 2 η : Δισδιάστατα Σήματα & Συστήματα Μέρος 1

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 10 η : Ανάλυση Εικόνας. Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής

Γενικά Μαθηματικά Ι. Ενότητα 12: Κριτήρια Σύγκλισης Σειρών. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Εισαγωγή στους Αλγορίθμους Ενότητα 10η Άσκηση Αλγόριθμος Dijkstra

1 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων

ΗΛΕΚΤΡΟΝΙΚΗ IΙ Ενότητα 6

Ορισμός κανονικής τ.μ.

Αερισμός. Ενότητα 1: Αερισμός και αιμάτωση. Κωνσταντίνος Σπυρόπουλος, Καθηγητής Σχολή Επιστημών Υγείας Τμήμα Ιατρικής

Εισαγωγή στους Αλγορίθμους Ενότητα 11η Άσκηση - Σταθμισμένος Χρονοπρογραμματισμός Διαστημάτων

Συστήματα Επικοινωνιών

Οικονομετρία Ι. Ενότητα 2: Ανάλυση Παλινδρόμησης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Ψηφιακές Επικοινωνίες

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Συστήματα Επικοινωνιών

Κβαντική Επεξεργασία Πληροφορίας

Εισαγωγή στη Δικτύωση Υπολογιστών

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 1

Προηγμένος έλεγχος ηλεκτρικών μηχανών

Ευφυής Προγραμματισμός

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μηχανολογικό Σχέδιο Ι

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Βέλτιστος Έλεγχος Συστημάτων

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Προγραμματισμός Η/Υ. Βασικές Προγραμματιστικές Δομές. ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος

Εφαρμογές των Τεχνολογιών της Πληροφορίας και των Επικοινωνιών στη διδασκαλία και τη μάθηση

Ενότητα. Εισαγωγή στις βάσεις δεδομένων

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη

Επεξεργασία Στοχαστικών Σημάτων

Συστήματα Επικοινωνιών

Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους.

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Επεξεργασία Σημάτων. Άσκηση 3η. Στυλιανού Ιωάννης. Τμήμα Επιστήμης Υπολογιστών

Δυναμική και Έλεγχος E-L Ηλεκτρομηχανικών Συστημάτων

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 3: Εφαρμογές Δικτυωτής Ανάλυσης (2 ο Μέρος)

Μυελού των Οστών Ενότητα #1: Ερωτήσεις κατανόησης και αυτόαξιολόγησης

Δυναμική και Έλεγχος E-L Ηλεκτρομηχανικών Συστημάτων

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Βάσεις Περιβαλλοντικών Δεδομένων

Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Kruskal

Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Ενότητα 2 η : ΠΕΡΙΓΡΑΦΗ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΜΑΘΗΜΑΤΙΚΑ ΜΟΝΤΕΛΑ

Εισαγωγή στη Δικτύωση Υπολογιστών

Βέλτιστος Έλεγχος Συστημάτων

Οικονομετρία Ι. Ενότητα 3: Θεώρημα των Gauss Markov. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Δυναμική και Έλεγχος E-L Ηλεκτρομηχανικών Συστημάτων

Αναλογικές και Ψηφιακές Επικοινωνίες

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού Υπέρθερμου Ατμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής

Βέλτιστος Έλεγχος Συστημάτων

Εισαγωγή στην Διοίκηση Επιχειρήσεων

ΗΛΕΚΤΡΟΝΙΚΗ ΙIΙ Ενότητα 6

Τίτλος Μαθήματος: Εργαστήριο Φυσικής Ι

Τίτλος Μαθήματος: Εργαστήριο Φυσικής Ι

Διδακτική των εικαστικών τεχνών Ενότητα 3

Transcript:

Κινητά Δίκτυα Επικοινωνιών Καθ. Κώστας Μπερμπερίδης Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ & Πληροφορικής

Σκοποί ενότητας Η εξοικείωση του φοιτητή με τις διάφορες τεχνικές ισοστάθμισης καναλιού που χρησιμοποιούνται στις κινητές επικοινωνίες 2

Περιεχόμενα ενότητας Βασικές αρχές ισοστάθμισης Κριτήρια σχεδιασμού ισοσταθμιστών Γραμμική και Μη-Γραμμική Ισοστάθμιση Προσαρμοστική Ισοστάθμιση 3

Βασικές Αρχές Ισοστάθμισης

Βασικές αρχές Ισοστάθμισης Το φαινόμενο της πολυδιόδευσης στα κανάλια των δικτύων κινητών επικοινωνιών προκαλεί την εμφάνιση διασυμβολικής παρεμβολής (ISI - Intersymbol Interference) Το λαμβανόμενο σήμα θα έχει τη μορφή: y t = x t f t + n b t Όπου f(t) η κρουστική απόκριση του συνολικού καναλιού (φίλτρο πομπού, κανάλι, φίλτρο δέκτη): f t = g T t c t g R t Ο κατάλληλος σχεδιασμός των φίλτρων πομπού και δέκτη (π.χ. Raised cosine) δεν αρκεί για το ISI (καθότι το κανάλι αλλάζει διαρκώς) Στο δέκτη, μια ειδική διάταξη που καλείται ισοσταθμιστής (equalizer), αναλαμβάνει την αντιμετώπιση της ISI. Ισοστάθμιση, με μια ευρεία έννοια, ονομάζεται οποιαδήποτε λειτουργία επεξεργασίας σήματος που μειώνει τη διασυμβολική παρεμβολή. 5

Διάγραμμα Βαθμίδων με Ισοστάθμιση 6

Βασικές αρχές Ισοστάθμισης Η έξοδος του ισοσταθμιστή έχει τη μορφή: d t = x t f t h eq t + n b t h eq (t) Εδώ το f(t) περιλαμβάνει την αλυσίδα των συστημάτων: Φίλτρο Πομπού Διαμορφωτής Κανάλι Αποδιαμορφωτής Φίλτρο Δέκτη Στόχος: ο σχεδιασμός της h eq (t), ώστε η έξοδος d(t) του ισοσταθμιστή να τείνει στο x(t). Σε αρκετές εφαρμογές ο ισοσταθμιστής πρέπει να είναι χρονικά μεταβαλλόμενος για να παρακολουθεί τις αλλαγές του καναλιού 7

Κατηγοριοποίηση Ισοσταθμιστών Με βάση το κριτήριο βελτιστοποίησης: Κριτήριο μέγιστης πιθανοφάνειας (Maximum Likelihood Criterion - ML): Σε κάθε χρονική στιγμή, ο ανιχνευτής παίρνει απόφαση υπέρ ενός συμβόλου, ώστε να μεγιστοποιείται η πιθανότητα σωστής απόφασης, δεδομένης της τιμής του λαμβανόμενου σήματος. Είναι βέλτιστοι ισοσταθμιστές, αλλά μεγάλης πολυπλοκότητας. Κριτήριο μηδενισμού της διασυμβολικής παρεμβολής (Zero-forcing Criterion - ZF): Ο ισοσταθμιστής μηδενίζει τη διασυμβολική παρεμβολή. Είναι πολύ απλό κριτήριο αλλά με βασικό μειονέκτημα ότι δεν λαμβάνει υπόψη το θόρυβο. Κριτήριο ελάχιστου μέσου τετραγωνικού σφάλματος (Minimum Mean Square Error Criterion - MMSE): Ελαχιστοποιεί το μέσο τετραγωνικό σφάλμα της εξόδου του ισοσταθμιστή, σε σχέση με την αποστελλόμενη ακολουθία. Λαμβάνει υπόψη του τόσο τη διασυμβολική παρεμβολή όσο και τον προσθετικό θόρυβο. 8

Κατηγοριοποίηση Ισοσταθμιστών Με βάση τη χρονική μεταβολή του ισοσταθμιστή: Σταθεροί Ισοσταθμιστές (fixed or preset equalizers): Οι συντελεστές υπολογίζονται μια φορά στην αρχή της λειτουργίας τους και παραμένουν σταθεροί. Προσαρμοστικοί Ισοσταθμιστές (adaptive equalizers): Οι συντελεστές μεταβάλλονται συνεχώς ώστε να παρακολουθούν τις χρονικές μεταβολές του καναλιού. Με βάση τη γραμμικότητα ή μη της δομής τους: Γραμμικοί Ισοσταθμιστές: Η έξοδος είναι γραμμική συνάρτηση της εισόδου τους. Μη-γραμμικοί Ισοσταθμιστές: Η έξοδος δεν είναι γραμμική συνάρτηση της εισόδου τους (π.χ. οι ισοσταθμιστές που στηρίζονται στο κριτήριο ML). 9

Κριτήρια Σχεδιασμού Ισοσταθμιστών MLSE, Zero Forcing, MMSE

Το κριτήριο ML Δομή ενός ισοσταθμιστή MLSE (Maximum Likelihood Sequence Estimation) max P{ a / r} max f{ r / a } m m Ελέγχει όλες τις πιθανές ακολουθίες δεδομένων και επιλέγει εκείνη με τη μέγιστη πιθανοφάνεια του λαμβανόμενου σήματος Απαιτεί γνώση του καναλιού μετάδοσης και της κατανομής του θορύβου. Μεγάλη πολυπλοκότητα. Η χρήση του αλγορίθμου Viterbi μειώνει δραστικά τους υπολογισμούς και επιτρέπει την εφαρμογή του MLSE σε μικρού μήκους κανάλια. Πολυπλοκότητα: από O(MN) σε O(ΝM L ), όπου: L το μήκος καναλιού, Μ η τάξη του αλφαβήτου και Ν το πλήθος των συμβόλων 11

MLSE (1/2) Παράδειγμα: έστω κανάλι μήκους L = 2, {f(0), f(1)}, και δυαδική διαμόρφωση (π.χ. δυαδικό PAM α m =+1, -1) Αν εξαιρέσουμε το θόρυβο, τότε η τιμή που λαμβάνουμε είναι: y m = f 0 a m + f 1 a m 1 Και ανάλογα με τα σύμβολα που στάλθηκαν, μπορούμε να πάρουμε τους παρακάτω συνδυασμούς: y 1 m = f 0 (+1) + f 1 (+1) y 2 m = f 0 (+1) + f 1 ( 1) y 3 m = f 0 ( 1) + f 1 (+1) y 4 m = f 0 ( 1) + f 1 ( 1) 12

MLSE (2/2) Εφόσον: έχουμε το y(m) και με κάποιο τρόπο έχουμε υπολογίσει το κανάλι, δηλαδή γνωρίζουμε τα f(0), f(1) Τότε, μπορούμε: να υπολογίσουμε όλα τα δυνατά y i (m) να δούμε ποιο είναι πιο κοντά στο ληφθέν y(m) και να αποφασίσουμε ποια ήταν τα σύμβολα που στάλθηκαν Η διαδικασία αυτή ισοδυναμεί με τη μεγιστοποίηση της συνάρτησης κόστους: log[f(y/α)] Πολυπλοκότητα: για ακολουθία Ν συμβόλων απαιτεί: Μ Ν Θεωρούμε ότι το κανάλι είναι γνωστό με κάποιο τρόπο Προσέξτε ότι: Την επόμενη χρονική στιγμή (που θα λάβουμε το y(m + 1)), θα εμπλέκεται και πάλι το σύμβολο α m, και αυτή η πληροφορία θα πρέπει να αξιοποιηθεί 13

MLSE με τον αλγόριθμο Viterbi MLSE: είναι ο βέλτιστος εκτιμητής της ακολουθίας των συμβόλων: αντιμετωπίζει πλήρως την ISI πλήττεται μόνο από την επίδραση του AWGΝ θορύβου που είναι τυχαίος Αλγόριθμος Viterbi: για αποδοτική υλοποίηση του φωρατή MLSE Η πολυπλοκότητα του αλγορίθμου Viterbi είναι O(ML)/symbol Λόγω της εκθετικής πολυπλοκότητας, ο MLSE χρησιμοποιείται πρακτικά μόνο σε περιπτώσεις μικρών M, L (π.χ. συστήματα κινητής επικοινωνίας με σχετικά χαμηλό ρυθμό δεδομένων [Μ=2:4, L=2:5] ) Για μεγάλα M και L, χρησιμοποιούνται άλλες υπο-βέλτιστες μέθοδοι Ο MLSE αποτελεί benchmark 14

Tο κριτήριο ZF Ο ισοσταθμιστής σχεδιάζεται έτσι ώστε να μηδενίζει τη διασυμβολική παρεμβολή (απαιτείται: εκτίμηση του καναλιού) y t = x t h ch t + n b (t) d t = x t h ch t h eq t + n b t h eq t h eq t h ch t = δ t ή H eq f H ch f = 1 Δηλαδή ένας ισοσταθμιστής ZF άπειρου μήκους είναι ένα αντίστροφο φίλτρο για το σύστημα του καναλιού: H eq f = 1 H ch f Βασικό μειονέκτημα: δε λαμβάνει υπόψη το θόρυβο με αποτέλεσμα να προκαλεί ενίσχυση στις συχνότητες όπου η απόκριση συχνότητας του καναλιού παρουσιάζει μεγάλες βυθίσεις. 15

Tο κριτήριο MMSE (1/3) Ο ZF παρουσιάζει σοβαρό πρόβλημα ενίσχυσης του θορύβου σε περιπτώσεις καναλιών με συχνοτικά βυθίσματα (διαλείψεις) Μια λύση στο πρόβλημα αυτό, είναι να χαλαρώσουμε τη συνθήκη επιβολής μηδενισμών Επιλέγουμε τον ισοσταθμιστή ώστε η συνδυασμένη ισχύς: της ISI που απομένει και του προσθετικού θορύβου στην έξοδό του να ελαχιστοποιούνται υπό την έννοια του μέσου τετραγωνικού σφάλματος Ο ισοσταθμιστής που προκύπτει ονομάζεται ισοσταθμιστής ελάχιστου μέσου τετραγωνικού σφάλματος (Minimum Mean Square Error - MMSE) 16

Το κριτήριο MMSE (2/3) Ο ισοσταθμιστής MMSE σχεδιάζεται έτσι ώστε να ελαχιστοποιεί το μέσο τετραγωνικό σφάλμα στην έξοδό του: y t = x t h ch t + n b (t) d t = x t h ch t h eq t + n b t h eq t min E e t 2 = min E d t x t 2 Αν ο ισοσταθμιστής έχει άπειρο μήκος και ο θόρυβος είναι AWG: H eq f = 1 H ch f + N 0 Πλεονέκτημα: ελαχιστοποιεί το άθροισμα της ισχύος της ISI και του προσθετικού θορύβου και πετυχαίνει μικρότερο ρυθμό σφαλμάτων 17

Το κριτήριο MMSE (3/3) Για να υπολογίσουμε τον ισοσταθμιστή που ελαχιστοποιεί το MSE, υπολογίζουμε την παράγωγο του MSE ως προς τα c n (συντελεστές του φίλτρου ισοσταθμιστή h eq ) και τη θέτουμε ίση με το μηδέν οπότε προκύπτει ένα γραμμικό σύστημα διάστασης L L, όπου L το πλήθος συντελεστών του ισοσταθμιστή R y c = r ay Επειδή συνήθως δε γνωρίζουμε τις στατιστικές ποσότητες αυτοσυσχέτισης και ετεροσυσχέτισης, μπορούμε να τις εκτιμήσουμε με χρονικές μέσες τιμές Η εκτίμηση του χρονικού μέσου όρου της ποσότητας ray απαιτεί τη χρήση ακολουθίας εκμάθησης (training sequence) Αν ο ισοσταθμιστής έχει άπειρο μήκος και ο θόρυβος είναι AWG: H eq f = 1 H ch f + N 0 Πλεονέκτημα: ελαχιστοποιεί το άθροισμα της ισχύος της ISI και του προσθετικού θορύβου και πετυχαίνει μικρότερο ρυθμό σφαλμάτων. 18

Γραμμική και Μη-γραμμική Ισοστάθμιση Linear Equalizer, DFE

Γραμμική Ισοστάθμιση Βασική δομή ενός γραμμικού εγκάρσιου ισοσταθμιστή Η είσοδος στη διάταξη απόφασης είναι ένας γραμμικός συνδυασμός των εισόδων του ισοσταθμιστή στην τρέχουσα και τις προηγούμενες χρονικές στιγμές, με βάρη που καθορίζονται από το εκάστοτε κριτήριο: d k = N 2 n= N 1 c n y k n Ένας γραμμικός ισοσταθμιστής μπορεί να είναι είτε ZF είτε MMSE. 20

Μη Γραμμική Ισοστάθμιση (1/2) Βασική δομή ενός ισοσταθμιστή με επανατροφοδότηση αποφάσεων (DFE) Βασική ιδέα: Η ISI που οφείλεται σε προηγούμενα σύμβολα (που έχουν ανιχνευθεί) μπορεί να εκτιμηθεί και να αφαιρεθεί από το λαμβανόμενο σήμα πριν από την ανίχνευση των επόμενων συμβόλων. Η έξοδος του ισοσταθμιστή δίνεται από τη σχέση: N 2 d k = c n y k n + n= N 1 N 3 n=1 F n d k n 21

Μη Γραμμική Ισοστάθμιση (2/2) Ένας μη-γραμμικός ισοσταθμιστής μπορεί να είναι είτε ZF είτε MMSE, ανάλογα με το κριτήριο που χρησιμοποιείται στον υπολογισμό των συντελεστών του. Αν οι προηγούμενες αποφάσεις είναι σωστές και το μήκος του feedback φίλτρου αρκετά μεγάλο, επιτυγχάνεται πλήρης εξάλειψη της ISI. Πρόβλημα αποτελεί το φαινόμενο της διάδοσης λαθών: Λάθη σε προηγούμενες αποφάσεις διαδίδονται στα επόμενα σύμβολα μέσω του φίλτρου ανάδρασης (feedback) προκαλώντας ενδεχομένως νέα λάθη. Γενικά ο DFE παρουσιάζει καλύτερη συμπεριφορά από τους γραμμικούς ισοσταθμιστές. 22

Σύγκριση Viterbi και DFE (Proakis, κανάλι Β) 23

Προσαρμοστική Ισοστάθμιση

Προσαρμοστική Ισοστάθμιση (1/3) Για να υπολογίσουμε τους συντελεστές του MMSE ισοσταθμιστή, απαιτείται να λύσουμε ένα γραμμικό σύστημα R y c = r ay Η λύση του συστήματος είναι c opt = R y 1 r ay Σε πρακτικές εφαρμογές ισοσταθμιστών: για να βρούμε τον ισοσταθμιστή συνήθως εφαρμόζουμε μια επαναληπτική διαδικασία αποφεύγουμε την άμεση αντιστροφή του R y Η ιδέα της επαναληπτικής διαδικασίας οδήγησε στους προσαρμοστικούς ισοσταθμιστές Μία επανάληψη της διαδικασίας γίνεται κάθε φορά που λαμβάνεται ένα νέο ζεύγος δεδομένων εισόδου και εξόδου του καναλιού. 25

Προσαρμοστική Ισοστάθμιση (2/3) Βασική δομή ενός προσαρμοστικού γραμμικού ισοσταθμιστή Οι συντελεστές του ισοσταθμιστή δεν είναι σταθεροί αλλά ενημερώνονται με τη βοήθεια κατάλληλου αλγορίθμου ώστε να παρακολουθούν τις αλλαγές του καναλιού. Υπάρχει μια πληθώρα αλγορίθμων για την προσαρμογή των συντελεστών. 26

Προσαρμοστική Ισοστάθμιση (3/3) Βασικές αρχές προσαρμοστικής ισοστάθμισης: Συνήθως πριν τη μετάδοση της πληροφορίας, μεταδίδεται μια ακολουθία εκμάθησης που βοηθάει στην αρχική προσαρμογή των συντελεστών του ισοσταθμιστή. Διαδικασία σύγκλισης: με βάση το σήμα λάθους ek, ανανεώνονται συνεχώς οι συντελεστές του ισοσταθμιστή και μειώνεται επαναληπτικά η συνάρτηση ελαχιστοποίησης. Μετά τη σύγκλιση, ο αλγόριθμος είτε παγώνει τους συντελεστές (μέχρι να λάβει νέα ακολουθία εκμάθησης) είτε μεταβαίνει στην καθοδηγούμενη από τις αποφάσεις λειτουργία (χρησιμοποιεί τις αποφάσεις για τα σύμβολα πληροφορίας ως ακολουθία εκμάθησης). Τυφλοί προσαρμοστικοί αλγόριθμοι: σχετικά πρόσφατη κατηγορία αλγορίθμων που αξιοποιούν τα χαρακτηριστικά του μεταδιδόμενου σήματος και δεν απαιτούν ακολουθία εκμάθησης 27

Επιλογή προσαρμοστικού αλγορίθμου (1/2) Βασικοί παράγοντες της απόδοσης προσαρμοστικών αλγορίθμων: Ρυθμός σύγκλισης: Ο αριθμός των απαιτούμενων επαναλήψεων ώστε ο αλγόριθμος να συγκλίνει αρκετά κοντά στη βέλτιστη λύση, όταν η είσοδος είναι στάσιμη. Misadjustment: Παράμετρος που μετράει την απόκλιση του τελικού μέσου σφάλματος ενός αλγορίθμου (σφάλμα σταθερής κατάστασης) από το βέλτιστο ελάχιστο τετραγωνικό σφάλμα. Tracking: Σχετίζεται με την ικανότητα του αλγορίθμου να παρακολουθεί τις μεταβολές στο κανάλι. Υπολογιστική πολυπλοκότητα: Ο αριθμός των απαιτούμενων πράξεων για την εκτέλεση μιας επανάληψης του αλγορίθμου. Ιδιαίτερα σημαντική για αλγορίθμους πραγματικού-χρόνου. Αριθμητικές ιδιότητες: Αναφέρεται σε σφάλματα στρογγυλοποίησης ή σφάλματα αναπαράστασης που προκύπτουν κατά την υλοποίηση ενός αλγορίθμου. Συσσώρευση λαθών μπορεί να οδηγήσει σε αστάθεια. 28

Επιλογή προσαρμοστικού αλγορίθμου (2/2) Κριτήρια επιλογής ισοσταθμιστή στις κινητές επικοινωνίες: Κόστος υπολογιστικής πλατφόρμας. Κατανάλωση ισχύος. Ρυθμός δεδομένων και ταχύτητα κίνησης (επιδρούν στα χαρακτηριστικά του καναλιού, άρα καθορίζουν τις απαιτήσεις από τον ισοσταθμιστή). Μέγιστη αναμενόμενη χρονική διασπορά του καναλιού (υπαγορεύει τον απαιτούμενο αριθμό συντελεστών του ισοσταθμιστή, άρα επηρεάζει το κόστος του, το χρόνο επεξεργασίας κλπ). 29

Παραδείγματα προσαρμοστικών αλγορίθμων Ο αλγόριθμος LMS (Least Mean Square) Χρησιμοποιεί το κριτήριο MMSE. Αποτελεί απλοποίηση του αλγορίθμου steepest descent. Απαιτεί μόλις 2Ν + 1 πολ/σμούς ανά επανάληψη (για Ν + 1 συντελεστές): d n = w T N n y N (n) e n = x n d(n) w N n + 1 = w N n μe n y N n Το βήμα μ ελέγχει το ρυθμό σύγκλισης και την ευστάθεια. Το x(n) σχηματίζεται είτε από την ακολουθία εκμάθησης είτε από την έξοδο του στοιχείου απόφασης. 30

Σύγκλιση του LMS Σύγκλιση του αλγορίθμου LMS για διαφορετικά μεγέθη βήματος 31

Παραδείγματα προσαρμοστικών αλγορίθμων Ο αλγόριθμος RLS (Recursive Least Squares) Ελαχιστοποιεί το χρονικό μέσο όρο του σφάλματος: n n i * J ( n) e ( i, n) e( i, n) ˆ T d( n) w ( n 1) y( n), e( n) x( n) dˆ( n) R ( n 1) y( n) 1 k R λ ( n) ( n 1) ( n) R k y R y R y 1 1 1 T 1 ( n), ( n) ( n 1) ( n) ( n) ( n 1) T 1 w( n) w( n 1) k( n) e ( n) Η παράμετρος λ καθορίζει την ικανότητα παρακολούθησης αλλαγών. Ο ρυθμός σύγκλισης καθορίζεται από τον πίνακα R. i 1 Πιο γρήγορη σύγκλιση από τον LMS, αλλά και μεγαλύτερη πολυπλοκότητα (2.5Ν 2 + 4.5Ν) * 32

Σύνοψη τεχνικών ισοστάθμισης 33

Ειδικότερα θέματα Equalization of Non-Linear Channels: y(t) = NL{an}, όπου NL μη-γραμμικός τελεστής π.χ. Τέτοια εμφανίζονται λόγω μη γραμμικής ενίσχυσης Πιθανές μέθοδοι αντιμετώπισης: Μη-Γραμμικά μοντέλα (Volterra Series Expansion) Νευρωνικά Δίκτυα (Μη-Γραμμική Απεικόνιση) MLSE (Viterbi) (απαιτεί εκτίμηση μη-γραμμικού καναλιού) Blind (and Semi-Blind) Equalization: Ισοστάθμιση χωρίς χρήση (ή με ελάχιστη χρήση) ακολουθίας εκμάθησης Interference management in MIMO and distributed MIMO (σύγχρονο πεδίο έρευνας) 34

Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στo πλαίσιo του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Πατρών» έχει χρηματοδοτήσει μόνο την αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. 35

Σημειώματα

Σημείωμα Ιστορικού Εκδόσεων Έργου Το παρόν έργο αποτελεί την έκδοση 1.00. 37

Σημείωμα Αναφοράς Copyright Πανεπιστήμιο Πατρών, Καθ. Κώστας Μπερμπερίδης 2014. Κώστας Μπερμπερίδης. «Κινητά Δίκτυα Επικοινωνιών. Τεχνικές Ισοστάθμισης Διαύλου». Έκδοση: 1.0. Πάτρα 2014. Διαθέσιμο από τη δικτυακή διεύθυνση: https://eclass.upatras.gr/courses/ceid1109/ 38

Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά, Μη Εμπορική Χρήση Παρόμοια Διανομή 4.0 [1] ή μεταγενέστερη, Διεθνής Έκδοση. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. φωτογραφίες, διαγράμματα κ.λ.π., τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης τους στο «Σημείωμα Χρήσης Έργων Τρίτων». [1] http://creativecommons.org/licenses/by-nc-sa/4.0/ Ως Μη Εμπορική ορίζεται η χρήση: που δεν περιλαμβάνει άμεσο ή έμμεσο οικονομικό όφελος από την χρήση του έργου, για το διανομέα του έργου και αδειοδόχο που δεν περιλαμβάνει οικονομική συναλλαγή ως προϋπόθεση για τη χρήση ή πρόσβαση στο έργο που δεν προσπορίζει στο διανομέα του έργου και αδειοδόχο έμμεσο οικονομικό όφελος (π.χ. διαφημίσεις) από την προβολή του έργου σε διαδικτυακό τόπο Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιμοποιεί το έργο για εμπορική χρήση, εφόσον αυτό του ζητηθεί. 39

Διατήρηση Σημειωμάτων Οποιαδήποτε αναπαραγωγή ή διασκευή του υλικού θα πρέπει να συμπεριλαμβάνει: το Σημείωμα Αναφοράς το Σημείωμα Αδειοδότησης τη δήλωση Διατήρησης Σημειωμάτων το Σημείωμα Χρήσης Έργων Τρίτων (εφόσον υπάρχει) μαζί με τους συνοδευόμενους υπερσυνδέσμους. 40

Σημείωμα Χρήσης Έργων Τρίτων Το Έργο αυτό κάνει χρήση των ακόλουθων έργων: Οι εικόνες στις σελίδες: 20, 21, 23, 31 έχουν δημιουργηθεί με βάση αντίστοιχες εικόνες του βιβλίου: «Συστήματα Επικοινωνιών» των J. G. Proakis και M. Salehi, μετάφραση στα ελληνικά από τους Κ. Καρούμπαλο, Ε. Ζέρβα, Σ. Καραμπογιά και Ε. Σαγκριώτη, εκδόσεις Εθνικού και Καποδιστριακού Πανεπιστημίου Αθηνών. Οι εικόνες στις σελίδες: 11, 26, 33 έχουν δημιουργηθεί με βάση αντίστοιχες εικόνες του βιβλίου: Wireless Communications: Principles and Practice, T. S. Rappaport, Prentice Hall 41