Regge Trajectories in String and Large N Gauge Theories

Σχετικά έγγραφα
Math221: HW# 1 solutions

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

2 Composition. Invertible Mappings

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

D Alembert s Solution to the Wave Equation

CRASH COURSE IN PRECALCULUS

SPECIAL FUNCTIONS and POLYNOMIALS

Homework 8 Model Solution Section

Srednicki Chapter 55

Higher spin gauge theories and their CFT duals

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Section 8.3 Trigonometric Equations

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Second Order Partial Differential Equations

Section 7.6 Double and Half Angle Formulas

Example Sheet 3 Solutions

Finite Field Problems: Solutions

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

EE512: Error Control Coding

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Inverse trigonometric functions & General Solution of Trigonometric Equations

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Exercises to Statistics of Material Fatigue No. 5

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

Solutions to Exercise Sheet 5

Homework 3 Solutions

Variational Wavefunction for the Helium Atom

PARTIAL NOTES for 6.1 Trigonometric Identities

Math 6 SL Probability Distributions Practice Test Mark Scheme

4.6 Autoregressive Moving Average Model ARMA(1,1)

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Trigonometric Formula Sheet

Answer sheet: Third Midterm for Math 2339

EE101: Resonance in RLC circuits

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

The Spiral of Theodorus, Numerical Analysis, and Special Functions

If we restrict the domain of y = sin x to [ π 2, π 2

Right Rear Door. Let's now finish the door hinge saga with the right rear door

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

derivation of the Laplacian from rectangular to spherical coordinates

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

Section 9.2 Polar Equations and Graphs

Congruence Classes of Invertible Matrices of Order 3 over F 2

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Lecture 21: Scattering and FGR

The Simply Typed Lambda Calculus

Approximation of distance between locations on earth given by latitude and longitude

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

Section 7.7 Product-to-Sum and Sum-to-Product Formulas

Chapter 6 BLM Answers

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

Second Order RLC Filters

Matrices and Determinants

Statistical Inference I Locally most powerful tests

ST5224: Advanced Statistical Theory II

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Spherical Coordinates

Lifting Entry (continued)

Other Test Constructions: Likelihood Ratio & Bayes Tests

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

6.003: Signals and Systems. Modulation

Logsine integrals. Notes by G.J.O. Jameson. log sin θ dθ = π log 2,

The static quark potential to three loops in perturbation theory

Areas and Lengths in Polar Coordinates

Paper Reference. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced. Thursday 11 June 2009 Morning Time: 1 hour 30 minutes

Areas and Lengths in Polar Coordinates

Strain gauge and rosettes

Geodesic Equations for the Wormhole Metric

EE1. Solutions of Problems 4. : a) f(x) = x 2 +x. = (x+ǫ)2 +(x+ǫ) (x 2 +x) ǫ

Uniform Convergence of Fourier Series Michael Taylor

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

( y) Partial Differential Equations

Reminders: linear functions

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Differential equations

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Partial Differential Equations in Biology The boundary element method. March 26, 2013

the total number of electrons passing through the lamp.

Review Exercises for Chapter 7

Additional Results for the Pareto/NBD Model

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

Solution to Review Problems for Midterm III

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Transcript:

Regge Trajectories in String and Large N Gauge Theories Charles B. Thorn University of Florida CAQCD 2011 0-0

Outline 1. Introduction 2. One-loop Open String Amplitude 3. Open String Regge Trajectory through One Loop 4. Small t and Gauge Theory Limit 5. Large t 6. Discussion This work done in collaboration with Francisco Rojas 0-1

Introduction Infrared behaviors of planar open string theory and planar quantum field theory are identical. (Joel Scherk, 1971) All physical phenomena in large N QCD should also appear in planar open string theory There is a chance that in t Hooft limit, confinement may be more tractable in string theory than in field theory: e.g. for summing planar diagrams numerically, open string diagrams are better defined. This talk: perturbative open string physics or A closer look at results from 40 years ago Focus: Open string Regge trajectory α(t) = α t + 1 + Σ(t) with Σ(t) = O(g 2 ) 0-2

Projections: Even G-parity and S Massless Scalars Z = Trw L 0 1/2 = P + P 2 I. Nonabelian D-branes ( ln w ) 4 D/2 2π P ± 16π4 w 1/2 r ln 4 w (1 w1/2 ) 10 D S (1 ± wr ) 8 n (1 wn ) 8 n = 1, 2,, r = 1/2, 3/2, II. States even under b A r, a A n b A r, a A n for A > D + S. P ± = 16π4 w 1/2 2 ln 4 w [ (1 ± w r ) 8 (1 ± w r (1 wn ) + ) D 2+S (1 w r ) 10 D S ] 8 (1 wn ) D 2+S (1 + w n ) 10 D S 0-3

One Loop Correction Open String Coupling: g 2 2π = α sn = g2 sn 4π One Loop M Gluon Neveu-Schwarz Even G-Parity Amplitude M M = (g 2α ) M 2 (M + M M M ) ( ) D/2 1 M ± M = M 1 ( ) (10 D)/2 dq π 2M dθ 8π 2 α k P ± k=2 0 q ln q [ψ(θ m θ l, q)] 2α k l k m ˆP 1 ˆP2 ˆP M ± l<m +: Even and odd G enter loop with same sign : Even and odd G enter loop with opposite sign 0-4

ψ(θ, q) = sin θ n (1 q 2n e 2iθ )(1 q 2n e 2iθ ) (1 q 2n ) 2 ˆP = ɛ P + 2α k Hɛ H, Jacobi Transform: ln q = 2π 2 / ln w under which P + q 1 (1 w 1/2 ) 10 D S r(1 + q2r ) 8 n (1 q2n ) 8 P 2 4 (1 + w 1/2 ) 10 D S n(1 + q2n ) 8 n (1 q2n ) 8 0 = θ 1 < θ 2 < < θ N < π, θ ji = θ j θ i 0-5

where the average is evaluated with contractions: P l = 2α [ ] 1 k i 2 cot θ 2q 2n il + 1 q 2n sin 2nθ il i n=1 P i P l P i P l = 1 4 csc2 θ il n 2q2n 1 q cos 2nθ 2n il n=1 H i H j + χ + (θ ji ) = 1 2 θ 2(0)θ 4 (0) θ 3(θ ji ) θ 1 (θ ji ) = 1 2 sin θ ji 2 r q 2r sin 2rθ ji 1 + q 2r H i H j χ (θ ji ) = 1 2 θ 3(0)θ 4 (0) θ 2(θ ji ) θ 1 (θ ji ) = cos θ ji 2 sin θ ji 2 n q 2n sin 2nθ ji 1 + q 2n. 0-6

Some comments: M + M difference projects out odd G-parity states. Open strings end on N Dp-branes for p = D 1. S massless scalars: (1 w 1/2 ) 10 D S q 2 UV divergence absorbable in g (Neveu-Scherk) For 4 < D < 8 no other divergences! ( ) (10 D)/2 π ln q 0-7

Coupling Renomalization GNS (Goddard,Neveu-Scherk): temporarily suspend momentum conservation i k i = p, continue to p = 0 at end. Neveu-Scherk counterterm tree If D < 8, no subleading ultraviolet divergences D > 4: no infrared divergences: θ integrals at p = 0: with p 0 subtract and add Neveu-Scherk counterterm: I(p) = (I(p) C(p)) p=0 + C(p). 0-8

Open String Regge Trajectory (β(t) + δβ)s α(t)+δα βs α + δαβs α ln s + δβs α Compare loop at s to Tree M Tree 2g 2 ɛ 2 ɛ 3 ɛ 1 ɛ 4 Γ( α t)( α s) 1+α t Σ ± = 8g2 α 2 D/2 (8π 2 ) D/2 π 0 dθ 1 0 dq q ( ( ψ 2 (θ)[ln ψ] ) α t ( ) (10 D)/2 π P ± ln q α t X± [ln ψ] 1 4 ( ψ2 (θ)[ln ψ] ) α t [ ln ψ] + 1 4 sin 2 θ X ± = 1 4 [ ln ψ] 2 + χ ± (θ)χ ±(θ) χ 2 ±(θ) 2χ 2 ±(θ)[ ln ψ] ) 0-9

Next use the identity π 0 dθ ( [ln ψ] + 1 ) sin 2 θ = ( n=1 4q 2n sin 2θ 1 2q 2n cos 2θ + q 4n ) π 0 = 0 π 0 to replace each sin 2 θ term by [ ln ψ] : Σ ± = 8g2 α 2 D/2 (8π 2 ) ( D/2 dθ ( ψ 2 (θ)[ln ψ] ) α t 1 0 dq q ( ) (10 D)/2 π P ± ln q α t [ln ψ] X± 1 4 [( ψ2 (θ)[ln ψ] ) α t 1][ ln ψ] Σ ± formally vanish as t 0: the gluon remains massless! α(t) = 1 + α t + 1 2 (Σ+ Σ ) 1 + α t + Σ(t) ) 0-10

Contrary to appearances X ± are θ independent X + = 1 4 θ 4(0) 4 θ 3 (0) 4 E π θ 4(0) 4 θ 3 (0) 2 + E2 π 2 θ 3(0) 4 = 4q + O(q 2 ) X = 1 4 θ 4(0) 4 θ 3 (0) 4 + E2 π θ 3(0) 4 = O(q 2 ) 2 ) π E = (θ 6θ 3 (0) 2 3 (0) 4 + θ 4 (0) 4 θ 1 (0) θ 1 (0) = π 2 2πq + O(q2 ) small q behavior shown on extreme right θ 1 (0) θ 1 (0) = 1 + 24 n=1 q 2n (1 q 2n ) 2 0-11

Small t and the Field Theory Limit Small t probes the IR (hence field theory) regime. Integer powers t n, n > 0 in Σ(t) depend on whole range of q. Nonanalytic behavior at t = 0 comes from q 1 or w 0. Change q 1 dq 2π 2 (w ln 2 w) 1 dw to get w 0 behavior: ( ) 5 D/2 π dq ln q q (P +X + P X ) ( ) [ 3+D/2 dw 2π w ln w 4 + D + S 2 π 2 ( ) ] 2 2π ln w 0-12

Small w contribution Σ 8g2 α 2 D/2 (8π 2 ) D/2 δ ( ( ψ 2 (θ)[ln ψ] ) α t D + S 2 8 0 ( 2π ln w ( ) 3+D/2 dw 2π π dθ w ln w 0 [ α t [ln ψ] 2 + D + S 2 ( ) ] 2 2π 2π 2 ln w ) 4 ) [( ψ 2 (θ)[ln ψ] ) α t 1][ ln ψ]. New variables: w = e T and θ = πx. As T > e 1/δ ψ 2 (θ)[ln ψ] e x(1 x)t (1 e xt ) 2 (1 e (1 x)t ) 2 [ 1 T + e xt (1 e xt ) 2 + e (1 x)t ] (1 e (1 x)t ) 2 0-13

Nonanalyticity in t as t 0 from region 1 Λ < x(1 x)t < : Σ 8g2 α 2 D/2 ( α t Γ( 2 + α t + D/2) 2 (4π) D/2 4 Γ(D 4 + 2α duu 2 α t D/2 e uα t t) Λ D + S 2 [ Γ(α duu D/2 t + D/2) 2 ] ) t 4 Γ(D + 2α t) u α e uα t Γ(D/2)2 Γ(D) Λ If p + 1 0, a few integration by parts shows that for small ξ Λ duu p e uξ ξ p 1 Γ(p + 1) + P(ξ, Λ)e ξλ where P is a polynomial in ξ. In Σ this term is analytic at t = 0 as is the contribution for w away from 0. The first term dominates only if p+1 > 0 (D < 6 for 1st integral). 2nd integral is down by a factor of t. Σ 2g2 Γ(3 D/2)Γ( 2 + D/2) 2 ( t) 2+D/2 + O(α t ln( α t)) (4π) D/2 Γ(D 4) 0-14

The O(α t ln( α t)) term is to remind that the displayed first term is dominant only for D < 6. IR divergences are absent for D > 4. Reggeized gluon in D-dimensional gauge theory has a trajectory α(t) = 1 + C( t/µ 2 ) (D 4)/2. As D 4 from above, a ln( α t) dependence remains: Σ D 4 g2 4π 2 [ ] 2 D 4 + ln( α t) agreeing exactly with one loop gauge theory calculations. 0-15

Large t Behavior Return to q variables since large t controlled by small q Small q part of Σ: Σ(t) 4g2 α 2 D/2 (8π 2 ) D/2 π25 5D/2 2S α t π 0 dθ e α t 16q 2 sin 4 θ sin 2 θ δ 0 dq q ( ) 25 5D/2 2S 1 ln q + g2 α 2 D/2 δ ( ) 25 5D/2 2S dq 1 (8π 2 π25 5D/2 2S ) D/2 0 q ln q π [ ] dθ e α t 16q 2 sin 4 θ 1 csc 2 θ 0 First integral larger than the second by a factor of t 0-16

Consider the integral I δ 0 dq q ( ) p 1 π ln q 0 dθ sin 2 θe 16q2 α t sin 4 θ Large α t limits integation range to ln q 2 > ln(16 α t sin 4 θ): I π 2 ( 1 ) p 1 2 p 1 ln α t p 1 Applying this to Σ with p = 25 5D/2 2S gives Σ(t) 2α 2 g 2 (2α ) D/2 (2π) 2 D α t 24 5D/2 2S ( 2π ) 24 5D/2 2S ln α t as α t. 0-17

Summary of Results α(t) = 1 + α t + Σ(t) 2 Γ(3 D/2)Γ( 2 + D/2)2 Σ(t) 2g ( t) 2+D/2, t 0 Γ(D 4)(4π) D/2 Σ(t) 2g 2 α 2 (2α ) D/2 (2π) 2 D α t 24 5D/2 2S ( ) 24 5D/2 2S 2π ln α, t t 0-18

Conclusion: Σ v.s. t Graphs (D = 5) Large ln( α t): t Β Α t 150 100 50 0 0 2 4 6 8 10 ln Α t β = 4g 2 α 2 D/2 /(8π) D/2 0-19

0-20

Blow up of small t region (D = 5 gauge theory) 0-21

References [1] J. Scherk, Nucl. Phys. B31 (1971) 222-234. [2] A. Neveu and J. Scherk, Nucl. Phys. B 36 (1972) 155. [3] J. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998), hepth/9711200. [4] G. t Hooft, Nucl. Phys. B72 (1974) 461. [5] K. Bardakci and C. B. Thorn, Nucl. Phys. B626 (2002) 287, hep-th/0110301. [6] C. B. Thorn, Nucl. Phys. B 637 (2002) 272 [arxiv:hepth/0203167]. [7] R. Giles and C. B. Thorn, Phys. Rev. D16 (1977) 366. 0-22

[8] D. Chakrabarti, J. Qiu and C. B. Thorn, Phys. Rev. D 72 (2005) 065022, arxiv:hep-th/0507280. [9] D. Chakrabarti, J. Qiu and C. B. Thorn, Phys. Rev. D 74 (2006) 045018 [Erratum-ibid. D 76 (2007) 089901] [arxiv:hep-th/0602026]. [10] S. G. Naculich and H. J. Schnitzer, Nucl. Phys. B 794 (2008) 189 [arxiv:0708.3069 [hep-th]]; R. C. Brower, H. Nastase, H. J. Schnitzer and C. I. Tan, Nucl. Phys. B 814 (2009) 293 [arxiv:0801.3891 [hep-th]]. [11] A. Neveu and J. H. Schwarz, Nucl. Phys. B 31 (1971) 86. [12] A. Neveu, J. H. Schwarz and C. B. Thorn, Phys. Lett. B 35 (1971) 529. [13] P. Goddard and R. E. Waltz, Nucl. Phys. B 34 (1971) 99. 0-23

[14] R. C. Brower and C. B. Thorn, Nucl. Phys. B 31 (1971) 163. [15] P. Goddard and C. B. Thorn, Phys. Lett. B 40 (1972) 235. [16] S. Mandelstam, private communication, April 1971. [17] K. Kikkawa, B. Sakita, M. A. Virasoro, Phys. Rev. 184 (1969) 1701-1713. [18] H. J. Otto, V. N. Pervushin, D. Ebert, Theor. Math. Phys. 35 (1978) 308. [19] C. B. Thorn, Phys. Rev. D78 (2008) 106008. [arxiv:0809.1085 [hep-th]]. [20] R. R. Metsaev and A. A. Tseytlin, Nucl. Phys. B 298 (1988) 109. 0-24

[21] C. B. Thorn, Phys. Rev. D78 (2008) 085022. [arxiv:0808.0458 [hep-th]]. [22] A. Neveu and J. Scherk, Nucl. Phys. B 36 (1972) 317. [23] P. Goddard, Nuovo Cim. A 4 (1971) 349. [24] A. Erdélyi, W. Magnus, F. Oberhettunger, F. G. Tricomi, Higher Transcendental Functions, Bateman Manuscript Project, Volume 2, Chapter XIII, McGraw-Hill (1953). [25] Z. Kunszt, A. Signer and Z. Trocsanyi, Nucl. Phys. B 411 (1994) 397 [arxiv:hep-ph/9305239]; For earlier calculations, see R. K. Ellis and J. C. Sexton, Nucl. Phys. B 269, 445 (1986); Z. Bern and D. A. Kosower, Nucl. Phys. B 379, 451 (1992). [26] C. B. Thorn, Phys. Rev. D82 (2010) 125021. [arxiv:1010.5998 [hep-th]]. 0-25