Electric Potential and Energy

Σχετικά έγγραφα
b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates

Spherical Coordinates

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Answer sheet: Third Midterm for Math 2339

Approximation of distance between locations on earth given by latitude and longitude

Example 1: THE ELECTRIC DIPOLE

Homework 8 Model Solution Section

Parametrized Surfaces

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Section 8.3 Trigonometric Equations

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Matrices and Determinants

Jackson 2.25 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Variational Wavefunction for the Helium Atom

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Numerical Analysis FMN011

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Solutions to Exercise Sheet 5

derivation of the Laplacian from rectangular to spherical coordinates

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Example Sheet 3 Solutions

CURVILINEAR COORDINATES

Section 7.6 Double and Half Angle Formulas

Section 8.2 Graphs of Polar Equations

2 Composition. Invertible Mappings

Reminders: linear functions

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Homework 3 Solutions

1 String with massive end-points

the total number of electrons passing through the lamp.

Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Finite Field Problems: Solutions

D Alembert s Solution to the Wave Equation

Concrete Mathematics Exercises from 30 September 2016

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

החשמלי השדה הקדמה: (אדום) הוא גוף הטעון במטען q, כאשר גוף B, נכנס אל תוך התחום בו השדה משפיע, השדה מפעיל עליו כוח.

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Second Order Partial Differential Equations

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Derivations of Useful Trigonometric Identities

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Math221: HW# 1 solutions

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Exercises to Statistics of Material Fatigue No. 5

Solution to Review Problems for Midterm III


EE512: Error Control Coding

Srednicki Chapter 55

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Graded Refractive-Index

[1] P Q. Fig. 3.1

11.4 Graphing in Polar Coordinates Polar Symmetries

Charles Augustin COULOMB ( ) קולון חוק = K F E המרחק סטט-קולון.

The Simply Typed Lambda Calculus

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Section 9.2 Polar Equations and Graphs

Differential equations

Other Test Constructions: Likelihood Ratio & Bayes Tests

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν.

תרגול 5 פוטנציאל חשמלי ואנרגייה חשמלית

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

28.3. Orthogonal Curvilinear Coordinates. Introduction. Prerequisites. Learning Outcomes

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Inverse trigonometric functions & General Solution of Trigonometric Equations

Trigonometric Formula Sheet

Strain gauge and rosettes

Second Order RLC Filters

ST5224: Advanced Statistical Theory II

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

Statistical Inference I Locally most powerful tests

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

תרגול 1 חזרה טורי פורייה והתמרות אינטגרליות חורף תשע"ב זהויות טריגונומטריות

Every set of first-order formulas is equivalent to an independent set

CYLINDRICAL & SPHERICAL COORDINATES

Lecture 26: Circular domains

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Συστήματα Διαχείρισης Βάσεων Δεδομένων

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

CE 530 Molecular Simulation

Trigonometry 1.TRIGONOMETRIC RATIOS

Lifting Entry (continued)

3.5 - Boundary Conditions for Potential Flow

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Quadratic Expressions

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

6.3 Forecasting ARMA processes

Transcript:

Electric Potential and Energy Submitted by: I.D. 039033345 The problem: How much energy is needed to create the following configuration? The solution: Let φ i be the potential at the position of the charge q i as a result of all the other charges. φ i = i j kq j r j (1) Numbering the charges from the left upper corner in the clockwise direction we have ( q 1 φ 1 = q kq a kq a + kq ) (2) 2a ( kq q 2 φ 2 = q a + kq a kq ) (3) 2a q 3 φ 1 = q 1 φ 1 (4) q 4 φ 4 = q 2 φ 2 (5) U = 1 q i φ i = kq2 2 a ( 2 4) U < 0 (6) Then i U < 0 (7) From here we can conclude that the work needed to create this system is negative, therefore we need to invest energy in order to dissolve the system. 1

Electric Potential The problem: An infinite 1-D crystal structure is built of point charges along the x-axis with the same distance b between the sequential charges. The sign of the charges changes from each charge to the following one. The absolute value of each charge is q. What is the potential energy U of one charge? Hint: ln(1 + x) = x 1 2 x2 + 1 3 x3 1 4 x4 +... The solution: Let us look at some (say) positive charge at the point P and calculate the potential at this point due to the other charges kq ϕ = 2 r n=1 q( 1) n = 2k = 2kq ( 1) n nb b n n=1 n=1 = 2kq ( 1 + 12 b 13 + 14 )... = 2kq (1 12 b + 13 14 ) +... The potential energy is = 2kq b (1) (2) ln 2 (3) U = qϕ = 2 ln 2 kq2 b (4) 1

א. כדי למצוא את העבודה הדרושה לבניית המערכת יש לחשב את העבודה הדרושה להבאת כל אחד מהמטענים למקומו, לפי הסדר. נניח שקודם מביאים את המטען.2µc בשביל זה לא צריך להשקיע אנרגיה u1 = 0 ולכן לא מתבצעת עבודה. אחר כך מביאים את המטען 4µc למרחק של 1cm מהמטען.2µc הפוטנציאל בנקודה שאליה מביאים אותו הוא: 6 9 6 210 910 210 6 v2 = = = 1.8 10 v 2 4πε 0 0.01 10 העבודה הדרושה לכך: 6 u2 = 4 10 v2 = 7.2j אחר כך מביאים את המטען 6µc למרחק של 1cm מהמטען 2µc ולמרחק של 1cm מהמטען.4µc הפוטנציאל בנקודה שאליה מביאים אותו הוא: 6 6 210 410 6 6 6 v3 = + = 1.8 10 + 3.6 10 = 5.4 10 v 4πε 0 0.01 4πε 0 0.01 העבודה הדרושה לכך: 6 u3 = 6 10 v3 = 32.4j לכן סה"כ עבודה הדרושה לבניית המערכת היא: U = u + u + u = 0 + 7.2 + 32.4 = 39.6 j total 1 2 3 ב. הפוטנציאל בנקודה A שווה לסכום הפוטנציאלים הנוצרים כתוצאה מכל אחד מהמטענים בנפרד: 210 410 610 v 2.08 10 7.2 10 6 6 6 6 6 A = + + = + + 2 2 4πε 4 0 0.01 0.005 πε 0 0.005 4πε 0 0.005 + = 7 7 1.08 10 2.008 10 v 6 7 U = q(va v ) 10 = (2.008 10 0) = 20.08j ג.

1 את הפוטנציאל של מטען נקודתי בראשית ניתן לשב על ידי אינטגרל על השדה של המטען. נגדיר את הפוטנציאל באינסוף להיות אפס, ונקבל: r φ r φ = p q, הפוטנציאל E d r = r kq kq dx = x2 x r = kq r אם נסמן את מיקום המטען השלילי כ 0, ואת מיקום המטען החיובי כ: יהיה: φ r = kq r + kq r 1 p q φ r = kq r + kq r + = kˆr p r 2 kq = r (ˆr 1 1 p) (ˆr p) qr qr kq r 1 2 1 ˆr p) qr kq r + kq r kq r + ( 1 + r נקרב עבור מרחק גדול: 1 2 1 qr ) ˆr p qr kq ˆr p + 1 q 2 r 2 p 2 ) כדי למצוא את השדה החשמלי, צריך לבצע גראדיאנט של הפוטנציאל. ניתן לעבוד בקוארדינטות קרטזיות או קוארדינטות ספריות. בכל מקרה, למען הנוחות מומלץ להגדיר את כיוון z ככיוון אליו מצביע הדיפול. בכדוריות זה יראה כך: kˆr pẑ kp cos θ φ r = = r 2 r 2 E = φ = kp cos θ 1 ( r = kp 2 φ r = kˆr pẑ r 2 = kpz r 3 2 cos θ E = φ = kp z r = kp 3 r z kpz 1 3 r 3 = kpẑ r + 3kpz r 3 r 5 = k p 3( p r) r + r3 r 5 r 3 ˆr sin θ ) ˆθ r 3 בקרטזיות זה יראה כך: וקיבלנו את אותו השדה כמו זה שקיבלנו מחישוב ישיר.

Electric Potential and Energy The problem: A conducting sphere of radius R and charge +Q, enclosed by a grounded spherical shell (radius 2R) and surrounded by a spherical conductor with inner radius of 3R, outer radius of 4R and the total charge 2Q. Find the electric potential and the electric field as a function of r Find the work needed to bring a charge q from to the center of the system The solution: The boundary conditions are φ 2R = 0, grounded shell φ 3R = φ 4R, conductor Q 3 + Q 4 = 2Q, given (1) The potentials at the shells are φ 2R = kq 2R + kq 2 2R + kq 3 3R + kq 4 4R φ 3R = kq 3R + kq 2 3R + kq 3 3R + kq 4 4R φ 4R = kq 4R + kq 2 4R + kq 3 4R + kq 4 4R Solving the equations above, we get (2) (3) (4) Q R = Q, Q 2R = 1 5 Q, Q 3R = 6 5 Q, Q 4R = 4 5 Q Substituting the charges into the formulas for the potential of hollow spheres gives kq 2R, r < R kq( 1 r 1 2R ), R < r < 2R φ = kq( 6 5r 3 5R ), 2R < r < 3R 1 kq 5 R, 3R < r < 4R 4kQ 5r, r > 4R (5) 1

The electric field is the derivative of the potential: 0, r < R kq ˆr, R < r < 2R r 2 E = 6 kq 5 ˆr, 2R < r < 3R r 2 0, 3R < r < 4R 4 kq 5 ˆr, r > 4R r 2 The work needed to bring a charge +q from to the center is U = q φ = q(φ c φ ) = kqq 2R (6) (7) 2

W = F dr = q E dr עבודה מוגדרת כזכור: אם נפרק את השדה לסכום של מספר שדות, ונזכר שתמיד נתן להפוך בסדר בין סכום לאינטגרל, נקבל: W = q E i dr i E i dr = q i ולכן ניתן לחשב עבודה בנפרד עבור כל שדה. בבעיה הנוכחית, נחשב את העבודה מול השדה של הספירה, ואת העבודה מול הלוח האינסופי בנפרד. במעבר מ A ל B העבודה מול הספירה היא: W = R r kq r 2 dr = kq r R r = kq R + kq r = Q ( 1 4πε 0 r 1 ) R השדה של הלוח, לעומת זאת, קבוע, וכיוונו מנוגד לכיוון האינטגרציה, ולכן העבודה היא: R σ W = dr = σ R 0 2ε 0 2ε 0 W = Q 4πε 0 ( 1 r 1 ) σ R R 2ε 0 וסך הכל העבודה היא ועכשיו לעבודה במעבר מ A ל C מול הספירה, החישוב של קודם עדיין בסדר, עם ההבדל שהמרחק גדל קצת: W = Q ( 1 4πε 0 r 1 ) 2R מול המשטח, העבודה נשארת אותו הדבר. ניתן לראות זאת על ידי הקוסינוס שמופיע בדוט, או על ידי תכנון מסלול לא ישיר, מ A ל B ורק אז ל C ולכן סך העבודה: W = Q ( 1 4πε 0 r 1 ) σ R 2R 2ε 0 1

Electric Potential and Energy The problem: A solid sphere of the radius R is homogeneously charged with the charge Q and put inside an infinite hollow cylinder. The cylinder inner and outer radii are a and b, R < a < b. The cylinder is homogeneosly charged with the charge density ρ. The center of the sphere is on the cylinder axis. Find the potential in the whole space. Hint: Gauss law and superposition. The solution: First we find the field of the cylinder: 1 dre r r dr = 4πkρ in the cylindrical coordinates (r, ϕ, z). We have E r = 4πk r 0, r < a ρr dr = 2πkρ(r r 0 2 a 2 )/r, a < r < b 2πkρ(b 2 a 2 )/r, r > b The potential is calculated as in the previous problem: r 2πkρ(b 2 a 2 ) ln(r/b), φ c = E r dr = 2πkρ[(b b 2 r 2 )/2 a 2 ln(b/r)], 2πkρ[(b 2 a 2 )/2 a 2 ln(b/a)], r > b a < r < b r < a (1) (2) (3) Attention: Here we cannot put φ = 0 for r since the cylinder is infinite and charges are present at arbitrarily large distances from the coordinate origin: indeed φ when r. We, therefore, arbitrarily chose φ = 0 at r = b. For the sphere we have (in spherical coordinates (R, θ, φ), R 2 = z 2 + r 2 ) { kq/r 2, R > R E R = kqr/r 3, R < R (4) The potential of the sphere { kq/r, φ s = kq/r + kq(r 2 R 2 )/2R 3, The total potential is φ = φ c + φ s. R > R R < R (5) 1

k ( q, -I- q~-i.&(3 -tq4) E ~, r<..4a) = Yl ȳ-j q J.. - (&f,+ q~.,.~) - r;) 1, ;- Q K('If -Iq;) 6 (~'<<. rl3/zj '".. 1-r ~C,3 =-;;J Q., ȳ.) E- (Re Y C;;J/?) -- K ~, - ȳ-j. C(r~lZ) - K CJ,Y - t(' k ('1 -I '1~-f C-t3-1'111) Ȳ K [ '1, -+ q2- -t C(3) J K if 4 Y L.f f2 ~ 'r1. ~-f q~) -l K 73 of h!j4 r- 3/l 4Jl =:. ~'tl 4 K3~.f f!-93.(.f1 '14 y- ~R 3R t;n - X -..!.-. ~ y-). t ':...J ~ 4 3 f..i- ;;.12) ;}-!Z

Cf.3 :: 3 a. [,/ ~ :: E,. =- f2 ').f2 'irjl.. C~~ 312 '-In - - - - 1").f2 - K. (')./2 -/2) 1-( r\ (llrz- ]12.') K ()2 &~ K a) 11 e,~~ ~Q~ f..., > - - - - - - 'f - - ;;)-c, a-c;> '-1/2 ';).ti [2 ffrz (d \2):'\ ':"C1 ~~ ~ -:nfl~"":"i --fig "3() ~~ l'~ --::-1~'7'. )--' JO~ ~ >10" ~x...) 7\"' h- r~g,.l~ V)t, ~d\(, J"\I.,,,\ ~ ~"" ~ :'\1 "'?f \ Y J13' "'':' r~ -G- ""I~\ ~... '.)'~ ':'".~0 rl. ":' "'"), <DO ~ \~ ))J\ ced',- \~VJ "=-' ~\ - ""---

Edited by Foxit PDF Editor Copyright (c) by Foxit Software Company, 2004-2007 For Evaluation Only. +d +

Energy of a disc and a rod Submitted by: I.D. 040439358 The problem: A disc of a radius R is charged uniformly with charge density σ. A rod of a length b is charged uniformly with charge density λ. The rod is perpendicular to the disc (which is in the x y plane) and positioned on the axis of symmetry of the disc. The center of the rod is at z > b 2. 1. Calculate, from the direct integration of the field, the force between the objects. 2. What is the flux from the rod that is passing through the disc? 3. Find the mutual energy of the two objects and derive from it the expression for the force. The solution: 1. The force between the objects Let r 1, r 2 be the positions of charge elements on the disc and the rod, respectively. r 1 = (r cos θ, r sin θ, 0) (1) r 2 = (0, 0, z) (2) r = r 2 r 1 = ( r cos θ, r sin θ, z) (3) Because of the symmetry of the problem the force is in the z direction only. The electric field due to the charge element dq on the disc is de z = k dq z r 3 dq = σda = σrdrdθ The electric field of the disc is E z = R 2π 0 = 2πkσz 0 R The force acting on the rod is F = z+ b 2 z b 2 kσrdrdθz ((r cos θ) 2 + (r sin θ) 2 + z 2 ) = kσz 3 2 ) ( rdr = 2πkσ 1 0 (r 2 + z 2 ) 3 2 E z ẑλdz = 2πkσλ b + R 2 + R 0 ) z R 2 + z 2 rdr (r 2 + z 2 ) 3 2 The force acting on the disc is the same but in the opposite direction. 2π 0 (4) (5) dθ (6) (7) ( z 2) b 2 ( R 2 + z + b ) 2 ẑ (8) 2 2. What is the flux from the rod that is passing through the disc? The force acting on the disc is F = Eσda = σ E z da The requested flux is Φ = E z da (9) (10) 1

Then Φ = F σ = 2πkλ b + R 2 + ( z 2) b 2 ( R 2 + z + b ) 2 (11) 2 3. The mutual energy of the two objects The potential due to the disc on the z-axis is (z > 0) φ(z) = 2πkσ( R 2 + z 2 z) (12) The mutual energy of the disc and the rod is z+ b 2 U = λ φ(z )dz = 2πkσλ z b 2 But writing in a different way Then U = z+ b 2 z b 2 z+ b 2 z b 2 dz ( R 2 + z 2 z ) (13) dz f(z ) (14) F z = du dz = f(z = z b 2 ) f(z = z + b 2 ) (15) ( = 2πkσλ b + R 2 + z 2) b 2 ( R 2 + z + b ) 2 (16) 2 2