A COMPUTATIONAL METHOD BASED ON A STIFFNESS APPROACH FOR METAL STRUCTURES CONTAINING CABLE-ELEMENTS

Σχετικά έγγραφα
ΕΛΕΓΧΟΣ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ ΧΑΛΥΒ ΙΝΩΝ ΦΟΡΕΩΝ ΜΕΓΑΛΟΥ ΑΝΟΙΓΜΑΤΟΣ ΤΥΠΟΥ MBSN ΜΕ ΤΗ ΧΡΗΣΗ ΚΑΛΩ ΙΩΝ: ΠΡΟΤΑΣΗ ΕΦΑΡΜΟΓΗΣ ΣΕ ΑΝΟΙΚΤΟ ΣΤΕΓΑΣΤΡΟ

Η ΣΗΜΑΣΙΑ ΤΗΣ ΜΗ ΓΡΑΜΜΙΚΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΓΙΑ ΤΟΝ ΣΧΕ ΙΑΣΜΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ

Other Test Constructions: Likelihood Ratio & Bayes Tests

2 Composition. Invertible Mappings

Strain gauge and rosettes

ΣΤΑΤΙΚΗ ΜΗ ΓΡΑΜΜΙΚΗ ΑΝΑΛΥΣΗ ΚΑΛΩ ΙΩΤΩΝ ΚΑΤΑΣΚΕΥΩΝ

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

ΣΥΓΚΡΙΣΗ ΑΝΑΛΥΤΙΚΩΝ ΚΑΙ ΑΡΙΘΜΗΤΙΚΩΝ ΜΕΘΟ ΩΝ ΓΙΑ ΤΗ

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Matrices and Determinants

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Finite Field Problems: Solutions

derivation of the Laplacian from rectangular to spherical coordinates

EE512: Error Control Coding

The Simply Typed Lambda Calculus

Section 8.3 Trigonometric Equations

Αλληλεπίδραση Ανωδοµής-Βάθρων-Θεµελίωσης-Εδάφους σε Τοξωτή Οδική Μεταλλική Γέφυρα µε Σύµµικτο Κατάστρωµα

Every set of first-order formulas is equivalent to an independent set

Congruence Classes of Invertible Matrices of Order 3 over F 2

ADVANCED STRUCTURAL MECHANICS

Second Order RLC Filters

ΜΕΤΑΛΛΙΚΑ ΥΠΟΣΤΥΛΩΜΑΤΑ ΥΠΟ ΘΛΙΨΗ ΚΑΙ ΚΑΜΨΗ

Introduction to Theory of. Elasticity. Kengo Nakajima Summer

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Πολιτικών Μηχανικών Τοµέας οµοστατικής ΑΛΛΗΛΕΠΙ ΡΑΣΗ ΑΣΤΟΧΙΑΣ ΑΠΟ ΛΥΓΙΣΜΟ ΚΑΙ ΠΛΑΣΤΙΚΟΠΟΙΗΣΗ ΣΕ ΜΕΤΑΛΛΙΚΑ ΠΛΑΙΣΙΑ

Εφαρµογή µεθόδων δυναµικής ανάλυσης σε κατασκευές µε γραµµική και µη γραµµική συµπεριφορά

Concrete Mathematics Exercises from 30 September 2016

A Note on Intuitionistic Fuzzy. Equivalence Relation

Homework 3 Solutions

Example Sheet 3 Solutions

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

MECHANICAL PROPERTIES OF MATERIALS

Numerical Analysis FMN011

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

( ) 2 and compare to M.

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

6.3 Forecasting ARMA processes

Assalamu `alaikum wr. wb.

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

The challenges of non-stable predicates

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

C.S. 430 Assignment 6, Sample Solutions

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Second Order Partial Differential Equations

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Instruction Execution Times

Statistical Inference I Locally most powerful tests

Inverse trigonometric functions & General Solution of Trigonometric Equations

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

Math 6 SL Probability Distributions Practice Test Mark Scheme

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

CRASH COURSE IN PRECALCULUS

Reminders: linear functions

4.6 Autoregressive Moving Average Model ARMA(1,1)

Approximation of distance between locations on earth given by latitude and longitude

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ

ΑΛΛΗΛΕΠΙ ΡΑΣΗ ΜΟΡΦΩΝ ΛΥΓΙΣΜΟΥ ΣΤΙΣ ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ

ΑΝΩΤΑΤΗ ΣΧΟΛΗ ΠΑΙ ΑΓΩΓΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΠΑΡΑΔΟΤΕΟ ΕΠΙΣΤΗΜΟΝΙΚΗ ΕΡΓΑΣΙΑ ΣΕ ΔΙΕΘΝΕΣ ΕΠΙΣΤΗΜΟΝΙΚΟ ΠΕΡΙΟΔΙΚΟ

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ST5224: Advanced Statistical Theory II

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

Tridiagonal matrices. Gérard MEURANT. October, 2008

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

New bounds for spherical two-distance sets and equiangular lines

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Homework 8 Model Solution Section

Areas and Lengths in Polar Coordinates

Homomorphism of Intuitionistic Fuzzy Groups

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in


ΚΒΑΝΤΙΚΟΙ ΥΠΟΛΟΓΙΣΤΕΣ

w o = R 1 p. (1) R = p =. = 1

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Operational Programme Education and Lifelong Learning. Continuing Education Programme for updating Knowledge of University Graduates:

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

The ε-pseudospectrum of a Matrix

Commutative Monoids in Intuitionistic Fuzzy Sets

«Χρήσεις γης, αξίες γης και κυκλοφοριακές ρυθμίσεις στο Δήμο Χαλκιδέων. Η μεταξύ τους σχέση και εξέλιξη.»

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

ΙΕΡΕΥΝΗΣΗ ΜΕΘΟ ΩΝ ΣΧΕ ΙΑΣΜΟΥ

Démographie spatiale/spatial Demography

Uniform Convergence of Fourier Series Michael Taylor

ΠΕΡΙΕΧΟΜΕΝΑ. Κεφάλαιο 1: Κεφάλαιο 2: Κεφάλαιο 3:

Areas and Lengths in Polar Coordinates

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

On a four-dimensional hyperbolic manifold with finite volume

Transcript:

A COMPUTATIONAL METHOD BASED ON A STIFFNESS APPROACH FOR METAL STRUCTURES CONTAINING CABLE-ELEMENTS Angelos Liolios Civil Engineer, Researcher Democritus University of Thrace, Department of Civil Engineering Institute of Structural Mechanics and Earthquake Engineering GR-67100 Xanthi, Greece e-mail; liolios@civil.duth.gr Aris Avdelas Professor Aristotle University of Thessaloniki, Department of Civil Engineering Institute of Steel Structures GR-541 24 Thessaloniki, Greece e-mail: avdelas@civil.auth.gr Asterios Liolios Professor Democritus University of Thrace, Department of Civil Engineering Institute of Structural Mechanics and Earthquake Engineering GR-67100 Xanthi, Greece e-mail; liolios@civil.duth.gr 1. SUMMARY This paper presents a simple numerical procedure for the static analysis of linearly elastic metal structures, containing cable-like members. The procedure is based on a version of the direct Stiffness Method of Structural Analysis and on a relative Equivalence Principle, proposed by G. Nitsiotas and holding for problems with unilateral constraints. The Finite Element Method is used and a linear complementarity problem with a reduced number of unknowns is finally solved. 2. INTRODUCTION Structures containing cable-like members appear very often in the praxis of Civil Engineering, see e.g. recently in Greece the steel structures in the Athens Olympic Campus (Olympic Games 2004) or the stay-cable system of the Rion-Antirion bridge [1,2]. The problem of such structures containing cable-like members has its origin in the design of some metal structures, such as bridge trusses with counters or lattice struts with counterdiagonals. As well-known, the cable-like members can undertake tension but buckle and 142

become slack and structurally ineffective when subjected to a sufficiently large compressive force. Thus the governing conditions take an equality as well as an inequality form. So, the problem of structures containing as above cable-like members belongs to the so-called Inequality Problems of Mechanics, as their governing conditions are of both, equality and inequality type [3-6]. It is a high non-linear problem, requiring special treatment techniques [12-14]. In the early analysis attempts, many of these structures have been analyzed by a trial-anderror technique requiring repeated analysis of the structures for various loading systems. However, it should be noted that convergence to the correct solution by such iterative procedures is not always guaranteed. A more realistic treatment of the problem has been obtained by quadratic programming methods [3-4]. Further, the variational or hemivariational inequality concept has been used for the rigorous mathematical investigation of the problem [5,9]. The early numerical realizations of these approaches were based mainly upon the principle of minimum complementary energy [3,6]. Thus, an equivalence principle for the analysis of statically undetermined structures with unilateral constraints has been proven by G. Nitsiotas [3]. On the other hand, most of the available computer programs are based on the Displacement Method of structural Analysis. Consequently it seems more advantageous to combine the afore-mentioned equivalence principle with the displacement method to obtain a simple numerical procedure for the analysis of such structures. The aim of this paper is to deal with the development of a simple numerical procedure for the static analysis of linearly elastic metal structures containing cable-like members by using a version of the direct Stiffness (Displacement) Method of Structural Analysis. The present procedure is based on the Finite Element Method and the Equivalence Principle, proposed by G. Nitsiotas in [3]. Using this principle, the analysis of such structures can be reduced to a Linear Complementarity Problem (LCP), which can be solved by various effective quadratic programming algorithms. A numerical example shows the direct applicability on the computer and the effectiveness of the procedure presented herein. 3. METHOD OF ANALYSIS 3.1 The Problem Formulation A linearly elastic metal structure containing N cable-like members is considered. The structure is discretized according to the Finite Element Method. For the cables, pin-jointed bar elements with unilateral behavior are used. This unilateral behavior for the i-th cableelement ( i = 1,,N) is expressed by the following relations [3,10]: e i = F 0i. s i + e i0 - v i (1) s i 0, v i 0, s i v i = 0. (2a,b,c) Here e i, F 0i, s i, e i0 and v i denote the strain (elongation), natural flexibility constant, stress (tension), initial strain and slackness, respectively. From (1) it is clear that the slackness vi can be considered as an unknown initial strain which constitutes a reversible negative elongation [3]. Further, relations (2) express that either a non-negative stress-tension or a non- negative slackness exists on any cable. 143

For the remaining structure (besides the cables), the usual linearly elastic finite element models, which exhibit a bilateral behaviour, are used. 3.2 The Equivalence Principle and Stiffness Approach Now the Equivalence Principle, proposed by G. Nitsiotas in [3], is applied for the whole structure. According to this principle, the structure under consideration behaves statically as an equivalent, linearly elastic structure, under the condition that in each cable-element either a non-negative stress or a fictitious, unknown, non- negative slackness appears-see rels (2). Thus, collecting in (Nx1) vectors t and v the stress and slackness behaviour of all the N cable-elements, corresponding, the following Linear Complementarity Conditions hold: t 0, v 0, t T v = 0. (3a, b, c) Further, following the Stiffness (Displacement) Method of Structural Analysis, we consider the cable-element as solidified rods and we assume that the so-modified structure is a statically stable one with bilateral rod-elemenets. So, the tension vector t is decomposed as follows [10]: t = C. v + t 0 (4) Here t 0 is the stress vector of the solidified cable-elements, now acting as normal bilateral rods, due to external actions and C is the influence matrix of v on t. For both it is assumed a linearly elastic, bilateral behavior for the stable structure, where. the cables are considered as already solidified bars. So, the natural stiffness matrix C is symmetric and in general positive semi-definite. Thus, if t 0 and C are known, then vectors t and v can be determined by solving the Linear Complementarity Problem (LCP) formed by relations (3) and (4). For the solution of this problem, various effective algorithms are available [9]. Most of these algorithms reduce the above linear complementarity problem to a quadratic programming one [3-8] of the form: Min{ (1/2) v T C. v + v T t 0 / s.t. v 0 } (5) So, e.g., the sign constraints (3b,c) being the only side-conditions, this problem can be solved easily by the algorithm of Hildreth and D'Esopo [3, 8]. After the previous preparation we can now formulate the following numerical procedure for the static analysis of metal structures containing cable like members: - a) Considering the cables as having been solidified (normal bilateralbars), the vector t0 due to external actions is determined by the Finite Element Method. - b) Under the same assumption and by the same method as in (a), the influence matrix C is determined. In this matrix, Cij is the stress (axial force) in the solidified cable-element i caused by a unit-shortening vj = 1 imposed in the solidified cable-member j, (i,j = 1,,N). 144

- c) The Linear Complementarity Problem of rels. (3) and (4) is solved to provide the sought vector v. So it is computed which cable-elements are activated (under tension) and which are not (under non-zero slackness). - d) The final stress state of.the structure is determined by taking into account the external actions and the computed forces t of the active cable-elements. Thus, the whole procedure requires the linear elastic analysis of the modified (with solidified cable-elements) structure (N+2) times, where N is the number of the cables, and the solution of a quadratic programming problem or a LCP. Alternatively, after having computed t, the structure is analyzed due to external actions by omitting the slack cables for which stage (c) has given zero tension values. 4. NUMERICAL EXAMPLE The presented method is applied to a problem which is simple enough to permit reasonable assessment of the results, and realistic enough to demonstrate applicability and effectiveness of the method. As shown in Fig. 1, the example problem considers a steel plane frame structure, with elastic modulus Ε =21.10 7 KN/m 2, reference bending stiffness EI c = 6300 knm 2 and ten (N = 10) cable members with cross-sectional area Fr = 5 cm 2. These cables are placed as counter - diagonals and it is not known in advance which of them are activated or not by the given static loads or by a dynamic excitation, e.g. earthquake one. The horizontal loads correspond to the so-called equivalent static loading according to Greek Aseismic Code (2000) and to wind loads. 18 KN 52 KN/m 180 KN 220 KN 24 KN 16I c 20I c 22I c 18I c 2 4 6 8 4I c 5I c I c 2I c 6I 1 3 5 7 c 32KN/m 3,0 m 10I c 14I c 16I c 12I c 10 8 KN/m 8I c 16I c 9 12I c 4,1 m 4,6 m 3,4 m 4,9 m 3,1 m Fig. 1. The steel frame strengthened with 10 cable-elements. The application of the presented numerical procedure gives first the values of the slackness of the no activated cable-elements: v 1 = 0,8877*10-3 m, v 3 = 11,7632*10-3 m, v 5 = 11,0132*10-3 m, v 8 = 11,0478*10-3 m, v 10 = 1,2988*10-3 m. 145

Further, the elements of the cable-stress vector t, where: t = [S 1, S 2,, S 10 ] T, are computed to have the following values (in kn): and S 1 = S 3 = S 5 = S 8 = S 10 = 0.0, S 2 = 16,76 kn, S 4 = 272,11 kn, S 6 = 19,96 kn, S 7 = 268,65 kn, S 9 = 21,86 kn. Thus, cables 2,4,6,7 and 9 are the only ones active, having zero slackness. These cables remain, whereas the other cables 1,3,5,8 and 10 can be considered as eliminated (or having F r = 0). Fig. 2. SAP2000: Bending Moments Diagramme (in knm) for the frame with the 5 active cable-elements. Finally, by using SAP2000 [11], the final stress state is computed. In Fig. 2 is shown indicatively the final Bending Moments Diagram for the frame containing the active cableelements only. 146

Fig. 3. SAP2000: Bending moments diagramme (in knm) for the bare frame (without cable-elements). For comparison reasons, in Fig. 3 is shown indicatively the final Bending Moments Diagram for the frame without cable-elements (bare frame). 5. CONCLUDING REMARKS A simple numerical procedure for the static analysis of metal structures, containing cablelike members, has been presented herein. The procedure is based on the direct application of an Equivalence Principle proposed by G. Nitsiotas in [3] for such structures and on a version of the Direct Stiffness Method of Structural Analysis. As it has been proved in an example problem, the numerical implementation of the procedure can be easily obtained by using generally available programs of the finite element method and of optimization (quadratic programming). So it can be computed which of the cable-elements are activated and which are not in response to the acting loading system. 147

6. REFERENCES [1] Ermopoulos, J.C. (2005), Steel Structures in the Athens Olympic Games 2004 Campus. In: Galoussis, E., Ermopoulos, J. and Kalfas, Ch. (eds.), 5 th Nat. Conf. on Metal Structures- Proceedings, 2005, vol. II, pp. 17-28, DUTh, Xanthi. [2] Papanikolas, P. and Liolios, A. (2005) The Stay-cable System of Rion-Antirion Bridge, In: Galoussis, E., Ermopoulos, J. and Kalfas, Ch. (eds.), 5 th Nat. Conf. on Metal Structures- Proceedings, 2005, vol. II, pp. 196-205, DUTh, Xanthi.. [3] Nitsiotas, G. (1971). "Die Berechnung statisch unbestimmter Tragwerke mit einseitigen Bindungen", Ingenieur-Archiv, vol. 41, pp. 46-60. [4] Maier, G. (1968). "A Quadratic Programming Approach for Certain Classes of Nonlinear Structural Problems", Meccanica, Vol. 3, pp. 121-130. [5] Panagiotopoulos, P.D. (1985), "Inequality Problems in Mechanics and Applications. Convex and Nonconvex Energy Functions", Birkhäuser Verlag, Basel Boston. [6] Zarghamee, M.S. (1971) "Analysis of Structures by Quadratic Programming", J. Enging. Mech. Div., Proc. ASCE, Vol. 97, EM5, pp. 1495-1502. [7] Cottle, R.W. (1979), "Fundamentals of Quadratic Programming and Linear Complementarity", in M.Z. Cohn, D.E. Grierson and G. Maier (Eds.), "Engineering Plasticity by Mathematical Programming", Pergamon Press, Oxford. [8] Künzi, H.P. und Krelle, W. (1962). "Nichtlineare Programmierung", Springer- Verlag, Berlin. [9] Panagiotopoulos, P. (1993). Hemivariational Inequalities. Applications in Mechanics and Engineering, Springer Verlag, Berlin. [10] Liolios, Ang. (2007). Numerical Simulation of Structures with Unilateral Constraints and Solution by the Finite Element Method, Graduate Degree Thesis, Department of Civil Engineering, Democritus University of Thrace, Xanthi, Greece. [11] Computers and Structures, Inc. (2005). SAP2000, Integrated Finite Element Analysis and Design of Structures, Berkeley. [12] Maniadis, E. and Gantes, Ch. (2005). Special Issues of nonlinear Analysis of Cables and cable Structures. In: In: Galoussis, E., Ermopoulos, J. and Kalfas, Ch. (eds.), 5 th Nat. Conf. on Metal Structures- Proceedings, 2005, vol. II, pp. 297-304, DUTh, Xanthi. [13] Michaltsos, G.T. and Raftoiannis, I.G. (2005). Stability of Harp-type Cable-stayed Bridge s Pylon under Time-depended Loading. In: Galoussis, E., Ermopoulos, J. and Kalfas, Ch. (eds.), 5 th Nat. Conf. on Metal Structures- Proceedings, 2005, vol. II, pp. 180-187, DUTh, Xanthi. [14] Michaltsos, G.T., Ermopoulos, J.C. and Konstantakopoulos, T. (2003). Preliminary Design of Cable-stayed Bridges for vertical static Loads, Jnl Struct. Engineeering and Mechanics, vol. 15(6), pp. 1-15. 148

ΜΙΑ ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΜΕ ΤΗΝ ΜΕΘΟ Ο ΥΣΚΑΜΨΙΑΣ ΜΕΤΑΛΛΙΚΩΝ ΦΟΡΕΩΝ ΜΕ ΚΑΛΩ ΙΑ Άγγελος Λιώλιος Πολιτικός Μηχανικός ηµοκρίτειο Πανεπιστήµιο Θράκης Τµήµα Πολιτικών Μηχανικών, Τοµέας οµικών Κατασκευών Εργ. Εφηρµοσµένης Στατικής και υναµικής των Κατασκευών Ξάνθη, Ελλάδα e-mail: liolios@civil.duth.gr Άρης Αβδελάς Καθηγητής Αριστοτέλειο Πανεπιστήµιο Θεσσαλονίκης Τµήµα Πολιτικών Μηχανικών, Τοµέας Επιστήµης και Τεχνολογίας των Κατασκευών Εργ. Μεταλλικών Κατασκευών Θεσσαλονίκη, Ελλάδα e-mail: avdelas@civil.auth.gr Αστέριος Λιώλιος Καθηγητής ηµοκρίτειο Πανεπιστήµιο Θράκης, Τµήµα Πολιτικών Μηχανικών, Τοµέας οµικών Κατασκευών, Εργ. Εφηρµοσµένης Στατικής και υναµικής των Κατασκευών, Ξάνθη, Ελλάδα e-mail: liolios@civil.duth.gr ΠΕΡΙΛΗΨΗ Παρουσιάζεται µια πρακτικά απλή και εύχρηστη αριθµητική επίλυση µε την Άµεση Μέθοδο υσκαµψίας µεταλλικών φορέων που περιέχουν καλωδιωτά δοµικά στοιχεία. Πρόκειται για φορείς µε µονόπλευρους συνδέσµους που εµφανίζουν µεταβλητό τρόπο λειτουργίας. Αρχικά γίνεται η διατύπωση του προβλήµατος σαν ανισοτικό πρόβληµα της Μηχανικής των Κατασκευών. Οι συνθήκες που διέπουν το πρόβληµα είναι τόσο ισότητες όσο και ανισότητες. Επισηµαίνεται ότι πρόκειται για προβλήµατα φορέων που είναι µη γραµµικά, µε ιδιαίτερες δυσκολίες τόσο στην µαθηµατική τους προσοµοίωση όσο και στην αριθµητική τους επίλυση. Ακολούθως, για την αριθµητική επίλυση του προβλήµατος, χρησιµοποιείται η Μέθοδος Άµεσης υσκαµψίας (Direct Stiffness Method) των Πεπερασµένων Στοιχείων (Finite Element Method F.E.M.) σε συνδυασµό µε µια µέθοδο βελτιστοποίησης. Τέλος, η όλη µεθοδολογία εφαρµόζεται σε µια χαρακτηριστική πρακτική περίπτωση ενός µεταλλικού φορέα ενισχυµένου µε διαγώνιους αντισεισµικούς συνδέσµους από καλώδια. 149