Graded Refractive-Index

Σχετικά έγγραφα
Homework 8 Model Solution Section

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Inverse trigonometric functions & General Solution of Trigonometric Equations

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

1 String with massive end-points

D Alembert s Solution to the Wave Equation

Second Order RLC Filters

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Spherical Coordinates

What happens when two or more waves overlap in a certain region of space at the same time?

Answer sheet: Third Midterm for Math 2339

Dr. D. Dinev, Department of Structural Mechanics, UACEG

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Solutions to Exercise Sheet 5

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Lifting Entry (continued)

Differential equations

Note: Please use the actual date you accessed this material in your citation.

A Determination Method of Diffusion-Parameter Values in the Ion-Exchange Optical Waveguides in Soda-Lime glass Made by Diluted AgNO 3 with NaNO 3

Lecture 26: Circular domains

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Matrices and Determinants

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

ΟΛΟΚΛΗΡΩΜΕΝΗ ΟΠΤΙΚΗ. Χειμερινό Εξάμηνο Γενικές Πληροφορίες. Αιθ. 008(Ν. Κτίρια, ΗΜΜΥ) Ηλίας Ν. Γλύτσης (Παλαιά Κτίρια ΗΜΜΥ)

Variational Wavefunction for the Helium Atom

Differentiation exercise show differential equation

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Numerical Analysis FMN011

Example Sheet 3 Solutions

derivation of the Laplacian from rectangular to spherical coordinates

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

6.4 Superposition of Linear Plane Progressive Waves

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane.

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Strain gauge and rosettes

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Section 8.3 Trigonometric Equations

PARTIAL NOTES for 6.1 Trigonometric Identities

Higher Derivative Gravity Theories

Jackson 2.25 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

Second Order Partial Differential Equations

Approximation of distance between locations on earth given by latitude and longitude

Calculating the propagation delay of coaxial cable

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Section 8.2 Graphs of Polar Equations

Block Ciphers Modes. Ramki Thurimella

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

Other Test Constructions: Likelihood Ratio & Bayes Tests

Laplace s Equation in Spherical Polar Coördinates

ECE 468: Digital Image Processing. Lecture 8

EE512: Error Control Coding

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

C.S. 430 Assignment 6, Sample Solutions

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Orbital angular momentum and the spherical harmonics

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Oscillatory Gap Damping

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is


Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B

Statistical Inference I Locally most powerful tests

Geodesic Equations for the Wormhole Metric

The Simply Typed Lambda Calculus

3.5 - Boundary Conditions for Potential Flow

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

Homework 3 Solutions

( y) Partial Differential Equations

Rectangular Polar Parametric

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

38 Te(OH) 6 2NH 4 H 2 PO 4 (NH 4 ) 2 HPO 4

Finite difference method for 2-D heat equation

MathCity.org Merging man and maths

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Space-Time Symmetries

Section 7.6 Double and Half Angle Formulas

Durbin-Levinson recursive method

Section 9.2 Polar Equations and Graphs

(As on April 16, 2002 no changes since Dec 24.)

Srednicki Chapter 55

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

F19MC2 Solutions 9 Complex Analysis

Symmetry. March 31, 2013

Magnetically Coupled Circuits

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

CRASH COURSE IN PRECALCULUS

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Transcript:

Graded Refractive-Index

Common Devices

Methodologies for Graded Refractive Index Methodologies: Ray Optics WKB Multilayer Modelling Solution requires: some knowledge of index profile n 2 x

Ray Optics for graded refractive index

Phase-change due to propagation k x T = tan 1 γ s k x + tan 1 γ c k x + m π k x x = ω c n x cos θ x = = ω c = ω c n 2 x n x sin θ x 2 = n 2 x N 2 k x x T N θ x i k x x i Δx i i n x i θ x i+1 n x i+1 ω c 0 x t n 2 x N 2 dx

Cladding-Film Interface k x T = tan 1 γ s k x + tan 1 γ c k x + m π N at x = 0 γ c = ω c N 2 n c 2 k x = ω c n 2 x = 0 N 2 = ω c n f 2 N 2 tan 1 γ c = tan 1 N2 2 n c π k x n 2 f N 2 2

Turning Point Interface k x T = tan 1 γ s k x + tan 1 γ c k x + m π N x t at x = x t k x = ω c n 2 x = x t + x N 2 γ s = ω c N 2 n 2 x = x t x n x = x t = N tan 1 γ c = tan 1 N 2 n 2 x=x t x tan 1 1 = π k x n 2 x=x t + x N 2 4

Bringing all the pieces together: k x T = tan 1 γ s k x + tan 1 γ c k x + m π ω c 0 x t n 2 x N 2 dx = π 4 + π 2 + m π x t N ω c 0 x t n 2 x N 2 dx = 3 4 + m π dispersion relation for a graded-refractive index waveguide

WKB Technique for graded refractive index

Solving for TE modes d 2 E y x dx 2 + ω2 c 2 n2 x N 2 E y x = 0 k x x = ω c n 2 x N 2 If: n x = n f k x x = k x E y x = A e j k x x (constant) (constant) (constant) When: Δ n 2 x N 2 Δx/λ x 1 E y x = A x e j k x x x E y x = A x ej φ x where: k x x x φ x

Major steps in the derivation: E y x = A x ej φ x d 2 E y x dx 2 + ω2 c 2 n2 x N 2 E y x = 0 A A φ 2 = kx 2 A A + 2 j A φ + j A φ A φ 2 = kx 2 A 2 A φ + A φ = 0 A A φ 2 = kx 2 A A = φ 2 kx 2 A φ 2 kx 2 0 φ x = ± k x x dx 2 A φ + A φ = 0 A 2 φ = 0 A x = constant k x x

General Solution E y x = c 1 k x x e+j k x x dx + c 2 k x x e j k x x dx k x x = ω c n 2 x N 2

Cladding Region E y x = c 1 k x x e+j k x x dx + c 2 k x x e j k x x dx x k x x = ω c n 2 x N 2 for x < 0 k x x = ω c n 2 x N 2 = ω c n c 2 N 2 = j ω c N 2 n c 2 = j γc E y x = c 1 j γ c e 0 x γ c dx + c 2 j γ c e + 0 x γ c dx E y x = A γ c e γ c x

Guiding Region E y x = c 1 k x x e+j k x x dx + c 2 k x x e j k x x dx k x x = ω c n 2 x N 2 x for 0 < x < x t k x x = ω c n 2 x N 2 E y x = B k x x e+j x t x k x x dx + C k x x e j x t x k x x dx

Beyond Turning Point E y x = c 1 k x x e+j k x x dx + c 2 k x x e j k x x dx k x x = ω c n 2 x N 2 x for x > x t k x x = ω c n 2 x N 2 = j ω c N 2 n 2 x = j γ s x E y x = D γ s x e x x t γ s x dx

3D Waveguides Channel Waveguides Optical Fibers

Channel Waveguides x x y III T n 5 V I n 1 II n 3 n 2 IV n 4 y W typically: width(w) > thickness (T)

a) Marcatili s Method H y TM-like modes: H y & E x E x

Transverse confinement along x-axis, tangential H y Region I: H y x, y = H 1 cos k x x + φ 1 T < x < 0 Region II : x < T H y x, y = H 2 e γ x,2 x+t Region III: x > 0 H y x, y = H 3 e γ x,3 x k x T = tan 1 γ x,2 n 2 2 n 1 2 k x + tan 1 γ x,3 n 3 2 n 1 2 k x + p π

Lateral confinement along y-axis, tangential E x Region I: E x x, y = E 1 cos k y y + φ 2 W 2 < x < W 2 Region IV : E x x, y = E 4 e γ y,4 y W 2 y > W 2 Region V: E x x, y = E 5 e γ 5,y y+ W 2 y < W 2 k y W = tan 1 γ y,4 k y + tan 1 γ y,5 k y + q π

Finding the propagation constants: k x T = tan 1 γ 2 x,2 n 1 + tan 1 γ 2 x,3 n 1 n 2 2 k x n 2 3 k x + p π F 1 k x, γ x,2, γ x,3, β = 0 k y W = tan 1 γ y,4 k y + tan 1 γ y,5 k y + q π F 2 k y, γ x,4, γ x,5, β = 0 n 1 2 ω2 c 2 = k 1 2 = k x 2 + k y 2 + β 2 G 1 k x, k y, β = 0 n 2 2 ω2 c 2 = k 2 2 = γ x,2 2 + k y 2 + β 2 n 3 2 ω2 c 2 = k 3 2 = γ x,3 2 + k y 2 + β 2 n 4 2 ω2 c 2 = k 4 2 = k x 2 γ y,4 2 + β 2 n 5 2 ω2 c 2 = k 5 2 = k x 2 γ y,5 2 + β 2 G 2 γ x,2, k y, β = 0 G 3 γ x,3, k y, β = 0 G 4 k x, γ y,4, β = 0 G 5 k x, γ y,5, β = 0

b) Effective Index Method n f n s n c n f n s n s N I n s

TM-like modes I) n c, n f, T, n s (TM) F a M, b M N I, V I = 0 N I II) n s, N I, W, n s (TE) F a E, b E N II, V II = 0 N II

Criteria for Single-Mode Operation n f = n s + n with n n s Transverse confinement: I) Transverse confinement: cut-off condition for mode p : b I,p = 0 V I,p = tan 1 a I + p π Requirement for existence of only one mode in transverse direction: tan 1 a I < V I < tan 1 a I + π

Lateral confinement: II) Lateral confinement: cut-off condition for mode q : b II,q = 0 V II,q = tan 1 a II + q π it is a symmetric waveguide, so we have: a II = 0 Requirement for existence of only one mode in lateral direction: 0 < V II < π

A little bit of algebra leads to: V I = ω c T n f 2 n s 2 b I N I 2 n s 2 n f 2 n s 2 V II = ω c W N I 2 n s 2 = ω c W b I n f 2 n s 2 = W T V I b I 0 < V II < π 0 < W T < π V I b I and tan 1 a I < V I < tan 1 a I + π single-mode region a I

step-index multimode step-index singlemode GRIN Optical Fibers a cylindrical dielectric waveguide

Modes in Optical Fibers Cartesian coordinates 2 E x, y x 2 + 2 E x, y y 2 + n2 ω 2 c 2 β2 E x, y = 0 E x, y, z, t = E x, y ej ω t β z Cylindrical coordinates 2 E r, φ r 2 + 1 r E r, φ r + 1 r 2 2 E r, φ φ 2 + n2 ω 2 c 2 β2 E r, φ = 0 E r, φ, z, t = E r, φ ej ω t β z

Solutions E r, φ = u r e j l φ e d 2 u dr 2 + 1 du r dr + n2 ω 2 c 2 β2 l2 r 2 u = 0 k T 2 n co 2 ω 2 c 2 β 2 γ 2 β 2 n cl 2 ω 2 c 2 Boundary conditions for E z, H z, E φ, H φ

Graphical Representation

Power Confinement Fraction of the power propagating inside the core against the V-number. Right above the cut-off, very little power is inside the core. As the core diameter increases, the power of the mode becomes confined inside the core.

Optical Attenuation 0.16 db = (3.6 %) 1 db = 10 log T

Numerical Aperture NA = n 0 sin θ 0 = n co 2 n cl 2 V-number V = 2π a λ n co 2 n cl 2 = 2π a λ NA single-mode operation V < 2.405 Number of Guided Modes in an Optical Fiber M = 4 π 2 V2

Coupled Mode Theory

A few examples:

Decomposition into the eigenmodes of the original structure E t x, y, z = a α z α E t,α x, y e j β α z + radiation modes H t x, y, z = a α z α H t,α x, y e j β α z + radiation modes

After a Careful (& Long) Analysis, Final Result: ± da μ dz = j α a α z e j β α β μ z Κ μ,α Κ μ,α Κ t μ,α + Κz μ,α 4 Κ t μ,α ω ε x, y, z E t,μ Et,α dx dy 4Κ z μ,α ω ε ε ε + ε E z,μ E z,α dx dy whenever ε is a real number, then Κ μ,α = Κ α,μ

Co-Directional Couplers: A z 2 = cos 2 β c z + 2 β 2 sin2 β c z = c 1 F sin 2 β c z B z 2 Κ 2 = = β 2 sin2 β c z c F sin 2 β c z F Κ2 β 2 = Κ 2 c Κ 2 + 2 A z 2 when: β b = β a β b β a 2 = 0 F = 1 β c Κ 2 + 2 = Κ L = π 2 β c = π 2 Κ π 2 F = 0.2 F = 0.8 B z 2 z βc z βc

Counter-Directional Couplers = 0 Κ c = 0.2 A z 2 L = 5 A z 2 = 1 + F sinh2 α z L 1 + F sinh 2 α L B z 2 B z 2 = F sinh2 α z L 1 + F sinh 2 α L A z 2 L = 9 F Κ c 2 Κ c 2 2 > 1 when: = 0 L π Κ c B z 2